Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Fish Shellfish Immunol ; 138: 108868, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37263550

ABSTRACT

Toll-like receptors (TLRs) are crucial players in immune recognition and regulation, with aberrant activation leading to autoimmune, chronic inflammatory, and infectious diseases. MicroRNAs (miRNAs) have been shown to regulate gene expression at transcriptional and post-transcriptional levels. While miRNA-mediated regulation of TLR signaling has been studied in mammals, the underlying mechanisms of TLR-miRNA interactions in molluscs remain unclear. In a previous study, one of the TLR genes potentially targeted by miRNAs was identified and named McTLR-like1. McTLR-like1 was later found to be targeted by miRNA Mc-novel_miR_196 through bioinformatic prediction. In this study, we aim to experimentally determine the interaction between McTLR-like1 and Mc-novel_miR_196, as well as their functional role in the innate immune response of molluscs. The results showed that the expression of Mc-novel_miR_196 was suppressed, while the expression of McTLR-like1 was enhanced in M. coruscus hemocytes treated with lipopolysaccharide (LPS). Moreover, in vitro assays demonstrated that Mc-novel_miR_196 directly targets the 5' UTR of McTLR-like1 and leads to the down-regulation of proinflammatory cytokines in hemocytes. In addition, co-transfection experiments confirmed that Mc-novel_miR_196 inhibits McTLR-like1 and inhibits the expression of proinflammatory cytokines. The Tunel assay also showed that Mc-novel_miR_196 inhibited apoptosis in hemocytes induced by LPS. Our findings suggest that microRNA Mc-novel_miR_196 acts as a regulator of innate immunity in M. coruscus by targeting McTLR-like1 and inhibiting inflammatory response and apoptosis. These results provide further insights into the complex molecular mechanisms underlying TLR signaling in molluscs.


Subject(s)
MicroRNAs , Mytilus , Animals , MicroRNAs/genetics , Lipopolysaccharides/pharmacology , Immunity, Innate/genetics , Cytokines , Apoptosis , Mammals
2.
Int J Mol Sci ; 24(23)2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38069123

ABSTRACT

The nuclear factor erythroid 2-related factor 2 (Nrf2) is a pivotal regulator of antioxidant gene expression in mammals, forming heterodimer complexes with small Maf proteins through its BZip domain. However, the underlying mechanism of Nrf2 action in molluscs remains poorly understood. The thick shell mussel, Mytilus coruscus, represents a model organism for the marine environment and molluscs interaction research. In this study, we used in silico cloning to obtain a small Maf homologue called McMafF_G_K from M. coruscus. McMafF_G_K possesses a typical BZip domain, suggesting its affiliation with the traditional small Maf family and its potential involvement in the Nrf2 signaling pathway. Transcriptional analysis revealed that McMafF_G_K exhibited a robust response to benzo[a]pyrene (Bap) in the digestive glands. However, this response was down-regulated upon interference with McMafF_G_K-siRNA. Interestingly, the expression levels of Nrf2, NAD(P)H: quinone oxidoreductase (NQO-1), and Glutathione Peroxidase (GPx), which are key players in oxidative stress response, showed a positive correlation with McMafF_G_K in digested adenocytes of M. coruscus. Furthermore, in vitro analysis of antioxidant capacity in digestive gland cells demonstrated that Bap exposure led to an increase in reactive oxygen species (ROS) levels, accompanied by an elevation in total antioxidant capacity (T-AOC), potentially counterbalancing the excessive ROS. Strikingly, transfection of McMafF_G_K siRNA resulted in a significant rise in ROS level and a down-regulation of T-AOC level. To validate the functional relevance of McMafF_G_K, a glutathione S-transferase (GST) pull-down assay confirmed its interaction with McNrf2, providing compelling evidence of their protein interaction. This study significantly contributes to our understanding of the functional role of McMafF_G_K in the Nrf2 signaling pathway and sheds light on its potential as a target for further research in oxidative stress response.


Subject(s)
Antioxidants , Bivalvia , Animals , Antioxidants/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Reactive Oxygen Species/metabolism , Oxidative Stress , Bivalvia/genetics , RNA, Small Interfering/metabolism , Mammals/metabolism
3.
Fish Shellfish Immunol ; 131: 817-826, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36349653

ABSTRACT

In this study, seven transcripts representing a novel antimicrobial peptide (AMP) family with structural features similar to those of arthropod defensins were identified from Mytilus coruscus. These novel defensins from the Mytilus AMP family were named myticofensins. To explore the possible immune-related functions of these myticofensins, we examined their expression profiles in different tissues and larval stages, as well as in three immune-related tissues under the threat of different microbes. Our data revealed that the seven myticofensins had relatively high expression levels in immune-related tissues. Most myticofensins were undetectable, or had low expression levels, in different larval mussel stages. Additionally, in vivo microbial challenges significantly increased the expression levels of myticofensins in M. coruscus hemocytes, gills, and digestive glands, showing different immune response patterns under challenges from different microbes. Our data indicates that different myticofensins may have different immune functions in different tissues. Furthermore, peptide sequences corresponding to the beta-hairpin, alpha-helix, and N-terminal loop of myticofensin were synthesized and the antimicrobial activities of these peptide fragments were tested. Our data confirms the diversity of defensins in Mytilus and reports the complex regulation of these defensins in the mussel immune response to different microbes in immune-related tissues. The immune system of Mytilus has been studied for years as they are a species with strong environmental adaptations. Our data can be regarded as a step forward in the study of the adaptation of Mytilus spp. to an evolving microbial world.


Subject(s)
Mytilus , Animals , Antimicrobial Peptides , Defensins/genetics , Defensins/metabolism , Hemocytes , Larva
4.
Fish Shellfish Immunol ; 131: 612-623, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36272520

ABSTRACT

Mytilus shows great immune resistance to various bacteria from the living waters, indicating a complex immune recognition mechanism against various microbes. Peptidoglycan recognition proteins (PGRPs) play an important role in the defense against invading microbes via the recognition of the immunogenic substance peptidoglycan (PGN). Therefore, eight PGRPs were identified from the gill transcriptome of Mytilus coruscus. The sequence features, expression pattern in various organs and larval development stages, and microbes induced expression profiles of these Mytilus PGRPs were determined. Our data revealed the constitutive expression of PGRPs in various organs with relative higher expression level in immune-related organs. The expression of PGRPs is developmentally regulated, and most PGRPs are undetectable in larvae stages. The expression level of most PGRPs was significantly increased with in vivo microbial challenges, showing strong response to Gram-positive strain in gill and digestive gland, strong response to Gram-negative strain in hemocytes, and relative weaker response to fungus in the three tested organs. In addition, the function analysis of the representative recombinant expressed PGRP (rMcPGRP-2) confirmed the antimicrobial and agglutination activities, showing the immune-related importance of PGRP in Mytilus. Our work suggests that Mytilus PGRPs can act as pattern recognition receptors to recognize the invading microorganisms and the antimicrobial effectors during the innate immune response of Mytilus.


Subject(s)
Mytilus , Animals , Carrier Proteins , Peptidoglycan/pharmacology , Peptidoglycan/metabolism , Receptors, Pattern Recognition/genetics , Receptors, Pattern Recognition/metabolism , Immunity, Innate/genetics
5.
Ecotoxicol Environ Saf ; 149: 1-9, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29145160

ABSTRACT

The copepod Acartia tonsa was used as a model species to assess marine sediment quality. Acute and chronic bioassays, such as larval development ratio (LDR) and different end-points were evaluated. As a pelagic species, A. tonsa is mainly exposed to water-soluble toxicants and bioassays are commonly performed in seawater. However, an interaction among A. tonsa eggs and the first larval stages with marine sediments might occur in shallow water environments. Here we tested two different LDR protocols by incubating A. tonsa eggs in elutriates and sediments coming from two areas located in Tuscany Region (Central Italy): Livorno harbour and Viareggio coast. The end-points analyzed were larval mortality (LM) and development inhibition (DI) expressed as the percentage of copepods that completed the metamorphosis from nauplius to copepodite. Aims of this study were: i) to verify the suitability of A. tonsa copepod for the bioassay with sediment and ii) to compare the sensitivity of A. tonsa exposed to different matrices, such as water and sediment. A preliminary acute test was also performed. Acute tests showed the highest toxicity of Livorno's samples (two out of three) compared to Viareggio samples, for which no effect was observed. On the contrary, LDR tests with sediments and elutriates revealed some toxic effects also for Viareggio's samples. Results were discussed with regards to the chemical characterization of the samples. Our results indicated that different end-points were affected in A. tonsa, depending on the matrices to which the copepods were exposed and on the test used. Bioassays with elutriates and sediments are suggested and LDR test could help decision-makers to identify a more appropriate management of dredging materials.


Subject(s)
Copepoda/drug effects , Environmental Monitoring/methods , Geologic Sediments/chemistry , Larva/drug effects , Water Pollutants, Chemical/toxicity , Animals , Biological Assay , Italy , Larva/growth & development , Seawater/chemistry
6.
Ecotoxicol Environ Saf ; 123: 26-31, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26409651

ABSTRACT

Quantum dot nanoparticles (QDs) are proposed as novel materials for photovoltaic technologies, light emitting devices, and biomedical applications. In this study we investigated the effect of CdSe/ZnS QDs on the growth rate of four microalgae: the diatom Phaeodactylum tricornutum, the cryptophyte Rhinomonas reticulata, the prymnesiophyte Isochrysis galbana and the green alga Dunaliella tertiolecta. In addition we analyzed the effect of QDs on the copepod Acartia tonsa. A classical acute test (48-h) with embryos was carried out to evaluate naupliar survival. Moreover, a 4-day chronic test with adult copepods was conducted to evaluate their fecundity (embryos f(-1)day(-1)) and egg hatching success. QDs in the range from 1 to 4nM gradually inhibited the growth rate of P. tricornutum, I. galbana, R. reticulata and D. tertiolecta with an EC50 of 1.5, 2.4, 2.5 and 4.2nM, respectively. Acute tests with A. tonsa (QD concentration tested from 0.15 to 1.5nM) showed an increased naupliar mortality in response to QD treatment, exhibiting an EC50 of 0.7nM. Chronic test showed no negative effect on egg production, except on the last two days at the highest QD concentration (2.5nM). No significant reduction of the percentage of egg hatching success was recorded during the exposure. Toxicity assessment of QDs was also investigated at the molecular level, studying heat shock protein 70 gene expression (hsp 70). Our results indicate that hsp70 was upregulated in adults exposed 3 days to 0.5nM QDs. Overall, these results suggest that species unable to swim along the water column, like P. tricornutum and early hatched copepods, could be more exposed to toxic effects of QDs which tend to aggregate and settle in seawater.


Subject(s)
Cadmium Compounds/toxicity , Plankton/drug effects , Quantum Dots/toxicity , Selenium Compounds/toxicity , Sulfides/toxicity , Zinc Compounds/toxicity , Animals , Biological Assay , Cadmium Compounds/chemistry , Chlorophyta/drug effects , Chlorophyta/physiology , Copepoda/drug effects , Copepoda/physiology , Diatoms/drug effects , Diatoms/physiology , Endpoint Determination , Gene Expression Regulation , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , Microalgae/drug effects , Microalgae/physiology , Nanoparticles/chemistry , Plankton/radiation effects , Quantum Dots/chemistry , Seawater/chemistry , Selenium Compounds/chemistry , Sulfides/chemistry , Zinc Compounds/chemistry
7.
Ecotoxicol Environ Saf ; 123: 72-80, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26254716

ABSTRACT

Embryos of Mediterranean sea urchin Paracentrotus lividus and subtropical Echinometra mathaei were exposed to 5,10, 15 and 20µgL(-1), and to 1, 2, 3 and 4µgL(-1) mercuric chloride (HgCl2), respectively. The effective concentration (EC50) inducing malformation in 50% of 4-arm pluteus stage (P4) was 16.14µgL(-1) for P. lividus and 2.41µgL(-1) for E. mathaei. Two-photon (TP), second (SHG) and third harmonic generation (THG) microscopy techniques, TUNEL staining, propidium iodide (PI) and Hoechst 33342 probes were used to detect light signals or to stain apoptotic and necrotic cells in fixed and alive plutei. Signals were detected differently in the two species: TP fluorescence, commonly associated with apoptotic cells, did not increase with increasing HgCl2 concentrations in P. lividus and in fact, the TUNEL did not reveal induction of apoptosis. PI fluorescence increased in P. lividus in a dose-dependent manner, suggesting a loss of cell permeability. In E. mathaei plutei TP fluorescence increased at increasing HgCl2 concentrations. THG microscopy revealed skeletal rods in both species. Different fluorescent techniques, used in this study, are proposed as early-warning systems to visualize malformations and physiological responses in sea urchin plutei.


Subject(s)
Mercuric Chloride/toxicity , Paracentrotus/drug effects , Sea Urchins/drug effects , Animals , Apoptosis , Dose-Response Relationship, Drug , Embryo, Nonmammalian/drug effects , Embryo, Nonmammalian/metabolism , In Situ Nick-End Labeling , Paracentrotus/metabolism , Sea Urchins/metabolism
8.
Chemosphere ; 360: 142302, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763394

ABSTRACT

Nickel compounds in dissolved form or as nanoparticles may affect planktonic invertebrates in marine ecosystems. Here, we assessed the physiological (naupliar mortality, egg production, egg hatching success) and molecular (quantitative gene expression) responses of the crustacean copepods Acartia clausi (indigenous Mediterranean species) and Acartia tonsa (model organism in ecotoxicology), to nickel nanoparticles (NiNPs) and nickel chloride (NiCl2), over time. We also measured NPs size and the temporal release of Ni ions in aqueous solution, through dynamic light scattering (DLS) and inductively coupled plasma-mass spectrometry (ICP-MS), respectively. Nauplii of A. clausi were highly vulnerable to NiCl2 in the 48 h acute test, with an EC50 in the range of Ni concentrations measured in polluted waters. Females of both species exhibited a decreased egg production and hatching success after the 4-day exposure to NiNPs. Molecular responses in A. clausi incubated in NiNPs and NiCl2 showed a stronger up- or down-regulation, compared to A. tonsa, of genes associated with detoxification (phospholipid-hydroperoxide glutathione peroxidase, glutathione-S-transferase sigma), oxidative stress (superoxide dismutase), nervous system functioning (acetylcholinesterase), and oogenesis (vitellogenin). In conclusion, new information was here obtained on the effects of different forms of nickel on physiological and molecular responses of A. clausi, that could help to identify biomarker genes of exposure to be used as early-warning indicators. Our results also highlighted the need of employing indigenous copepod species to better evaluate the ecotoxicological impact of pollutants in different geographical area.


Subject(s)
Copepoda , Metal Nanoparticles , Nickel , Water Pollutants, Chemical , Animals , Nickel/toxicity , Copepoda/drug effects , Copepoda/physiology , Water Pollutants, Chemical/toxicity , Metal Nanoparticles/toxicity , Female , Oxidative Stress/drug effects
9.
Chemosphere ; 362: 142603, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38885765

ABSTRACT

The poly(butylene succinate-co-adipate) (PBSA) is emerging as environmentally sustainable polyester for applications in marine environment. In this work the capacity of microbiome associated with marine plankton culture to degrade PBSA, was tested. A taxonomic and functional characterization of the microbiome associated with the copepod Acartia tonsa, reared in controlled conditions, was analysed by 16S rDNA metabarcoding, in newly-formed adult stages and after 7 d of incubation. A predictive functional metagenomic profile was inferred for hydrolytic activities involved in bioplastic degradation with a particular focus on PBSA. The copepod-microbiome was also characterized in newly-formed carcasses of A. tonsa, and after 7 and 33 d of incubation in the plankton culture medium. Copepod-microbiome showed hydrolytic activities at all developmental stages of the alive copepods and their carcasses, however, the evenness of the hydrolytic bacterial community significantly increased with the time of incubation in carcasses. Microbial genera, never described in association with copepods: Devosia, Kordia, Lentibacter, Methylotenera, Rheinheimera, Marinagarivorans, Paraglaciecola, Pseudophaeobacter, Gaiella, Streptomyces and Kribbella sps., were retrieved. Kribbella sp. showed carboxylesterase activity and Streptomyces sp. showed carboxylesterase, triacylglycerol lipase and cutinase activities, that might be involved in PBSA degradation. A culturomic approach, adopted to isolate bacterial specimen from carcasses, led to the isolation of the bacterial strain, Vibrio sp. 01 tested for the capacity to promote the hydrolysis of the ester bonds. Granules of PBSA, incubated 82 d at 20 °C with Vibrio sp. 01, were characterized by scanning electron microscopy, infrared spectroscopy, thermogravimetric analysis, and differential scanning calorimetry, showing fractures compared to the control sample, and hydrolysis of ester bonds. These preliminary results are encouraging for further investigation on the ability of the microbiome associated with plankton to biodegrade polyesters, such as PBSA, and increasing knowledge on microorganisms involved in bioplastic degradation in marine environment.

