Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Cell ; 154(1): 89-102, 2013 Jul 03.
Article in English | MEDLINE | ID: mdl-23810192

ABSTRACT

Genetically hard-wired neural mechanisms must enforce behavioral reproductive isolation because interspecies courtship is rare even in sexually naïve animals of most species. We find that the chemoreceptor Gr32a inhibits male D. melanogaster from courting diverse fruit fly species. Gr32a recognizes nonvolatile aversive cues present on these reproductively dead-end targets, and activity of Gr32a neurons is necessary and sufficient to inhibit interspecies courtship. Male-specific Fruitless (Fru(M)), a master regulator of courtship, also inhibits interspecies courtship. Gr32a and Fru(M) are not coexpressed, but Fru(M) neurons contact Gr32a neurons, suggesting that these genes influence a shared neural circuit that inhibits interspecies courtship. Gr32a and Fru(M) also suppress within-species intermale courtship, but we show that distinct mechanisms preclude sexual displays toward conspecific males and other species. Although this chemosensory pathway does not inhibit interspecies mating in D. melanogaster females, similar mechanisms appear to inhibit this behavior in many other male drosophilids.


Subject(s)
Drosophila melanogaster/physiology , Mating Preference, Animal , Animals , Courtship , Drosophila/classification , Drosophila/genetics , Drosophila/physiology , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Female , Genetic Speciation , Male , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
2.
Cancer Res ; 80(8): 1656-1668, 2020 04 15.
Article in English | MEDLINE | ID: mdl-31988076

ABSTRACT

The deubiquitinating enzyme BAP1 is mutated in a hereditary cancer syndrome with a high risk for mesothelioma and melanocytic tumors. Here, we show that pancreatic intraepithelial neoplasia driven by oncogenic mutant KrasG12D progressed to pancreatic adenocarcinoma in the absence of BAP1. The Hippo pathway was deregulated in BAP1-deficient pancreatic tumors, with the tumor suppressor LATS exhibiting enhanced ubiquitin-dependent proteasomal degradation. Therefore, BAP1 may limit tumor progression by stabilizing LATS and thereby promoting activity of the Hippo tumor suppressor pathway. SIGNIFICANCE: BAP1 is mutated in a broad spectrum of tumors. Pancreatic Bap1 deficiency causes acinar atrophy but combines with oncogenic Ras to produce pancreatic tumors. BAP1-deficient tumors exhibit deregulation of the Hippo pathway.See related commentary by Brekken, p. 1624.


Subject(s)
Adenocarcinoma , Pancreatic Neoplasms , Hippo Signaling Pathway , Humans , Protein Serine-Threonine Kinases , Signal Transduction , Tumor Suppressor Proteins , Ubiquitin Thiolesterase
3.
PLoS One ; 14(7): e0219999, 2019.
Article in English | MEDLINE | ID: mdl-31323052

ABSTRACT

While pigs and rabbits are used as models for human immune diseases, FcγR binding is poorly characterized in both test species. To evaluate antibody binding to FcγRIIIA, a receptor involved in antibody-dependent cellular cytotoxicity, chimerized antibodies were generated by grafting the variable regions of a human IgG1 onto scaffolds from both species. The affinities of the parent and chimeric antibodies to the FcγRIIIA proteins from all three species were determined. While the human IgG1 and rabbit IgG had similar affinities for each FcγRIIIA with notable differences across species, pig IgG1 only bound pig FcγRIIIA with appreciable affinity. Also, the functional pig and rabbit proteins described here can be used in future experiments, such as pharmacology and mechanism of action studies.


Subject(s)
Antibody Affinity/immunology , Immunoglobulin G/immunology , Immunoglobulin G/metabolism , Receptors, IgG/metabolism , Recombinant Fusion Proteins , Animals , Enzyme-Linked Immunosorbent Assay , Gene Expression , Humans , Immunoglobulin G/isolation & purification , Protein Binding , Rabbits , Receptors, IgG/genetics , Receptors, IgG/isolation & purification , Surface Plasmon Resonance , Swine
4.
Mol Cancer Ther ; 17(11): 2412-2426, 2018 11.
Article in English | MEDLINE | ID: mdl-30126944

