Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 347
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nat Rev Mol Cell Biol ; 25(5): 359-378, 2024 May.
Article in English | MEDLINE | ID: mdl-38182846

ABSTRACT

A growing class of small RNAs, known as tRNA-derived RNAs (tdRs), tRNA-derived small RNAs or tRNA-derived fragments, have long been considered mere intermediates of tRNA degradation. These small RNAs have recently been implicated in an evolutionarily conserved repertoire of biological processes. In this Review, we discuss the biogenesis and molecular functions of tdRs in mammals, including tdR-mediated gene regulation in cell metabolism, immune responses, transgenerational inheritance, development and cancer. We also discuss the accumulation of tRNA-derived stress-induced RNAs as a distinct adaptive cellular response to pathophysiological conditions. Furthermore, we highlight new conceptual advances linking RNA modifications with tdR activities and discuss challenges in studying tdR biology in health and disease.


Subject(s)
RNA, Transfer , Animals , RNA, Transfer/metabolism , RNA, Transfer/genetics , Humans , Neoplasms/genetics , Neoplasms/metabolism , Gene Expression Regulation , RNA, Small Untranslated/genetics , RNA, Small Untranslated/metabolism
2.
Cell ; 180(1): 107-121.e17, 2020 01 09.
Article in English | MEDLINE | ID: mdl-31866069

ABSTRACT

Fibrosis can develop in most organs and causes organ failure. The most common type of lung fibrosis is known as idiopathic pulmonary fibrosis, in which fibrosis starts at the lung periphery and then progresses toward the lung center, eventually causing respiratory failure. Little is known about the mechanisms underlying the pathogenesis and periphery-to-center progression of the disease. Here we discovered that loss of Cdc42 function in alveolar stem cells (AT2 cells) causes periphery-to-center progressive lung fibrosis. We further show that Cdc42-null AT2 cells in both post-pneumonectomy and untreated aged mice cannot regenerate new alveoli, resulting in sustained exposure of AT2 cells to elevated mechanical tension. We demonstrate that elevated mechanical tension activates a TGF-ß signaling loop in AT2 cells, which drives the periphery-to-center progression of lung fibrosis. Our study establishes a direct mechanistic link between impaired alveolar regeneration, mechanical tension, and progressive lung fibrosis.


Subject(s)
Adult Stem Cells/metabolism , Idiopathic Pulmonary Fibrosis/etiology , Pulmonary Alveoli/metabolism , Adult Stem Cells/pathology , Aged , Alveolar Epithelial Cells/pathology , Animals , Biomechanical Phenomena/physiology , Female , Fibrosis/pathology , Humans , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/pathology , Lung/pathology , Male , Mice , Middle Aged , Pulmonary Alveoli/pathology , Regeneration , Signal Transduction , Stem Cells/pathology , Stress, Mechanical , Stress, Physiological/physiology , Transforming Growth Factor beta/metabolism , cdc42 GTP-Binding Protein/genetics , cdc42 GTP-Binding Protein/metabolism
4.
Nature ; 612(7940): 519-527, 2022 12.
Article in English | MEDLINE | ID: mdl-36477534

ABSTRACT

In mice and humans, sleep quantity is governed by genetic factors and exhibits age-dependent variation1-3. However, the core molecular pathways and effector mechanisms that regulate sleep duration in mammals remain unclear. Here, we characterize a major signalling pathway for the transcriptional regulation of sleep in mice using adeno-associated virus-mediated somatic genetics analysis4. Chimeric knockout of LKB1 kinase-an activator of AMPK-related protein kinase SIK35-7-in adult mouse brain markedly reduces the amount and delta power-a measure of sleep depth-of non-rapid eye movement sleep (NREMS). Downstream of the LKB1-SIK3 pathway, gain or loss-of-function of the histone deacetylases HDAC4 and HDAC5 in adult brain neurons causes bidirectional changes of NREMS amount and delta power. Moreover, phosphorylation of HDAC4 and HDAC5 is associated with increased sleep need, and HDAC4 specifically regulates NREMS amount in posterior hypothalamus. Genetic and transcriptomic studies reveal that HDAC4 cooperates with CREB in both transcriptional and sleep regulation. These findings introduce the concept of signalling pathways targeting transcription modulators to regulate daily sleep amount and demonstrate the power of somatic genetics in mouse sleep research.


Subject(s)
Signal Transduction , Sleep Duration , Transcription, Genetic , Animals , Mice , Gene Expression Regulation , Phosphorylation , Signal Transduction/physiology , Sleep, Slow-Wave/genetics , Gene Expression Profiling
5.
Mol Cell ; 75(6): 1103-1116.e9, 2019 09 19.
Article in English | MEDLINE | ID: mdl-31420216

ABSTRACT

The mitochondrial pathway of apoptosis is controlled by the ratio of anti- and pro-apoptotic members of the Bcl-2 family of proteins. The molecular events underlying how a given physiological stimulus changes this ratio to trigger apoptosis remains unclear. We report here that human 17-ß-estradiol (E2) and its related steroid hormones induce apoptosis by binding directly to phosphodiesterase 3A, which in turn recruits and stabilizes an otherwise fast-turnover protein Schlafen 12 (SLFN12). The elevated SLFN12 binds to ribosomes to exclude the recruitment of signal recognition particles (SRPs), thereby blocking the continuous protein translation occurring on the endoplasmic reticulum of E2-treated cells. These proteins include Bcl-2 and Mcl-1, whose ensuing decrease triggers apoptosis. The SLFN12 protein and an apoptosis activation marker were co-localized in syncytiotrophoblast of human placentas, where levels of estrogen-related hormones are high, and dynamic cell turnover by apoptosis is critical for successful implantation and placenta development.


Subject(s)
Apoptosis/drug effects , Estradiol/pharmacology , Intracellular Signaling Peptides and Proteins/metabolism , Trophoblasts/metabolism , Adult , Cyclic Nucleotide Phosphodiesterases, Type 3/metabolism , Female , HeLa Cells , Humans , MCF-7 Cells , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Ribosomes/metabolism
6.
EMBO J ; 41(6): e108544, 2022 03 15.
Article in English | MEDLINE | ID: mdl-34850409

ABSTRACT

Since numerous RNAs and RBPs prevalently localize to active chromatin regions, many RNA-binding proteins (RBPs) may be potential transcriptional regulators. RBPs are generally thought to regulate transcription via noncoding RNAs. Here, we describe a distinct, dual mechanism of transcriptional regulation by the previously uncharacterized tRNA-modifying enzyme, hTrmt13. On one hand, hTrmt13 acts in the cytoplasm to catalyze 2'-O-methylation of tRNAs, thus regulating translation in a manner depending on its tRNA-modification activity. On the other hand, nucleus-localized hTrmt13 directly binds DNA as a transcriptional co-activator of key epithelial-mesenchymal transition factors, thereby promoting cell migration independent of tRNA-modification activity. These dual functions of hTrmt13 are mutually exclusive, as it can bind either DNA or tRNA through its CHHC zinc finger domain. Finally, we find that hTrmt13 expression is tightly associated with poor prognosis and survival in diverse cancer patients. Our discovery of the noncatalytic roles of an RNA-modifying enzyme provides a new perspective for understanding epitranscriptomic regulation.


Subject(s)
RNA, Transfer , tRNA Methyltransferases , Humans , Methylation , RNA/metabolism , RNA Processing, Post-Transcriptional , RNA, Transfer/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , tRNA Methyltransferases/genetics , tRNA Methyltransferases/metabolism
7.
Hum Mol Genet ; 32(5): 764-772, 2023 02 19.
Article in English | MEDLINE | ID: mdl-36130215

ABSTRACT

Hereditary hearing loss is a highly genetically heterogeneous disorder. More than 150 genes have been identified to link to human non-syndromic hearing impairment. To identify genetic mutations and underlying molecular mechanisms in affected individuals and families with congenital hearing loss, we recruited a cohort of 389 affected individuals in 354 families for whole-exome sequencing analysis. In this study, we report a novel homozygous missense variant (c.233A > G, p.Lys78Arg) in the OXR1 gene, which was identified in a 4-year-old girl with sensorineural hearing loss. OXR1 encodes Oxidation Resistance 1 and is evolutionarily conserved from zebrafish to human. We found that the ortholog oxr1b gene is expressed in the statoacoustic ganglion (SAG, a sensory ganglion of ear) and posterior lateral line ganglion (pLL) in zebrafish. Knockdown of oxr1b in zebrafish resulted in a significant developmental defect of SAG and pLL. This phenotype can be rescued by co-injection of wild-type human OXR1 mRNAs, but not mutant OXR1 (c.233A > G) mRNAs. OXR1-associated pathway analysis revealed that mutations of TBC1D24, a TLDc-domain-containing homolog gene of OXR1, have previously been identified in patients with hearing loss. Interestingly, mutations or knockout of OXR1 interacting molecules such as ATP6V1B1 and ESR1 are also associated with hearing loss in patients or animal models, hinting an important role of OXR1 and associated partners in cochlear development and hearing function.


Subject(s)
Deafness , Hearing Loss, Sensorineural , Hearing Loss , Vacuolar Proton-Translocating ATPases , Animals , Female , Humans , Child, Preschool , Zebrafish/genetics , Hearing Loss/genetics , Deafness/genetics , Hearing Loss, Sensorineural/genetics , Mutation , Pedigree , Mitochondrial Proteins/genetics , Vacuolar Proton-Translocating ATPases/metabolism , GTPase-Activating Proteins/genetics
8.
Nano Lett ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38856230

ABSTRACT

Lithium metal batteries utilizing lithium metal as the anode can achieve a greater energy density. However, it remains challenging to improve low-temperature performance and fast-charging features. Herein, we introduce an electrolyte solvation chemistry strategy to regulate the properties of ethylene carbonate (EC)-based electrolytes through intermolecular interactions, utilizing weakly solvated fluoroethylene carbonate (FEC) to replace EC, and incorporating the low-melting-point solvent 1,2-difluorobenzene (2FB) as a diluent. We identified that the intermolecular interaction between 2FB and solvent can facilitate Li+ desolvation and lower the freezing point of the electrolyte effectively. The resulting electrolyte enables the LiNi0.8Co0.1Mn0.1O2||Li cell to operate at -30 °C for more than 100 cycles while delivering a high capacity of 154 mAh g-1 at 5.0C. We present a solvation structure and interfacial model to analyze the behavior of the formulated electrolyte composition, establishing a relationship with cell performance and also providing insights for the electrolyte design under extreme conditions.

9.
Br J Cancer ; 2024 Oct 31.
Article in English | MEDLINE | ID: mdl-39482453

ABSTRACT

BACKGROUND: Bacillus Calmette-Guérin (BCG) is capable of enhancing the infiltration of immune cells into the tumour. However the temporal dynamics of immune cell patterns in patients receiving BCG instillation remains unclear. METHODS: Ninety-six patients who underwent intravesical BCG therapy, comprising 46 responders and 50 non-responders, were retrospectively enroled to explore the evolving immune landscape. This study involved a detailed examination of sequential samples collected before, during, and after BCG treatment to assess BCG's influence on the immune microenvironment, employing techniques such as immunohistochemistry, fluorescent multiplex immunohistochemistry, and mass spectrometry techniques. RESULTS: Our study found that initial BCG instillation leads to enhanced immune cell infiltration, correlating with treatment efficacy, with responders exhibiting more pronounced increases. Non-responders experience a rise in immune cell infiltration and PD-L1 expression during the first instillation, which returns to baseline after treatment. In non-responders, BCG re-challenge fail to further increase immune cell infiltration into the tumour or improve patient outcomes. Strikingly, proteomics data revealed that GBP1 expression was induced by BCG treatment in non-responders. CONCLUSIONS: Our findings demonstrated the induction of tumour PD-L1 expression by BCG in non-responders, and therefore provide insights for the combination of BCG and anti-PD1/anti-PD-L1 therapy.

10.
BMC Microbiol ; 24(1): 249, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977999

ABSTRACT

Rhodococcus equi (R. equi) is a zoonotic opportunistic pathogen that mainly causes fatal lung and extrapulmonary abscesses in foals and immunocompromised individuals. To date, no commercial vaccine against R. equi exists. We previously screened all potential vaccine candidates from the complete genome of R. equi using a reverse vaccinology approach. Five of these candidates, namely ABC transporter substrate-binding protein (ABC transporter), penicillin-binding protein 2 (PBD2), NlpC/P60 family protein (NlpC/P60), esterase family protein (Esterase), and M23 family metallopeptidase (M23) were selected for the evaluation of immunogenicity and immunoprotective effects in BALB/c mice model challenged with R. equi. The results showed that all five vaccine candidate-immunized mice experienced a significant increase in spleen antigen-specific IFN-γ- and TNF-α-positive CD4 + and CD8 + T lymphocytes and generated robust Th1- and Th2-type immune responses and antibody responses. Two weeks after the R. equi challenge, immunization with the five vaccine candidates reduced the bacterial load in the lungs and improved the pathological damage to the lungs and livers compared with those in the control group. NlpC/P60, Esterase, and M23 were more effective than the ABC transporter and PBD2 in inducing protective immunity against R. equi challenge in mice. In addition, these vaccine candidates have the potential to induce T lymphocyte memory immune responses in mice. In summary, these antigens are effective candidates for the development of protective vaccines against R. equi. The R. equi antigen library has been expanded and provides new ideas for the development of multivalent vaccines.


Subject(s)
Actinomycetales Infections , Bacterial Vaccines , Disease Models, Animal , Immunity, Humoral , Mice, Inbred BALB C , Rhodococcus equi , Animals , Rhodococcus equi/immunology , Rhodococcus equi/genetics , Mice , Bacterial Vaccines/immunology , Bacterial Vaccines/administration & dosage , Actinomycetales Infections/prevention & control , Actinomycetales Infections/immunology , Actinomycetales Infections/microbiology , Antibodies, Bacterial/blood , Antibodies, Bacterial/immunology , Immunity, Cellular , Female , Lung/microbiology , Lung/immunology , Lung/pathology , Bacterial Load , Bacterial Proteins/immunology , Bacterial Proteins/genetics , Interferon-gamma/immunology , Interferon-gamma/metabolism
11.
Allergy ; 2024 Oct 25.
Article in English | MEDLINE | ID: mdl-39450683

ABSTRACT

BACKGROUND: Management of moderate-to-severe atopic dermatitis (AD) needs long-term therapy. Stapokibart is a humanized monoclonal antibody targeting interleukin-4 receptor α subunit (IL-4Rα), a shared receptor for IL-4 and IL-13 which are key pathogenic drivers of AD. In a pivotal phase 3 trial (NCT05265923), significant higher proportions of adult AD patients receiving stapokibart than placebo achieved ≥75% improvement from baseline in Eczema Area and Severity Index (EASI-75; 66.9% vs. 25.8%) and Investigator's Global Assessment (IGA) score of 0/1 with ≥2-point reduction (44.2% vs. 16.1%) at Week 16. Herein, we report long-term (52 weeks) efficacy and safety of stapokibart from this trial. METHODS: After 16-week double-blind treatment completed, patients in both stapokibart and placebo groups entered a 36-week maintenance treatment period and received stapokibart 300 mg every 2 weeks. Concomitant use of topical medications for AD was permitted throughout the maintenance period. RESULTS: Of 476 patients entering maintenance period, 430 completed the treatment. At Week 52, EASI-75 was achieved in 92.5% of patients continuing stapokibart and 88.7% of those switching from placebo to stapokibart, respectively; an IGA score of 0 or 1 with a ≥2-point reduction was achieved in 67.3% and 64.2% of patients, respectively; a ≥4-point reduction in weekly average of daily Peak Pruritus Numerical Rating Scale (PP-NRS) was achieved in 67.3% and 60.5% of patients, respectively. Over the 52-week treatment period, 88.1% of patients reported treatment-emergent adverse events, most were mild or moderate. CONCLUSION: Long-term treatment with stapokibart demonstrated a sustained efficacy and favorable safety profile in adults with moderate-to-severe AD.

12.
J Org Chem ; 89(11): 7804-7811, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38738759

ABSTRACT

A straightforward methodology for the assembly of polysubstituted naphthalenes from ortho-alkynyl benzyl alcohols, enabled by using catalytic amounts of Tf2O, has been developed. This transformation not only features transition-metal free and without using other bases and additives but also provides a new synthetic application for ortho-alkynyl benzyl alcohols, i.e., as C6 synthons for the construction of PAHs.

13.
Macromol Rapid Commun ; : e2400365, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849126

ABSTRACT

Graphitic carbon nitrides (g-C3N4) possess various benefits as heterogeneous photocatalysts, including tunable bandgaps, scalability, and chemical robustness. However, their efficacy and ongoing advancement are hindered by challenges like limited charge-carrier separation rates, insufficient driving force for photocatalysis, small specific surface area, and inadequate absorption of visible light. In this study, boron dopants and nitrogen defects synergy are introduced into bulk g-C3N4 through the calcination of a blend of nitrogen-defective g-C3N4 and NaBH4 under inert conditions, resulting in the formation of BCN nanosheets characterized by abundant porosity and increased specific surface area. These BCN nanosheets promote intermolecular single electron transfer to the radical initiator, maintaining radical intermediates at a low concentration for better control of photoinduced atom transfer radical polymerization (photo-ATRP). Consequently, this method yields polymers with low dispersity and tailorable molecular weights under mild blue light illumination, outperforming previous reports on bulk g-C3N4. The heterogeneity of BCN enables easy separation and efficient reuse in subsequent polymerization processes. This study effectively showcases a simple method to alter the electronic and band structures of g-C3N4 with simultaneously introducing dopants and defects, leading to high-performance photo-ATRP and providing valuable insights for designing efficient photocatalytic systems for solar energy harvesting.

14.
BMC Pulm Med ; 24(1): 154, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38532405

ABSTRACT

BACKGROUND: Aerobic training is the primary method of rehabilitation for improving respiratory function in patients with chronic obstructive pulmonary disease (COPD) in remission. However, the mechanism underlying this improvement is not yet fully understood. The use of transcriptomics in rehabilitation medicine offers a promising strategy for uncovering the ways in which exercise training improves respiratory dysfunction in COPD patients. In this study, lung tissue was analyzed using transcriptomics to investigate the relationship between exercise and lung changes. METHODS: Mice were exposed to cigarette smoke for 24 weeks, followed by nine weeks of moderate-intensity treadmill exercise, with a control group for comparison. Pulmonary function and structure were assessed at the end of the intervention and RNA sequencing was performed on the lung tissue. RESULTS: Exercise training was found to improve airway resistance and lung ventilation indices in individuals exposed to cigarette smoke. However, the effect of this treatment on damaged alveoli was weak. The pair-to-pair comparison revealed numerous differentially expressed genes, that were closely linked to inflammation and metabolism. CONCLUSIONS: Further research is necessary to confirm the cause-and-effect relationship between the identified biomarkers and the improvement in pulmonary function, as this was not examined in the present study.


Subject(s)
Lung , Pulmonary Disease, Chronic Obstructive , Humans , Mice , Animals , Pulmonary Alveoli , Respiration , Gene Expression Profiling
15.
Nano Lett ; 23(13): 5894-5901, 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37368991

ABSTRACT

Oxidation of transition metal dichalcogenides (TMDs) occurs readily under a variety of conditions. Therefore, understanding the oxidation processes is necessary for successful TMD handling and device fabrication. Here, we investigate atomic-scale oxidation mechanisms of the most widely studied TMD, MoS2. We find that thermal oxidation results in α-phase crystalline MoO3 with sharp interfaces, voids, and crystallographic alignment with the underlying MoS2. Experiments with remote substrates prove that thermal oxidation proceeds via vapor-phase mass transport and redeposition, a challenge to forming thin, conformal films. Oxygen plasma accelerates the kinetics of oxidation relative to the kinetics of mass transport, forming smooth and conformal oxides. The resulting amorphous MoO3 can be grown with subnanometer to several-nanometer thickness, and we calibrate the oxidation rate for different instruments and process parameters. Our results provide quantitative guidance for managing both the atomic scale structure and thin-film morphology of oxides in the design and processing of TMD devices.

16.
Int Orthop ; 48(11): 2941-2952, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39242395

ABSTRACT

PURPOSE: Upper cervical fracture combined with non-contiguous lower cervical fracture are not uncommon but complicated. In order to outline a management principle for the upper cervical fracture combined with non-contiguous lower cervical fracture and assess its clinical characteristics, we retrospectively analyzed 59 cases of patients who underwent surgical treatment for upper cervical fracture combined with non-contiguous lower cervical fracture. METHODS: 59 patients of upper cervical fracture combined with non-contiguous lower cervical fracture were treated by surgery in our hospital. According to the AO Spine classification for cervical fractures, there were 21 cases of type B atlas fractures, nine cases of type C atlas fractures; 15 cases of type B axis fractures, 14 cases of type C axis fractures; 19 cases of type B lower cervical fractures, 40 cases of type C lower cervical fractures. The operation time, intraoperative blood loss, complications, VAS scores, JOA scores, ASIA grades, and radiological evaluation of cervical lordosis and stability were collected and recorded. RESULTS: Our results showed the segments of upper cervical fracture combined with non-contiguous lower cervical fracture are mainly concentrated in the atlas-axis and C6, C7 levels. There were 43 cases (72.88%) of associated injuries, mainly involving head trauma and thoracic injuries. Four patients underwent anterior approach surgery only, 43 patients underwent posterior approach surgery only, and 12 patients underwent combined anterior and posterior approach surgery in one stage. All patients had regular follow up with an average duration of 67.83 ± 11.25 months (range, 39 to 103 months). The VAS scores and JOA scores at 12 months postoperatively and at final follow-up showed significant improvement compared to preoperative scores (P < 0.05). At the final follow-up, ASIA grades had improved by 0 to 2 levels. The cervical lordosis at the final follow-up (24.71°±7.39°) showed no statistically significant difference compared to preoperative measurements (26.89°±13.32°). Surgical complications occurred in 17 patients. No cases of vertebral artery injury, screw loosening, or other internal fixation failures were found at final follow-up. CONCLUSIONS: Upper cervical fracture combined with non-contiguous lower cervical fracture can result in varying extents of cervical spinal cord injury and combined trauma in other parts. Surgical treatment of these injuries can achieve favourable clinical and radiological outcomes in the medium to long term follow-up. More research is still needed to optimize clinical decision-making regarding surgical approach.


Subject(s)
Cervical Vertebrae , Fracture Fixation, Internal , Spinal Fractures , Humans , Spinal Fractures/surgery , Female , Male , Middle Aged , Retrospective Studies , Cervical Vertebrae/injuries , Cervical Vertebrae/surgery , Cervical Vertebrae/diagnostic imaging , Adult , Fracture Fixation, Internal/methods , Aged , Treatment Outcome , Young Adult
17.
Rev Esp Enferm Dig ; 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38235670

ABSTRACT

Idiopathic mesenteric phlebosclerosis (IMP) is a rare ischemic colitis characterized by calcification of mesenteric veins and submucosal veins of the colon. Melanosis coli (MC) is a pigmented mucosal lesion comprising macrophages in the lamina propria of the colorectal mucosa that contain lipofuscin. This study reports a case of IMP combined with MC.Clinicians should consider medication history, bowel preparation, and thorough observation to prevent missed IMP diagnosis when coexisting with MC.

18.
J Neurosci ; 2022 Jun 03.
Article in English | MEDLINE | ID: mdl-35667851

ABSTRACT

Classical forward and reverse mouse genetics require germline mutations and, thus, are unwieldy to study sleep functions of essential genes or redundant pathways. It is also time-consuming to conduct electroencephalogram/electromyogram-based mouse sleep screening owing to labor-intensive surgeries and genetic crosses. Here, we describe a highly accurate SleepV (video) system and adeno-associated virus (AAV)-based adult brain chimeric (ABC)-expression/knockout (KO) platform for somatic genetics analysis of sleep in adult male or female mice. A pilot ABC screen identifies CREB and CRTC1, of which constitutive or inducible expression significantly reduces quantity and/or quality of non-rapid eye movement sleep. Whereas ABC-KO of exon 13 of Sik3 by AAV-Cre injection in Sik3-E13flox/flox adult mice phenocopies Sleepy (Sik3Slp/+) mice, ABC-CRISPR of Slp/Sik3 reverses hypersomnia of Sleepy mice, indicating a direct role of SLP/SIK3 kinase in sleep regulation. Multiplex ABC-CRISPR of both orexin/hypocretin receptors causes narcolepsy episodes, enabling one-step analysis of redundant genes in adult mice. Therefore, this somatic genetics approach should facilitate high-throughput analysis of sleep regulatory genes, especially for essential or redundant genes, in adult mice by skipping mouse development and minimizing genetic crosses.SIGNIFICANCE STATEMENTThe molecular mechanisms of mammalian sleep regulation remain unclear. Classical germline mouse genetics are unwieldy to study sleep functions of essential genes or redundant pathways. The EEG/EMG-based mouse sleep screening is time-consuming owing to labor-intensive surgeries and lengthy genetic crosses. To overcome these "bottlenecks", we developed a highly accurate video-based sleep analysis system and adeno-associated virus-mediated ABC-expression/knockout platform for somatic genetics analysis of sleep in adult mice. These methodologies facilitate rapid identification of sleep regulatory genes, but also efficient mechanistic studies of the molecular pathways of sleep regulation in mice.

19.
Crit Rev Eukaryot Gene Expr ; 33(3): 13-26, 2023.
Article in English | MEDLINE | ID: mdl-37017666

ABSTRACT

Long non-coding RNAs (lncRNAs) possess both tumor suppressive and oncogenic functions in papillary thyroid cancer (PTC). Among all the thyroid cancers, PTC is the most prevalent form. Herein, we aim to determine the regulatory mechanisms and functions of lncRNA XIST in the multiplication, invasion, and survival of PTC. Quantitative reverse transcription polymerase chain reaction and Western blot experiments were performed to determine the patterns of lncRNA XIST, miR-330-3p, and PDE5A expressions. The subcellular localization of XIST was determined through subcellular fractionation. Bioinformatics analyses were performed to determine miR-330-3p's relationships with XIST and PDE5A, which were further confirmed through luciferase reporter assays. Loss-of-function combined with Transwell, CCK-8, and caspase-3 activity experiments were performed to determine the mechanism of the XIST/miR-330-3p/PDE5A axis in regulating the malignancy of PTC cells. Xenograft tumor experiment was employed to study the influence of XIST on tumor development in vivo. The PTC cell lines and tissues manifested considerably high levels of lncRNA XIST expression. The XIST knockdown inhibited proliferation, blocked migration, and strengthened apoptosis among PTC cells. Moreover, its knockdown suppressed PTC tumor development in vivo. XIST repressed miR-330-3p to stimulate the malignant behaviors of PTC. Through the downregulation of PDE5A, miR-330-3p attenuated the capability of PTC cells to grow, migrate, and survive. lncRNA XIST promotes tumor development in PTC through the regulation of the miR-330-3p/PDE5A axis. The findings from this study provide new insights into the treatment of PTC.


Subject(s)
MicroRNAs , RNA, Long Noncoding , Thyroid Neoplasms , Humans , Cell Movement , Cell Proliferation , MicroRNAs/genetics , RNA, Long Noncoding/genetics , Thyroid Cancer, Papillary/genetics , Thyroid Neoplasms/genetics , Cyclic Nucleotide Phosphodiesterases, Type 5/metabolism
20.
Small ; 19(52): e2303933, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37574266

ABSTRACT

Exploiting novel strategies for simultaneously harvesting ubiquitous, renewable, and easily accessible solar energy based on the photothermal effect, and efficiently storing the acquired thermal energy plays a vital role in revolutionizing the current fossil fuel-dominating energy structure. Developing black phosphorene-based phase-change composites with optimized photothermal conversion efficiencyand high latent heat is the most promising way to achieve efficient solar energy harvesting and rapid thermal energy storage. However, exfoliating high-quality black phosphorene nanosheets  remains challenging, Furthermore, an efficient strategy that can construct the aligned black phosphorene frameworks to maximize thermal conductivity enhancement is still lacking. Herein, high-quality black phosphorene nanosheets are prepared by an optimized exfoliating strategy. Meanwhile, by regulating the temperature gradient during freeze-casting, the framework consisting of shipshape aligned black phosphorene at long-range is successfully fabricated, improving the thermal conductivity of the poly(ethylene glycol) matrix up to 1.81 W m-1  K-1 at 20 vol% black phosphorene loading. The framework also endows the composite with excellent phase-change material encapsulation capacity and  high latent heat of 103.91 J g-1 . It is envisioned that the work advances the paradigm of contrasting frameworks with nanosheets toward controllable structure thermal enhancement of the composites.

SELECTION OF CITATIONS
SEARCH DETAIL