10.
J Proteomics ; 294: 105062, 2024 03 15.
Article in English | MEDLINE | ID: mdl-38158015

ABSTRACT

Mytilus coruscus is an economically important marine bivalve that lives in estuarine sea areas with seasonal coastal acidification and frequently suffers shell injury in the natural environment. However, the molecular responses and biochemical properties of Mytilus under these conditions are not fully understood. In the present study, we employed tandem mass spectrometry combined with isobaric tagging to identify differentially expressed proteins in the mantle tissue of M. coruscus under different short-term treatments, including shell-complete mussels raised in normal seawater (pH 8.1), shell-damaged mussels raised in normal seawater (pH 8.1), and acidified seawater (pH 7.4). A total of 2694 proteins were identified in the mantle, and analysis of their relative abundance from the three different treatments revealed alterations in the proteins involved in immune regulation, oxidation-reduction processes, protein folding and processing, energy provision, and cytoskeleton. The results obtained by quantitative proteomic analysis of the mantle allowed us to delineate the molecular strategies adopted by M. coruscus in the shell repair process in acidified environments, including an increase in proteins involved in oxidation-reduction processes, protein processing, and cell growth at the expense of proteins involved in immune capacity and energy metabolism. SIGNIFICANCE: The impact of global ocean acidification on calcifying organisms has become a major ecological and environmental problem in the world. Mytilus coruscus is an economically important marine bivalve living in estuary sea area with seasonal coastal acidification, and frequently suffering shell injury in natural environment. Molecular responses of M coruscus under the shell damage and acute acidification is still largely unknown. For this reason, iTRAQ based quantitative proteomic and histological analysis of the mantle from M. coruscus under shell damage and acute acidification were performed, for revealing the proteomic response and possible adaptation mechanism of Mytilus under combined shell damage and acidified sea water, and understanding how the mussel mantle implement a shell-repair process under acidified sea water. Our study provides important data for understanding the shell repair process and proteomic response of Mytilus under ocean acidification, and providing insights into potential adaptation of mussels to future global change.


Subject(s)
Mytilus , Seawater , Animals , Seawater/chemistry , Mytilus/physiology , Hydrogen-Ion Concentration , Proteomics , Energy Metabolism
12.
Environ Pollut ; 335: 122284, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37543074

ABSTRACT

Marine sediments are regarded as sinks for several classes of contaminants. Characterization and effects of sediments on marine biota now require a multidisciplinary approach, which includes chemical and ecotoxicological analyses and molecular biomarkers. Here, a gene expression study was performed to measure the response of adult females of the Mediterranean copepod Acartia clausi to elutriates of polluted sediments (containing high concentrations of polycyclic aromatic hydrocarbons, PAHs, and heavy metals) from an industrial area in the Southern Tyrrhenian Sea (Bagnoli-Coroglio). Functional annotation of the A. clausi transcriptome generated as reference here, showed a good quality of the assembly and great homology with other copepod and crustacean sequences in public databases. This is one of the few available transcriptomic resources for this widespread copepod species of great ecological relevance in temperate coastal areas. Differential expression analysis between females exposed to the elutriate and those in control seawater identified 1000 differentially expressed genes, of which 743 up- and 257 down-regulated. Within the up-regulated genes, the most represented functions were related to proteolysis (lysosomal protease, peptidase, cathepsin), response to stress and detoxification (heat-shock protein, superoxide dismutase, glutathione-S-transferase, cytochrome P450), and cytoskeleton structure (α- and ß-tubulin). Down-regulated genes were mostly involved with ribosome structure (ribosomal proteins) and DNA binding (histone proteins, transcription factors). Overall, these results suggest that processes such as transcription, translation, protein degradation, metabolism of biomolecules, reproduction, and xenobiotic detoxification were altered in the copepod in response to polluted elutriates. In conclusion, our results contribute to gaining information on the transcriptomic responses of copepods to polluted sediments. They will also prompt the selection of genes of interest to be used as biomarkers of exposure to PAHs and heavy metals in molecular toxicology studies on copepods, and in general, in comparative functional genomic studies on marine zooplankton.