ABSTRACT

The primary function of tissue factor (TF) resides in the vasculature as a cofactor of blood clotting; however, multiple solid tumors aberrantly express this transmembrane receptor on the cell surface. Here, we developed anti-TF antibody-drug conjugates (ADC) that did not interfere with the coagulation cascade and benchmarked them against previously developed anti-TF ADCs. After screening an affinity-matured antibody panel of diverse paratopes and affinities, we identified one primary paratope family that did not inhibit conversion of Factor X (FX) to activated Factor X (FXa) and did not affect conversion of prothrombin to thrombin. The rest of the antibody panel and previously developed anti-TF antibodies were found to perturb coagulation to varying degrees. To compare the anticancer activity of coagulation-inert and -inhibitory antibodies as ADCs, a selection of antibodies was conjugated to the prototypic cytotoxic agent monomethyl auristatin E (MMAE) through a protease-cleavable linker. The coagulation-inert and -inhibitory anti-TF ADCs both killed cancer cells effectively. Importantly, the coagulation-inert ADCs were as efficacious as tisotumab vedotin, a clinical stage ADC that affected blood clotting, including in patient-derived xenografts from three solid tumor indications with a need for new therapeutic treatments-squamous cell carcinoma of the head and neck (SCCHN), ovarian, and gastric adenocarcinoma. Furthermore, a subset of the anti-TF antibodies could also be considered for the treatment of other diseases associated with upregulation of membranous TF expression, such as macular degeneration. Mol Cancer Ther; 17(11); 2412-26. ©2018 AACR.


Subject(s)
Blood Coagulation , Immunoconjugates/pharmacology , Thromboplastin/metabolism , Animals , Antibodies/metabolism , Antibody Affinity , Antibody Specificity , Blood Coagulation/drug effects , Endocytosis , Humans , Macaca fascicularis , Mice, Nude , Oligopeptides/toxicity , Protein Binding , Xenograft Model Antitumor Assays
5.
Sci Signal ; 11(547)2018 09 11.
Article in English | MEDLINE | ID: mdl-30206136

ABSTRACT

The Hippo signaling pathway regulates organ size and plays critical roles in maintaining tissue growth, homeostasis, and regeneration. Dysregulated in a wide spectrum of cancers, in mammals, this pathway is regulated by two key effectors, YAP and TAZ, that may functionally overlap. We found that TAZ promoted liver inflammation and tumor development. The expression of TAZ, but not YAP, in human liver tumors positively correlated with the expression of proinflammatory cytokines. Hyperactivated TAZ induced substantial myeloid cell infiltration into the liver and the secretion of proinflammatory cytokines through a TEAD-dependent mechanism. Furthermore, tumors with hyperactivated YAP and TAZ had distinct transcriptional signatures, which included the increased expression of inflammatory cytokines in TAZ-driven tumors. Our study elucidated a previously uncharacterized link between TAZ activity and inflammatory responses that influence tumor development in the liver.


Subject(s)
DNA-Binding Proteins/genetics , Inflammation/genetics , Intracellular Signaling Peptides and Proteins/genetics , Liver Neoplasms/genetics , Liver/metabolism , Nuclear Proteins/genetics , Protein Serine-Threonine Kinases/genetics , Transcription Factors/genetics , Animals , Cell Cycle Proteins , Cytokines/genetics , Cytokines/metabolism , DNA-Binding Proteins/metabolism , Gene Expression Profiling/methods , Hippo Signaling Pathway , Humans , Inflammation/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Liver/pathology , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Mice, Inbred C57BL , Mutation , Nuclear Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Signal Transduction/genetics , TEA Domain Transcription Factors , Trans-Activators , Transcription Factors/metabolism , Transcriptional Coactivator with PDZ-Binding Motif Proteins , Transplantation, Heterologous
6.
PLoS One ; 10(4): e0124708, 2015.
Article in English | MEDLINE | ID: mdl-25894652

ABSTRACT

Antibodies against cell surface antigens may be internalized through their specific interactions with these proteins and in some cases may induce or perturb antigen internalization. The anti-cancer efficacy of antibody-drug conjugates is thought to rely on their uptake by cancer cells expressing the surface antigen. Numerous techniques, including microscopy and flow cytometry, have been used to identify antibodies with desired cellular uptake rates. To enable quantitative measurements of internalization of labeled antibodies, an assay based on internalized and quenched fluorescence was developed. For this approach, we generated novel anti-Alexa Fluor monoclonal antibodies (mAbs) that effectively and specifically quench cell surface-bound Alexa Fluor 488 or Alexa Fluor 594 fluorescence. Utilizing Alexa Fluor-labeled mAbs against the EphA2 receptor tyrosine kinase, we showed that the anti-Alexa Fluor reagents could be used to monitor internalization quantitatively over time. The anti-Alexa Fluor mAbs were also validated in a proof of concept dual-label internalization assay with simultaneous exposure of cells to two different mAbs. Importantly, the unique anti-Alexa Fluor mAbs described here may also enable other single- and dual-label experiments, including label detection and signal enhancement in macromolecules, trafficking of proteins and microorganisms, and cell migration and morphology.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/metabolism , Flow Cytometry , Fluorescent Dyes/chemistry , Maleimides/chemistry , Amino Acid Sequence , Animals , Antibodies, Monoclonal/chemistry , Antigens, Surface/immunology , Cell Line, Tumor , Humans , Mice , Molecular Sequence Data , Protein Transport , Receptor, EphA2/immunology , Spectrometry, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL