Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
J Am Chem Soc ; 146(26): 17974-17985, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38957136

ABSTRACT

The binding affinity determination of protein-ligand complexes is a cornerstone of drug design. State-of-the-art techniques are limited by lengthy and expensive processes. Building upon our recently introduced novel screening method utilizing photochemically induced dynamic nuclear polarization (photo-CIDNP) NMR, we provide the methodological framework to determine binding affinities within 5-15 min using 0.1 mg of protein. The accuracy of our method is demonstrated for the affinity constants of peptides binding to a PDZ domain and fragment ligands binding to the protein PIN1. The method can also be extended to measure the affinity of nonphoto-CIDNP-polarizable ligands in competition binding experiments. Finally, we demonstrate a strong correlation between the ligand-reduced signals in photo-CIDNP-based NMR fragment screening and the well-established saturation transfer difference (STD) NMR. Thus, our methodology measures protein-ligand affinities in the micro- to millimolar range in only a few minutes and informs on the binding epitope in a single-scan experiment, opening new avenues for early stage drug discovery approaches.


Subject(s)
Nuclear Magnetic Resonance, Biomolecular , Ligands , Protein Binding , Photochemical Processes , NIMA-Interacting Peptidylprolyl Isomerase/metabolism , NIMA-Interacting Peptidylprolyl Isomerase/chemistry , Proteins/chemistry , Proteins/metabolism , Peptides/chemistry , Peptides/metabolism , Magnetic Resonance Spectroscopy/methods , Models, Molecular , PDZ Domains
2.
J Am Chem Soc ; 145(40): 21915-21924, 2023 10 11.
Article in English | MEDLINE | ID: mdl-37782045

ABSTRACT

Interactions between RNA and proteins are the cornerstone of many important biological processes from transcription and translation to gene regulation, yet little is known about the ancient origin of said interactions. We hypothesized that peptide amyloids played a role in the origin of life and that their repetitive structure lends itself to building interfaces with other polymers through avidity. Here, we report that short RNA with a minimum length of three nucleotides binds in a sequence-dependent manner to peptide amyloids. The 3'-5' linked RNA backbone appears to be well-suited to support these interactions, with the phosphodiester backbone and nucleobases both contributing to the affinity. Sequence-specific RNA-peptide interactions of the kind identified here may provide a path to understanding one of the great mysteries rooted in the origin of life: the origin of the genetic code.


Subject(s)
Nucleotides , RNA , RNA/chemistry , Nucleotides/genetics , Codon , Amyloid/genetics , Amyloidogenic Proteins , Peptides/genetics
3.
J Biomol NMR ; 75(6-7): 255-272, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34170475

ABSTRACT

Progress in NMR in general and in biomolecular applications in particular is driven by increasing magnetic-field strengths leading to improved resolution and sensitivity of the NMR spectra. Recently, persistent superconducting magnets at a magnetic field strength (magnetic induction) of 28.2 T corresponding to 1200 MHz proton resonance frequency became commercially available. We present here a collection of high-field NMR spectra of a variety of proteins, including molecular machines, membrane proteins, viral capsids, fibrils and large molecular assemblies. We show this large panel in order to provide an overview over a range of representative systems under study, rather than a single best performing model system. We discuss both carbon-13 and proton-detected experiments, and show that in 13C spectra substantially higher numbers of peaks can be resolved compared to 850 MHz while for 1H spectra the most impressive increase in resolution is observed for aliphatic side-chain resonances.


Subject(s)
Capsid/chemistry , Carbon Isotopes , Membrane Proteins/chemistry , Nuclear Magnetic Resonance, Biomolecular , Protons
4.
Chemistry ; 27(28): 7745-7755, 2021 May 17.
Article in English | MEDLINE | ID: mdl-33822417

ABSTRACT

Paramagnetic metal ions can be inserted into ATP-fueled motor proteins by exchanging the diamagnetic Mg2+ cofactor with Mn2+ or Co2+ . Then, paramagnetic relaxation enhancement (PRE) or pseudo-contact shifts (PCSs) can be measured to report on the localization of the metal ion within the protein. We determine the metal position in the oligomeric bacterial DnaB helicase from Helicobacter pylori complexed with the transition-state ATP-analogue ADP:AlF4 - and single-stranded DNA using solid-state NMR and a structure-calculation protocol employing CYANA. We discuss and compare the use of Mn2+ and Co2+ in localizing the ATP cofactor in large oligomeric protein assemblies. 31 P PCSs induced in the Co2+ -containing sample are then used to localize the DNA phosphate groups on the Co2+ PCS tensor surface enabling structural insights into DNA binding to the DnaB helicase.


Subject(s)
DNA, Single-Stranded , Helicobacter pylori , Bacterial Proteins , DnaB Helicases/metabolism , Ions , Magnetic Resonance Spectroscopy
5.
Chembiochem ; 21(3): 324-330, 2020 02 03.
Article in English | MEDLINE | ID: mdl-31310428

ABSTRACT

Protein-nucleic acid interactions play important roles not only in energy-providing reactions, such as ATP hydrolysis, but also in reading, extending, packaging, or repairing genomes. Although they can often be analyzed in detail with X-ray crystallography, complementary methods are needed to visualize them in complexes, which are not crystalline. Here, we show how solid-state NMR spectroscopy can detect and classify protein-nucleic interactions through site-specific 1 H- and 31 P-detected spectroscopic methods. The sensitivity of 1 H chemical-shift values on noncovalent interactions involved in these molecular recognition processes is exploited allowing us to probe directly the chemical bonding state, an information, which is not directly accessible from an X-ray structure. We show that these methods can characterize interactions in easy-to-prepare sediments of the 708 kDa dodecameric DnaB helicase in complex with ADP:AlF4- :DNA, and this despite the very challenging size of the complex.


Subject(s)
DnaB Helicases/chemistry , Nuclear Magnetic Resonance, Biomolecular , Nucleotides/analysis , Crystallography, X-Ray , DnaB Helicases/metabolism , Hydrogen Bonding , Models, Molecular , Nucleotides/metabolism , Phosphorus Isotopes , Protons
6.
Chembiochem ; 21(17): 2540-2548, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32501630

ABSTRACT

Spectral resolution is the key to unleashing the structural and dynamic information contained in NMR spectra. Fast magic-angle spinning (MAS) has recently revolutionized the spectroscopy of biomolecular solids. Herein, we report a further remarkable improvement in the resolution of the spectra of four fully protonated proteins and a small drug molecule by pushing the MAS rotation frequency higher (150 kHz) than the more routinely used 100 kHz. We observed a reduction in the average homogeneous linewidth by a factor of 1.5 and a decrease in the observed linewidth by a factor 1.25. We conclude that even faster MAS is highly attractive and increases mass sensitivity at a moderate price in overall sensitivity.


Subject(s)
Methylhydrazines/chemistry , Nuclear Magnetic Resonance, Biomolecular , Proteins/chemistry , Protons
7.
Molecules ; 25(22)2020 Nov 12.
Article in English | MEDLINE | ID: mdl-33198135

ABSTRACT

Nucleoside triphosphates (NTPs) are used as chemical energy source in a variety of cell systems. Structural snapshots along the NTP hydrolysis reaction coordinate are typically obtained by adding stable, nonhydrolyzable adenosine triphosphate (ATP) -analogues to the proteins, with the goal to arrest a state that mimics as closely as possible a physiologically relevant state, e.g., the pre-hydrolytic, transition and post-hydrolytic states. We here present the lessons learned on two distinct ATPases on the best use and unexpected pitfalls observed for different analogues. The proteins investigated are the bacterial DnaB helicase from Helicobacter pylori and the multidrug ATP binding cassette (ABC) transporter BmrA from Bacillus subtilis, both belonging to the same division of P-loop fold NTPases. We review the magnetic-resonance strategies which can be of use to probe the binding of the ATP-mimics, and present carbon-13, phosphorus-31, and vanadium-51 solid-state nuclear magnetic resonance (NMR) spectra of the proteins or the bound molecules to unravel conformational and dynamic changes upon binding of the ATP-mimics. Electron paramagnetic resonance (EPR), and in particular W-band electron-electron double resonance (ELDOR)-detected NMR, is of complementary use to assess binding of vanadate. We discuss which analogues best mimic the different hydrolysis states for the DnaB helicase and the ABC transporter BmrA. These might be relevant also to structural and functional studies of other NTPases.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Adenosine Triphosphate/chemistry , Bacillus subtilis/enzymology , DnaB Helicases/metabolism , Helicobacter pylori/enzymology , Adenosine Triphosphatases/metabolism , Adenosine Triphosphate/analogs & derivatives , Adenylyl Imidodiphosphate/chemistry , Aluminum Compounds/chemistry , Bacterial Proteins/metabolism , Electron Spin Resonance Spectroscopy , Electrons , Fluorides/chemistry , Hydrolysis , Magnetic Resonance Spectroscopy , Protein Conformation
8.
Chembiochem ; 20(8): 1027-1031, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30565364

ABSTRACT

Amyloid light-chain (AL) amyloidosis is a rare disease in which plasma-cell-produced monoclonal immunoglobulin light chains misfold and become deposited as fibrils in the extracellular matrix. λ6 subgroup light chains are particularly fibrillogenic, and around 25 % of amyloid-associated λ6 light chains exist as the allotypic G24R variant that renders the protein less stable. The molecular details of this process, as well as the structures of the fibrils, are unknown. We have used solid-state NMR to investigate different fibril polymorphs. The secondary structures derived from NMR predominantly show ß-strands, including in former turn or helical regions, and provide a molecular basis for previously identified fibrillogenic hotspots. We have determined, by using differentially 15 N:13 C-labeled samples, that the ß-strands are stacked in-register parallel in the fibrils. This supramolecular arrangement shows that the native globular folds rearrange substantially upon fibrillization, and rules out the previously hypothesized fibril formation from native monomers.


Subject(s)
Amyloid/metabolism , Amyloidosis/metabolism , Immunoglobulin Light Chains/metabolism , Amyloid/chemistry , Humans , Immunoglobulin Light Chains/chemistry , Magnetic Resonance Spectroscopy/methods , Protein Conformation, beta-Strand , Protein Folding
9.
J Biomol NMR ; 70(3): 203, 2018 03.
Article in English | MEDLINE | ID: mdl-29520683

ABSTRACT

In our recent publication (Smith et al., J Biomol NMR 65:171-191, 2016) on the dynamics of HET-s(218-289), we reported on page 176, that calculation of solid-state NMR R1ρ rate constants using analytical equations based on Redfield theory (Kurbanov et al., J Chem Phys 135:184104:184101-184109, 2011) failed when the correlation time of motion becomes too long.

10.
J Biomol NMR ; 71(4): 237-245, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29948439

ABSTRACT

Segmental isotope labelling enables the NMR study of an individual domain within a multidomain protein, but still in the context of the entire full-length protein. Compared to the fully labelled protein, spectral overlap can be greatly reduced. We here describe segmental labelling of the (double-) hexameric DnaB helicase from Helicobacter pylori using a ligation approach. Solid-state spectra demonstrate that the ligated protein has the same structure and structural order as the directly expressed full-length protein. We uniformly 13C/15N labeled the N-terminal domain (147 residues) of the protein, while the C-terminal domain (311 residues) remained in natural abundance. The reduced signal overlap in solid-state NMR spectra allowed to identify structural "hotspots" for which the structure of the N-terminal domain in the context of the oligomeric full-length protein differs from the one in the isolated form. They are located near the linker between the two domains, in an α-helical hairpin.


Subject(s)
Isotope Labeling/methods , Molecular Motor Proteins/chemistry , Nuclear Magnetic Resonance, Biomolecular/methods , Bacterial Proteins/chemistry , Carbon-13 Magnetic Resonance Spectroscopy , DnaB Helicases/chemistry , Helicobacter pylori/chemistry , Nitrogen Isotopes , Protein Conformation , Protein Conformation, alpha-Helical , Protein Domains
11.
J Biomol NMR ; 72(3-4): 171-177, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30536187

ABSTRACT

Magic-angle spinning (MAS) is mandatory in solid-state NMR experiments to achieve resolved spectra. In rare cases, instabilities in the rotation or damage of either the rotor or the rotor cap can lead to a so called "rotor crash" involving a disintegration of the sample container and possibly the release of an aerosol or of dust. We present a modified design of a 3.2 mm probe with a confining chamber which in case of a rotor crash prevents the release of aerosols and possibly hazardous materials. 1D and 2D NMR experiments show that such a hazardous material-confining MAS probe ("CONFINE-MAS" probe) has a similar sensitivity compared to a standard probe and performs equally well in terms of spinning stability. We illustrate the CONFINE-MAS probe properties and performance by application to a fungal amyloid.


Subject(s)
Equipment Failure , Nuclear Magnetic Resonance, Biomolecular/instrumentation , Safety , Amyloid , Containment of Biohazards/methods , Fungal Proteins
12.
Chimia (Aarau) ; 72(4): 216-220, 2018 Apr 25.
Article in English | MEDLINE | ID: mdl-29720312

ABSTRACT

The substitution of Mg2+ by Mn2+ in the bacterial DnaB helicase from Helicobacter pylori, an ATP:Mg2+-fuelled protein engine, allows electron paramagnetic resonance (EPR) spectroscopy to be performed on this system. EPR experiments make it possible to monitor nucleotide binding and to estimate the fraction of bound Mn2+ through relaxation measurements. Furthermore, by measuring spin-spin distances we probe the geometry within such multimeric assemblies using ultra-wideband double electron-electron resonance (DEER) and relaxation induced dipolar modulation enhancement (RIDME). The extraction of distance distributions from RIDME experiments on high-spin paramagnetic centres is influenced by the presence of dipolar frequency overtones. We show herein that we can correct for these overtones by using a modified kernel function in Tikhonov regularization analysis routines, and that the overtone coefficients for Mn2+ in the DnaB helicase are practically the same as in the previously studied Mn2+-Mn2+ model compounds.


Subject(s)
DnaB Helicases/chemistry , Electron Spin Resonance Spectroscopy/methods , Manganese/chemistry , Gadolinium/chemistry , Magnesium/chemistry
13.
J Biomol NMR ; 69(3): 157-164, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29119516

ABSTRACT

DNP (dynamic nuclear polarization)-enhanced solid-state NMR is employed to directly detect protein-DNA and protein-ATP interactions and identify the residue type establishing the intermolecular contacts. While conventional solid-state NMR can detect protein-DNA interactions in large oligomeric protein assemblies in favorable cases, it typically suffers from low signal-to-noise ratios. We show here, for the oligomeric DnaB helicase from Helicobacter pylori complexed with ADP and single-stranded DNA, that this limitation can be overcome by using DNP-enhanced spectroscopy. Interactions are established by DNP-enhanced 31P-13C polarization-transfer experiments followed by the recording of a 2D 13C-13C correlation experiment. The NMR spectra were obtained in less than 2 days and allowed the identification of residues of the motor protein involved in nucleotide binding.


Subject(s)
Molecular Motor Proteins/chemistry , Nuclear Magnetic Resonance, Biomolecular/methods , Nucleotides/metabolism , Proteins/metabolism , Adenosine Diphosphate , Adenosine Triphosphate , Binding Sites , Carbon Isotopes , DNA, Single-Stranded , DnaB Helicases , Helicobacter/enzymology , Phosphorus
14.
J Biomol NMR ; 67(2): 109-119, 2017 02.
Article in English | MEDLINE | ID: mdl-28074361

ABSTRACT

Fast magic-angle spinning and partial sample deuteration allows direct detection of 1H in solid-state NMR, yielding significant gains in mass sensitivity. In order to further analyze the spectra, 1H detection requires assignment of the 1H resonances. In this work, resonance assignments of backbone HN and Hα are presented for HET-s(218-289) fibrils, based on the existing assignment of Cα, Cß, C', and N resonances. The samples used are partially deuterated for higher spectral resolution, and the shifts in resonance frequencies of Cα and Cß due to the deuterium isotope effect are investigated. It is shown that the deuterium isotope effect can be estimated and used for assigning resonances of deuterated samples in solid-state NMR, based on known resonances of the protonated protein.


Subject(s)
Deuterium/chemistry , Fungal Proteins/chemistry , Magnetic Resonance Spectroscopy , Isotope Labeling , Magnetic Resonance Spectroscopy/methods , Protein Aggregates
15.
Chemistry ; 23(39): 9425-9433, 2017 Jul 12.
Article in English | MEDLINE | ID: mdl-28426169

ABSTRACT

15 N R1ρ relaxation experiments in solid-state NMR spectroscopy are sensitive to timescales and amplitudes of internal protein motions in the hundreds of nano- to microsecond time window, which is difficult to probe by solution-state NMR spectroscopy. By using 15 N R1ρ relaxation experiments, a simplified approach to detect low microsecond protein dynamics is described and residue-specific correlation times are determined from the ratio of 15 N R1ρ rate constants at different magic angle spinning frequencies. Microcrystalline ubiquitin exhibits small-amplitude dynamics on a timescale of about 1 µs across the entire protein, and larger amplitude motions, also on the 1 µs timescale, for several sites, including the ß1 -ß2 turn and the N terminus of the α helix. According to the analysis, the microsecond protein backbone dynamics are of lower amplitude than that concluded in previous solid-state NMR spectroscopy studies, but persist across the entire protein with a rather uniform timescale of 1 µs.

16.
Angew Chem Int Ed Engl ; 56(12): 3369-3373, 2017 03 13.
Article in English | MEDLINE | ID: mdl-28191714

ABSTRACT

Paramagnetic metal ions deliver structural information both in EPR and solid-state NMR experiments, offering a profitable synergetic approach to study bio-macromolecules. We demonstrate the spectral consequences of Mg2+ / Mn2+ substitution and the resulting information contents for two different ATP:Mg2+ -fueled protein engines, a DnaB helicase from Helicobacter pylori active in the bacterial replisome, and the ABC transporter BmrA, a bacterial efflux pump. We show that, while EPR spectra report on metal binding and provide information on the geometry of the metal centers in the proteins, paramagnetic relaxation enhancements identified in the NMR spectra can be used to localize residues at the binding site. Protein engines are ubiquitous and the methods described herein should be applicable in a broad context.


Subject(s)
ATP-Binding Cassette Transporters/chemistry , Adenosine Triphosphate/chemistry , DnaB Helicases/chemistry , Magnesium/chemistry , Manganese/chemistry , Nuclear Magnetic Resonance, Biomolecular , Electron Spin Resonance Spectroscopy , Helicobacter pylori/chemistry , Models, Molecular
17.
J Biomol NMR ; 65(3-4): 171-191, 2016 08.
Article in English | MEDLINE | ID: mdl-27423891

ABSTRACT

A multi-timescale analysis of the backbone dynamics of HET-s (218-289) fibrils is described based on multiple site-specific R 1 and R 1ρ data sets and S (2) measurements via REDOR for most backbone (15)N and (13)Cα nuclei. (15)N and (13)Cα data are fitted with motions at three timescales. Slow motion is found, indicating a global fibril motion. We further investigate the effect of (13)C-(13)C transfer in measurement of (13)Cα R 1. Finally, we show that it is necessary to go beyond the Redfield approximation for slow motions in order to obtain accurate numerical values for R 1ρ.


Subject(s)
Magnetic Resonance Spectroscopy , Protein Aggregates , Proteins/chemistry , Algorithms , Fungal Proteins/chemistry , Isotope Labeling , Magnetic Resonance Spectroscopy/methods , Models, Theoretical , Molecular Structure , Nuclear Magnetic Resonance, Biomolecular/methods
18.
J Biomol NMR ; 65(2): 79-86, 2016 06.
Article in English | MEDLINE | ID: mdl-27240588

ABSTRACT

The use of protein building blocks for the structure determination of multidomain proteins and protein-protein complexes, also known as the "divide and conquer" approach, is an important strategy for obtaining protein structures. Atomic-resolution X-ray or NMR data of the individual domains are combined with lower-resolution electron microscopy maps or X-ray data of the full-length protein or the protein complex. Doing so, it is often assumed that the individual domain structures remain invariant in the context of the superstructure. In this work, we show the potentials and limitations of NMR to validate this approach at the example of the dodecameric DnaB helicase from Helicobacter pylori. We investigate how sequentially assigned spectra, as well as unassigned spectral fingerprints can be used to indicate the conservation of individual domains, and also to highlight conformational differences.


Subject(s)
Magnetic Resonance Spectroscopy , Nuclear Magnetic Resonance, Biomolecular , Protein Domains , Proteins/chemistry , DnaB Helicases/chemistry , Evolution, Molecular , Genetic Variation , Magnetic Resonance Spectroscopy/methods , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular/methods , Protein Conformation , Protein Domains/genetics , Proteins/genetics
19.
J Biomol NMR ; 66(4): 233-242, 2016 12.
Article in English | MEDLINE | ID: mdl-27803998

ABSTRACT

Fast magic-angle spinning (>60 kHz) has many advantages but makes spin-diffusion-type proton-proton long-range polarization transfer inefficient and highly dependent on chemical-shift offset. Using 100%-HN-[2H,13C,15N]-ubiquitin as a model substance, we quantify the influence of the chemical-shift difference on the spin diffusion between proton spins and compare two experiments which lead to an improved chemical-shift compensation of the transfer: rotating-frame spin diffusion and a new experiment, reverse amplitude-modulated MIRROR. Both approaches enable broadband spin diffusion, but the application of the first variant is limited due to fast spin relaxation in the rotating frame. The reverse MIRROR experiment, in contrast, is a promising candidate for the determination of structurally relevant distance restraints. The applied tailored rf-irradiation schemes allow full control over the range of recoupled chemical shifts and efficiently drive spin diffusion. Here, the relevant relaxation time is the larger longitudinal relaxation time, which leads to a higher signal-to-noise ratio in the spectra.


Subject(s)
Magnetic Resonance Spectroscopy , Models, Theoretical , Proteins/chemistry , Protons , Algorithms , Magnetic Resonance Spectroscopy/methods , Ubiquitin/chemistry
20.
J Biomol NMR ; 64(3): 189-95, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26961129

ABSTRACT

We here investigate the interactions between the DnaB helicase and the C-terminal domain of the corresponding DnaG primase of Helicobacter pylori using solid-state NMR. The difficult crystallization of this 387 kDa complex, where the two proteins interact in a six to three ratio, is circumvented by simple co-sedimentation of the two proteins directly into the MAS-NMR rotor. While the amount of information that can be extracted from such a large protein is still limited, we can assign a number of amino-acid residues experiencing significant chemical-shift perturbations upon helicase-primase complex formation. The location of these residues is used as a guide to model the interaction interface between the two proteins in the complex. Chemical-shift perturbations also reveal changes at the interaction interfaces of the hexameric HpDnaB assembly on HpDnaG binding. A structural model of the complex that explains the experimental findings is obtained.


Subject(s)
DNA Primase/chemistry , Helicobacter pylori/enzymology , Nuclear Magnetic Resonance, Biomolecular , Protein Domains
SELECTION OF CITATIONS
SEARCH DETAIL