Subject(s)
Copepoda , Metals, Heavy , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Animals , Female , Copepoda/genetics , Transcriptome , Water Pollutants, Chemical/analysis , Polycyclic Aromatic Hydrocarbons/toxicity , Polycyclic Aromatic Hydrocarbons/analysis , Metals, Heavy/analysis , Geologic Sediments/chemistry
13.
Animals (Basel) ; 13(14)2023 Jul 09.
Article in English | MEDLINE | ID: mdl-37508026

ABSTRACT

Ocean warming can cause injury and death in mussels and is believed to be one of the main reasons for extensive die-offs of mussel populations worldwide. However, the biological processes by which mussels respond to heat stress are still unclear. In this study, we conducted an analysis of enzyme activity and TMT-labelled based proteomic in the digestive gland tissue of Mytilus coruscus after exposure to high temperatures. Our results showed that the activities of superoxide dismutase, acid phosphatase, lactate dehydrogenase, and cellular content of lysozyme were significantly changed in response to heat stress. Furthermore, many differentially expressed proteins involved in nutrient digestion and absorption, p53, MAPK, apoptosis, and energy metabolism were activated post-heat stress. These results suggest that M. coruscus can respond to heat stress through the antioxidant system, the immune system, and anaerobic respiration. Additionally, M. coruscus may use fat, leucine, and isoleucine to meet energy requirements under high temperature stress via the TCA cycle pathway. These findings provide a useful reference for further exploration of the response mechanism to heat stress in marine mollusks.

14.
Aquat Toxicol ; 264: 106728, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37837868

ABSTRACT

Benzopyrene (Bap) is a major constituent of petroleum pollutants commonly found in aquatic environments, and its mutagenic and carcinogenic properties have adverse effects on aquatic organisms' development, growth, and reproduction. The antioxidant defense system element, NF-E2-related factor 2 (Nrf2), has been linked to the oxidative stress response in marine invertebrates exposed to toxic substances. In a previous study, a novel Nrf2 homologue, McNrf2, was identified in mussel Mytilus coruscus, a significant model marine molluscs in ecotoxicology studies. McNrf2 showed the potential to trigger an antioxidant defense against oxidative stress induced by Bap. Here, we employed an Nrf2 overexpression and inhibition model using SFN and ML385 as Nrf2 inducer and inhibitor, respectively. Next, immunofluorescence technique was used to evaluate the nuclear activation of Nrf2 induced by Bap-mediated oxidative stress. Transmission electron microscopy revealed that overexpression of Nrf2 could maintain the quantity and structural integrity of mitochondria, while flow cytometry analysis showed that Nrf2 could alleviate Bap-induced cellular apoptosis. These findings suggest that Nrf2 can protect molluscs from Bap-induced oxidative stress through the mitochondria and apoptosis pathways, providing a novel perspective on Nrf2's antioxidant function.


Subject(s)
Antioxidants , Water Pollutants, Chemical , Animals , Antioxidants/metabolism , NF-E2-Related Factor 2/metabolism , Water Pollutants, Chemical/toxicity , Oxidative Stress , Mollusca/metabolism , Apoptosis , Mitochondria/metabolism , Reactive Oxygen Species/metabolism
15.
PLoS One ; 18(10): e0293565, 2023.
Article in English | MEDLINE | ID: mdl-37889901

ABSTRACT

Mytilus coruscus is an economically important marine bivalve mollusk found in the Yangtze River estuary, which experiences dramatic pH fluctuations due to seasonal freshwater input and suffer from shell fracture or injury in the natural environment. In this study, we used intact-shell and damaged-shell M. coruscus and performed metabolomic analysis, free amino acids analysis, calcium-positive staining, and intracellular calcium level tests in the mantle to investigate whether the mantle-specific metabolites can be induced by acute sea-water acidification and understand how the mantle responds to acute acidification during the shell repair process. We observed that both shell damage and acute acidification induced alterations in phospholipids, amino acids, nucleotides, organic acids, benzenoids, and their analogs and derivatives. Glycylproline, spicamycin, and 2-aminoheptanoic acid (2-AHA) are explicitly induced by shell damage. Betaine, aspartate, and oxidized glutathione are specifically induced by acute acidification. Our results show different metabolic patterns in the mussel mantle in response to different stressors, which can help elucidate the shell repair process under ocean acidification. furthermore, metabolic processes related to energy supply, cell function, signal transduction, and amino acid synthesis are disturbed by shell damage and/or acute acidification, indicating that both shell damage and acute acidification increased energy consumption, and disturb phospholipid synthesis, osmotic regulation, and redox balance. Free amino acid analysis and enzymatic activity assays partially confirmed our findings, highlighting the adaptation of M. coruscus to dramatic pH fluctuations in the Yangtze River estuary.


Subject(s)
Mytilus , Animals , Mytilus/physiology , Seawater/chemistry , Hydrogen-Ion Concentration , Calcium/metabolism , Amino Acids/metabolism
16.
Sci Total Environ ; 903: 165785, 2023 Dec 10.
Article in English | MEDLINE | ID: mdl-37499827

ABSTRACT

The thick-shell mussel Mytilus coruscus serves as a common sessile intertidal species and holds economic significance as an aquatic organism. M. coruscus often endure higher temperatures than their ideal range during consecutive low tides in the spring. This exposure to elevated temperatures provides them with a thermal tolerance boost, enabling them to adapt to high-temperature events caused by extreme low tides and adverse weather conditions. This phenomenon is referred to as heat-hardening. Some related studies showed the phenomenon of heat-hardening in sessile intertidal species but not reported at the mechanism level based on transcriptome so far. In this study, physiological experiments, gene family identification and transcriptome sequencing were performed to confirm the thermotolerance enhancement based on heat-hardening and explore the mechanism in M. coruscus. A total of 2935 DEGs were identified and the results of the KEGG enrichment showed that seven heat-hardening relative pathways were enriched, including Toll-like receptor signal pathway, Arachidonic acid metabolism, and others. Then, 24 HSP70 members and 36 CYP2 members, were identified, and the up-regulated members are correlated with increasing thermotolerance. Finally, we concluded that the heat-hardening M. coruscus have a better thermotolerance because of the capability of maintaining the integrity and the phenomenon of vasodilation of the gill under thermal stress. Further, the physiological experiments yielded the same conclusions. Overall, this study confirms the thermotolerance enhancement caused by heat-hardening and reveals the survival strategy in M. coruscus. In addition, the conclusion provides a new reference for studying the intertidal species' heat resistance mechanisms to combat extreme heat events and the strategies for dealing with extreme weather in aquaculture under the global warming trend.

17.
Sci Total Environ ; 856(Pt 1): 158861, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36419274

ABSTRACT

Research to assess the impacts of mariculture on the microbiota of the surrounding environment is still inadequate. Here, we examined the effects of Mytilus coruscus farming on the diversity of bacterial community in surrounding seawater using field investigations and indoor simulations, focusing on the variation of members of aerobic anoxygenic photoheterotrophic (AAP) bacteria. In the field, Mytilus farming shaped bacterial community and significantly increased their diversity, including biomass, OTUs, Shannon, relative abundance, number of enriched species, as compared with the non-farming area. Higher abundance of AAP related genera was observed in the Mytilus farming seawater. Under the controlled condition, the presence of M. coruscus significantly shaped the bacterial community composition and caused species composition to become similar after 10 days. Furthermore, the presence of M. coruscus consistently strengthened local diversity in seawater bacterial community, with linkages to the recruitment of AAP members as well. In addition, the tissue-related composition of M. coruscus significantly differed from those in seawater. Our findings highlight a ecological importance of Mytilus farming, as process that shape surrounding water-cultured bacterial community and offer experimental evidence for the accumulation of AAP-related genera in aquaculture systems.


Subject(s)
Mytilus , Animals , Farms , Agriculture , Seawater , Bacteria
18.
Front Physiol ; 14: 1289655, 2023.
Article in English | MEDLINE | ID: mdl-37954445

ABSTRACT

Mytilus coruscus is an economically important marine calcifier living in the Yangtze River estuary sea area, where seasonal fluctuations in natural pH occur owing to freshwater input, resulting in a rapid reduction in seawater pH. In addition, Mytilus constantly suffers from shell fracture or injury in the natural environment, and the shell repair mechanisms in mussels have evolved to counteract shell injury. Therefore, we utilized shell-complete and shell-damaged Mytilus coruscus in this study and performed transcriptomic analysis of the mantle to investigate whether the expression of mantle-specific genes can be induced by acute seawater acidification and how the mantle responds to acute acidification during the shell repair process. We found that acute acidification induced more differentially expressed genes than shell damage in the mantle, and the biomineralization-related Gene Ontology terms and KEGG pathways were significantly enriched by these DEGs. Most DEGs were upregulated in enriched pathways, indicating the activation of biomineralization-related processes in the mussel mantle under acute acidification. The expression levels of some shell matrix proteins and antimicrobial peptides increased under acute acidification and/or shell damage, suggesting the molecular modulation of the mantle for the preparation and activation of the shell repairing and anti-infection under adverse environmental conditions. In addition, morphological and microstructural analyses were performed for the mantle edge and shell cross-section, and changes in the mantle secretory capacity and shell inner film system induced by the two stressors were observed. Our findings highlight the adaptation of M. coruscus in estuarine areas with dramatic fluctuations in pH and may prove instrumental in its ability to survive ocean acidification.

19.
Nanomaterials (Basel) ; 13(3)2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36770355

ABSTRACT

The use of eco-friendly engineered nanomaterials represents a recent solution for an effective and safe treatment of contaminated dredging sludge. In this study, an eco-designed engineered material based on cross-linked nanocellulose (CNS) was applied for the first time to decontaminate a real matrix from heavy metals (namely Zn, Ni, Cu, and Fe) and other undesired elements (mainly Ba and As) in a lab-scale study, with the aim to design a safe solution for the remediation of contaminated matrices. Contaminated freshwater sludge was treated with CNS coupled with a filtering fine-mesh net, and the obtained waters were tested for acute and sublethal toxicity. In order to check the safety of the proposed treatment system, toxicity tests were conducted by exposing the bacterium Aliivibrio fischeri and the crustacean Heterocypris incongruens, while subtoxicity biomarkers such as lysosomal membrane stability, genetic, and chromosomal damage assessment were performed on the freshwater bivalve Dreissena polymorpha. Dredging sludge was found to be genotoxic, and such genotoxicity was mitigated by the combined use of CNS and a filtering fine-mesh net. Chemical analyses confirmed the results by highlighting the abetment of target contaminants, indicating the present model as a promising tool in freshwater sludge nanoremediation.

20.
Article in English | MEDLINE | ID: mdl-36731219

ABSTRACT

As a result of global warming, the Mytilus coruscus living attached in the intertidal zone experience extreme and fluctuating changes in temperature, and extreme temperature changes are causing mass mortality of intertidal species. This study explores the transcriptional response of M. coruscus at different temperatures (18 °C, 26 °C, and 33 °C) and different times (0, 12, and 24 h) of action by analyzing the potential temperature of the intertidal zone. In response to high temperatures, several signaling pathways in M. coruscus, ribosome, endocytosis, endoplasmic reticulum stress, protein degradation, and lysosomes, interact to counter the adverse effects of high temperatures on protein homeostasis. Increased expression of key genes, including heat shock proteins (Hsp70, Hsp20, and Hsp110), Lysosome-associated membrane glycoprotein (LAMP), endoplasmic reticulum chaperone (BiP), and baculoviral IAP repeat-containing protein 7 (BIRC7), may further mitigate the effects of heat stress and delay mortality in M. coruscus. These results reveal changes in multiple signaling pathways involved in protein degradation during high-temperature stress, which will contribute to our overall understanding of the molecular mechanisms underlying the response of M. coruscus to high-temperature stress.


Subject(s)
Mytilus , Animals , Mytilus/genetics , Temperature , Transcriptome , Proteolysis , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL