Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Pestic Biochem Physiol ; 200: 105810, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38582582

ABSTRACT

Ectropis grisescens (Lepidoptera: Geometridae) is a destructive tea pest in China. Mimesis, characterized by changing body color, is an important trait of E. grisescens larvae. Hence, identifying melanin pathway-related genes may contribute to developing new pest control strategies. In the present study, we cloned Egebony, a gene potentially involved in melanin pigmentation in E. grisescens, and subsequently conducted CRISPR/Cas9-mediated targeted mutagenesis of Egebony to analyze its role in pigmentation and development. At the larvae, prepupae, and pupae stages, Egebony-knockout individuals exhibited darker pigmentation than the wild-type. However, Egebony knockout did not impact the colors of sclerotized appendants, including ocelli, setae, and claws. While mutant pupae could successfully develop into moths, they were unable to emerge from the puparium. Notably, embryo hatchability and larval survival of mutants remained normal. Further investigation indicated that mutant pupae exhibited significantly stronger shearing force than the wild-type, with the pigmented layer of mutant pupae appearing darker and thicker. Collectively, these results suggest that the loss of Egebony might increase the rigidity of the puparium and prevent moth eclosion. This study provides new insights into understanding the function and diversification of ebony in insect development and identifies a lethal gene that can be manipulated for developing effective pest control strategies.


Subject(s)
Moths , Animals , Moths/genetics , Melanins/genetics , CRISPR-Cas Systems , Larva/genetics , Pigmentation/genetics
2.
Int J Mol Sci ; 23(24)2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36555416

ABSTRACT

Scopula subpunctaria, an abundant pest in tea gardens, produce type-II sex pheromone components, which are critical for its communicative and reproductive abilities; however, genes encoding the proteins involved in the detection of type-II sex pheromone components have rarely been documented in moths. In the present study, we sequenced the transcriptomes of the male and female S. subpunctaria antennae. A total of 150 candidate olfaction genes, comprising 58 odorant receptors (SsubORs), 26 ionotropic receptors (SsubIRs), 24 chemosensory proteins (SsubCSPs), 40 odorant-binding proteins (SsubOBPs), and 2 sensory neuron membrane proteins (SsubSNMPs) were identified in S. subpunctaria. Phylogenetic analysis, qPCR, and mRNA abundance analysis results suggested that SsubOR46 may be the Orco (non-traditional odorant receptor, a subfamily of ORs) of S. subpunctaria. SsubOR9, SsubOR53, and SsubOR55 belonged to the pheromone receptor (PR) clades which have a higher expression in male antennae. Interestingly, SsubOR44 was uniquely expressed in the antennae, with a higher expression in males than in females. SsubOBP25, SsubOBP27, and SsubOBP28 were clustered into the moth pheromone-binding protein (PBP) sub-family, and they were uniquely expressed in the antennae, with a higher expression in males than in females. SsubOBP19, a member of the GOBP2 group, was the most abundant OBP in the antennae. These findings indicate that these olfactory genes, comprising five candidate PRs, three candidate PBPs, and one candidate GOBP2, may be involved in type II sex pheromone detection. As well as these genes, most of the remaining SsubORs, and all of the SsubIRs, showed a considerably higher expression in the female antennae than in the male antennae. Many of these, including SsubOR40, SsubOR42, SsubOR43, and SsubIR26, were more abundant in female antennae. These olfactory and ionotropic receptors may be related to the detection of host plant volatiles. The results of this present study provide a basis for exploring the olfaction mechanisms in S. subpunctaria, with a focus on the genes involved in type II sex pheromones. The evolutionary analyses in our study provide new insights into the differentiation and evolution of lepidopteran PRs.


Subject(s)
Moths , Receptors, Odorant , Sex Attractants , Animals , Female , Male , Sex Attractants/genetics , Sex Attractants/metabolism , Phylogeny , Smell/genetics , Gene Expression Profiling/methods , Moths/genetics , Moths/metabolism , Receptors, Odorant/genetics , Receptors, Odorant/metabolism , Insect Proteins/genetics , Insect Proteins/metabolism , Arthropod Antennae/metabolism
3.
Pestic Biochem Physiol ; 169: 104650, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32828368

ABSTRACT

Sex pheromone-based pest management technology has been widely used to monitor and control insect pests in the agricultural, forestry, and public health sectors. Scopula subpunctaria is a widespread tea pest in China with Type II sex pheromone components. However, limited information is available on the biosynthesis and transportation of Type II sex pheromone components. In this study, we constructed an S. subpunctaria sex pheromone gland (PG) transcriptome and obtained 85,246 transcripts. Cytochrome P450 monooxygenases (CYPs) thought to epoxidize dienes and trienes to epoxides in the PG and odorant-binding proteins (OBPs) and chemosensory genes (CSPs) thought to be responsible for the binding and transportation of sex pheromone components. In present study, a total of 79 CYPs, 29 OBPs and 17 CSPs were identified. We found that SsubCYP341A and SsubCYP341B_ortholog1 belonged to the CYP341 family and were more highly expressed in the PG than in the female body. Of these, SsubCYP341A was the seventh-most PG-enriched CYP in the PG transcriptome. Two CYP4 members, CYP340BD_ortholog2 and CYP4G, were the top two most PG-enriched CYPs. Tissue expression and phylogenetic tree analysis showed that SsubOBP25, 27, and 28 belonged to the moth pheromone-binding protein family; they were distinctly expressed in the antennae and were more abundant in male antennae than in female antennae. SsubCSP16 was distributed into the same clade as CSPs from other moths that showed high binding affinities to sex pheromone components. It indicated that all the above-mentioned genes could be involved in sex pheromone biosynthesis or transportation. Our study provides large-scale PG sequence information that can be used to identify potential targets for the biological control of S. subpunctaria by disrupting its sex pheromone biosynthesis and transportation pathways.


Subject(s)
Moths/genetics , Sex Attractants , Animals , Arthropod Antennae , China , Cytochrome P-450 Enzyme System , Female , Gene Expression Profiling , Insect Proteins/genetics , Male , Phylogeny , Receptors, Odorant , Tea , Transcriptome
4.
Environ Health ; 15 Suppl 1: 27, 2016 Mar 08.
Article in English | MEDLINE | ID: mdl-26961286

ABSTRACT

BACKGROUND: The Urban Heat Island (UHI) effect describes the phenomenon whereby cities are generally warmer than surrounding rural areas. Traditionally, temperature monitoring sites are placed outside of city centres, which means that point measurements do not always reflect the true air temperature of urban centres, and estimates of health impacts based on such data may under-estimate the impact of heat on public health. Climate change is likely to exacerbate heatwaves in future, but because climate projections do not usually include the UHI, health impacts may be further underestimated. These factors motivate a two-dimensional analysis of population weighted temperature across an urban area, for heat related health impact assessments, since populations are typically densest in urban centres, where ambient temperatures are highest and the UHI is most pronounced. We investigate the sensitivity of health impact estimates to the use of population weighting and the inclusion of urban temperatures in exposure data. METHODS: We quantify the attribution of the UHI to heat related mortality in the West Midlands during the heatwave of August 2003 by comparing health impacts based on two modelled temperature simulations. The first simulation is based on detailed urban land use information and captures the extent of the UHI, whereas in the second simulation, urban land surfaces have been replaced by rural types. RESULTS AND CONCLUSIONS: The results suggest that the UHI contributed around 50 % of the total heat-related mortality during the 2003 heatwave in the West Midlands. We also find that taking a geographical, rather than population-weighted, mean of temperature across the regions under-estimates the population exposure to temperatures by around 1 °C, roughly equivalent to a 20 % underestimation in mortality. We compare the mortality contribution of the UHI to impacts expected from a range of projected temperatures based on the UKCP09 Climate Projections. For a medium emissions scenario, a typical heatwave in 2080 could be responsible for an increase in mortality of around 3 times the rate in 2003 (278 vs. 90 deaths) when including changes in population, population weighting and the UHI effect in the West Midlands, and assuming no change in population adaptation to heat in future.


Subject(s)
Cities , Climate Change , Environmental Health/methods , Hot Temperature/adverse effects , Mortality , England , Humans , Models, Theoretical
5.
Anal Bioanal Chem ; 407(30): 9105-14, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26493981

ABSTRACT

Determination of volatile plant compounds in field ambient air is important to understand chemical communication between plants and insects and will aid the development of semiochemicals from plants for pest control. In this study, a thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) method was developed to measure ultra-trace levels of volatile plant compounds in field ambient air. The desorption parameters of TD, including sorbent tube material, tube desorption temperature, desorption time, and cold trap temperature, were selected and optimized. In GC-MS analysis, the selected ion monitoring mode was used for enhanced sensitivity and selectivity. This method was sufficiently sensitive to detect part-per-trillion levels of volatile plant compounds in field ambient air. Laboratory and field evaluation revealed that the method presented high precision and accuracy. Field studies indicated that the background odor of tea plantations contained some common volatile plant compounds, such as (Z)-3-hexenol, methyl salicylate, and (E)-ocimene, at concentrations ranging from 1 to 3400 ng m(-3). In addition, the background odor in summer was more abundant in quality and quantity than in autumn. Relative to previous methods, the TD-GC-MS method is more sensitive, permitting accurate qualitative and quantitative measurements of volatile plant compounds in field ambient air.


Subject(s)
Air/analysis , Gas Chromatography-Mass Spectrometry/methods , Plants/chemistry , Volatile Organic Compounds/chemistry
6.
Open Med (Wars) ; 19(1): 20240906, 2024.
Article in English | MEDLINE | ID: mdl-38463521

ABSTRACT

Pancreatic adenocarcinoma (PAAD) is a prevalent and aggressive malignancy in the digestive tract, requiring accurate prediction and effective treatment strategies. Recently, the discovery of disulfidptosis, a novel form of programmed cell death characterized by abnormal disulfide accumulation, has sparked interest in its role in PAAD. In this study, we aimed to investigate the involvement of disulfidptosis-related genes (DRGs) in PAAD. Using publicly available databases, we conducted a comprehensive analysis exploring the complex relationships between DRGs and important aspects of PAAD, including gene expression, immune response, mutation, drug sensitivity, and functional enrichment. Notably, we observed significant heterogeneity among different disulfidptosis subclusters and identified specific differentially expressed genes in PAAD. Through machine learning techniques, we identified SLC7A11, S100A4, DIAPH3, PRDX1, and SLC7A7 as the most relevant hub genes. We further validated their significance in PAAD by considering their expression patterns, prognostic value, diagnostic potential, diagnostic model, and immune infiltration. This study presents exciting opportunities and challenges in unraveling the underlying mechanisms of PAAD prognosis. It also establishes a foundation for personalized cancer care and the development of innovative immunotherapeutic strategies. By shedding light on the role of DRGs, particularly hub genes, we enhance our understanding and management of PAAD.

7.
Front Plant Sci ; 14: 1273718, 2023.
Article in English | MEDLINE | ID: mdl-37860253

ABSTRACT

The tea leafhopper, Empoasca onukii, relies on substrate-borne vibrations for sexual communication and is mainly controlled with chemical pesticides, which poses risks to the environment and food safety. Based on previous studies, we conducted a series of behavioral assays by simultaneous observation of vibration signals and movement to investigate the mating and post-copulation behavior of tea leafhoppers. During mating, the activity of E. onukii was restricted to dawn and dusk and concentrated on the sixth or seventh mature leaf below the tea bud. By comparing the time spent in locating females among different males, the timely reply of females was the key factor affecting mating success. Empoasca onukii females mated only once in their lives, while males could mate multiple times. Male rivalry behavior involved two distinct strategies. The rivals could send disruptive pulses to overlap the male calling signals, locate the courting males, and drive them away after contact. Some rivals could emit mating disruption signals (MDSs) to interrupt the ongoing identification duet and establish their own mating communication. Both identification and location duets could be interrupted by playback of MDSs, which is essential to create effective synthetic signals to disrupt mating communication of E. onukii. Our study clarified the spatial and temporal distribution of E. onukii in mating and the function of MDSs, which will be essential to develop future vibrational mating disruption techniques for E. onukii and its energy-efficient application in the field.

8.
Open Med (Wars) ; 18(1): 20230825, 2023.
Article in English | MEDLINE | ID: mdl-37900961

ABSTRACT

Lower-grade glioma (LGG), a prevalent malignant tumor in the central nervous system, requires accurate prediction and treatment to prevent aggressive progression. We aimed to explore the role of disulfidptosis-related genes (DRGs) in LGG, a recently discovered form of programmed cell death characterized by abnormal disulfide accumulation. Leveraging public databases, we analyzed 532 LGG tumor tissues (The Cancer Genome Atlas), 1,157 normal samples (Genotype-Tissue Expression), and 21 LGG tumor samples with 8 paired normal samples (GSE16011). Our research uncovered intricate relationships between DRGs and crucial aspects of LGG, including gene expression, immune response, mutation, drug sensitivity, and functional enrichment. Notably, we identified significant heterogeneity among disulfidptosis sub-clusters and elucidated specific differential gene expression in LGG, with myeloid cell leukemia-1 (MCL1) as a key candidate. Machine learning techniques validated the relevance of MCL1, considering its expression patterns, prognostic value, diagnostic potential, and impact on immune infiltration. Our study offers opportunities and challenges to unravel potential mechanisms underlying LGG prognosis, paving the way for personalized cancer care and innovative immunotherapeutic strategies. By shedding light on DRGs, particularly MCL1, we enhance understanding and management of LGG.

9.
Heliyon ; 9(8): e18436, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37520990

ABSTRACT

Hepatocellular carcinoma (HCC) is a common malignant primary tumor that is usually diagnosed at an advanced stage; thus, there is an urgent need for efficient and sensitive novel diagnostic markers to determine the prognosis and halt disease progression in patients with HCC. Disulfidptosis is a recently discovered form of programmed cell death, essentially an abnormal accumulation of intracellular bisulfides. Therefore, our study aimed to investigate the role of disulfidptosis-related genes (DRGs) in the pathogenesis of HCC. Based on public databases, our work demonstrates the relationship between DRG and expression, immunity, mutation/drug sensitivity, and functional enrichment in HCC. We also revealed the significant heterogeneity of HCC in different DRGs sub-clusters and in differentially expressed genes (DEGs), respectively. Subsequently, the most relevant candidate gene, SLC7A11, was screened by machine learning to further validate the significance of SLC7A11 in the clinical features, prognosis, nomogram pattern, and immune infiltration of HCC. Our study, which elucidates the potential mechanisms of DRGs and HCC, reveals that SLC7A11 can serve as a novel prognostic biomarker and provides opportunities and challenges for individualized cancer immunotherapy strategies.

10.
Front Physiol ; 12: 685012, 2021.
Article in English | MEDLINE | ID: mdl-34475827

ABSTRACT

Ectropis obliqua and Ectropis grisescens are two sibling moth species of tea plantations in China. The male antennae of both species can detect shared and specific sex pheromone components. Thus, the primary olfactory center, i.e., the antennal lobe (AL), plays a vital role in distinguishing the sex pheromones. To provide evidence for the possible mechanism allowing this distinction, in this study, we compared the macroglomerular complex (MGC) of the AL between the males of the two species by immunostaining using presynaptic antibody and propidium iodide (PI) with antennal backfills, and confocal imaging and digital 3D-reconstruction. The results showed that MGC of both E. obliqua and E. grisescens contained five glomeruli at invariant positions between the species. However, the volumes of the anterior-lateral glomerulus (ALG) and posterior-ventral (PV) glomerulus differed between the species, possibly related to differences in sensing sex pheromone compounds and their ratios between E. obliqua and E. grisescens. Our results provide an important basis for the mechanism of mating isolation between these sibling moth species.

11.
J Chem Ecol ; 36(4): 388-95, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20349338

ABSTRACT

The tea weevil, Myllocerinus aurolineatus (Voss) (Coleoptera: Curculionidae), is a leaf-feeding pest of Camellia sinensis (O.Ktze.) with aggregative behaviors that can seriously reduce tea yield and quality. Although herbivore-induced host plant volatiles have been shown to attract conspecific individuals of some beetle pests, especially members of the Chrysomelidae family, little is known about the volatiles emitted from tea plants infested by M. aurolineatus adults and their roles in mediating interactions between conspecifics. The results of behavioral bioassays revealed that volatile compounds emitted from tea plants infested by M. aurolineatus were attractive to conspecific weevils. Volatile analyses showed that infestations dramatically increased the emission of volatiles, (Z)-3-hexenal, (Z)-3-hexenol, (E)-beta-ocimene, linalool, phenylethyl alcohol, benzyl nitrile, indole, (E, E)-alpha-farnesene, (E)-nerolidol, and 31 other compounds. Among the induced volatiles, 12 chemicals, including gamma-terpinene, benzyl alcohol, (Z)-3-hexenyl acetate, myrcene, benzaldehyde, (Z)-3-hexenal, and (E, E)-alpha-farnesene, elicited antennal responses from both sexes of the herbivore, whereas (E)-beta-ocimene elicited antennal responses only from males. Using a Y-tube olfactometer, we found that six of the 13 chemicals, gamma-terpinene, benzyl alcohol, (Z)-3-hexenyl acetate, myrcene, benzaldehyde, and (Z)-3-hexenal, were attractive to both males and females; two chemicals, (E/Z)-beta-ocimene and (E, E)-alpha-farnesene, were attractive only to males; and four chemicals, (E)-4,8-dimethyl-1,3,7-nonatriene, phenylethyl alcohol, linalool, and (Z)-3-hexenol, were attractive only to females. The findings provide new insights into the interactions between tea plants and their herbivores, and may help scientists develop new strategies for controlling the herbivore.


Subject(s)
Appetitive Behavior/drug effects , Camellia sinensis/chemistry , Feeding Behavior , Volatile Organic Compounds/pharmacology , Weevils/drug effects , Animals , Camellia sinensis/parasitology , Chromatography, Gas , Electrophysiological Phenomena/drug effects , Feces , Female , Male , Odorants , Volatile Organic Compounds/isolation & purification
12.
Insects ; 11(7)2020 Jul 09.
Article in English | MEDLINE | ID: mdl-32659987

ABSTRACT

For many herbivorous insects, vision is more important than olfaction in the prealighting stage of host habitat location. Tea leafhoppers, Empoasca onukii (Hemiptera, Cicadellidae), are serious pests that preferentially inhabit the tender leaves of tea plants across China. Here, we investigated whether tea leafhoppers could distinguish foliage colors associated with different leaf ages and use this visual cue to guide suitable habitat location from short distances. Similar to honeybees, the adult E. onukii has an apposition type of compound eye, and each ommatidium has eight retinular cells, in which three spectral types of photoreceptors are distributed, with peak sensitivities at 356 nm (ultraviolet), 435 nm (blue), and 542 nm (green). Both changes in spectral intensity and hue of reflectance light of the host foliage were correlated with varying leaf age, and the intensity linearly decreased with increasing leaf age. Behavioral responses also showed that adult E. onukii could discriminate between the simulated colors of host foliage at different leaf ages without olfactory stimuli and selected the bright colors that strongly corresponded to those of tender leaves. The results suggest that, compared with the spectral composition (hue), the intensity of light reflectance from leaves at different ages is more important for adult leafhoppers when discriminating host foliage and could guide them to tender leaves at the top of tea shoots.

13.
J Econ Entomol ; 112(1): 277-283, 2019 02 12.
Article in English | MEDLINE | ID: mdl-30508146

ABSTRACT

Ectropis grisescens Warren 1894 (Lepidopotera: Geometridae) and Ectropis obliqua Prout 1915 (Lepidopotera: Geometridae) are the most destructive chewing pests in China's tea plantations. Ectropis grisescens sex pheromone lures and E. obliqua nucleopolyhedrosis virus (EoNPV) are two species-specific and effective bio-control technologies to control these pests. Because these two species are morphologically similar, tea growers are unable to discriminate them by visual inspection. Hence, determining whether to use E. grisescens sex pheromone lures or EoNPV is difficult without knowledge on the geographical distribution of these two Ectropis species in China. In this study, we developed an efficient identification method, which is considerably cheaper and faster than sequencing the cytochrome c oxidase I gene. Overall, 2,588 E. grisescens and E. obliqua samples, collected from 13 provinces and municipalities in China covering the major regions where these pests have been reported, were identified. All insect samples from southern Jiangsu Province were identified as E. obliqua. Both Ectropis species were mix-distributed at the Anhui-Zhejiang Province border areas, whereas E. grisescens was mostly collected from the other sampling sites. Thus, E. obliqua might be mainly distributed at the junction of Jiangsu, Anhui, and Zhejiang Provinces. In contrast, E. grisescens has a considerably wide distribution area and is the main lepidopteran pest in the tea plantations of China. Our results contribute to improve the management of E. grisescens and E. obliqua populations and provide new insights for further studies on these two species.


Subject(s)
Moths/classification , Animals , Base Sequence , China , Geography , Moths/genetics , Polymerase Chain Reaction , Polymorphism, Restriction Fragment Length
14.
Ying Yong Sheng Tai Xue Bao ; 29(11): 3876-3890, 2018 Nov.
Article in Zh | MEDLINE | ID: mdl-30460835

ABSTRACT

Jasmonates (JAs), which can exogenously induce anti-herbivore defensive reaction in plants, are important in the field of plant physiology and plant protection. We summarized the ecological effects of exogenous JAs applied on 40 species of plants on various herbivores (such as Lepidoptera and Hemipteran) and their natural enemies in the past 20 years. We systematically genera-lized the research status about the direct and indirect antiherbivore defense induced by JAs, induced systemic defense, induction methods, induced performance in field, and the application status of JAs. Moreover, combining with the latest literatures, we reviewed the effects of JAs on plant growth-defense trade-offs from the cross-talk between phytohormone signaling pathways, and the regulation of nodes in the JA signaling pathway. Finally, we proposed the future directions and key aspects of the research on the plant anti-herbivore defense induced by exogenous JAs, which would promote the development of the related research and the application of JAs in field.


Subject(s)
Herbivory , Oxylipins , Animals , Cyclopentanes , Plants
15.
J Econ Entomol ; 111(2): 629-636, 2018 04 02.
Article in English | MEDLINE | ID: mdl-29361007

ABSTRACT

The tea leafhopper, Empoasca onukii Matsuda, is a serious pest of the tea plant. E. onukii prefers to inhabit vigorously growing tender tea leaves. The host selection of E. onukii adults may be associated with plant volatile compounds (VOCs). We sought to identify potentially attractive VOCs from tea leaves at three different ages and test the behavioral responses of E. onukii adults to synthetic VOC blends in the laboratory and field to aid in developing an E. onukii adult attractant. In darkness, the fresh or mature tea leaves of less than 1-mo old could attract more leafhoppers than the mature branches (MB) that had many older leaves (leaf age >1 mo). Volatile analysis showed that the VOC composition of the fresh leaves was the same as that of the mature leaves, but linalool and indole were not at detectable levels in VOCs from the MB. Moreover, the mass ratio differed for each common volatile in the three types of tea leaves. When under competition with volatiles from the MB, the leafhoppers showed no significant tropism to each single volatile but could be attracted by the synthetic volatile blend imitating the fresh leaves. With the removal of some volatile components, the effective synthetic volatile blend was mixed with (Z)-3-hexen-1-ol, (Z)-3-hexenyl acetate, and linalool at a mass ratio of 0.6:23:12.6. These three volatiles may be the key components for the host selection of E. onukii adults and could be used as an attractant in tea gardens.


Subject(s)
Behavior, Animal , Camellia sinensis/chemistry , Hemiptera , Volatile Organic Compounds/analysis , Animals
16.
J Insect Physiol ; 111: 25-31, 2018.
Article in English | MEDLINE | ID: mdl-30336148

ABSTRACT

Chrysoperla sinica is an important natural predator of many notorious agricultural pests. Understanding its olfactory mechanism can help enhance the effectiveness of C. sinica in biological control. In the present study, we investigated the tissue expression patterns of 12 odorant-binding protein (OBP) genes from C. sinica (CsinOBPs). The results of quantitative real-time polymerase chain reaction (qPCR) showed that CsinOBP1, CsinOBP2, CsinOBP3, CsinOBP4, CsinOBP6, CsinOBP7, CsinOBP9, CsinOBP10, and CsinOBP12 were predominantly expressed in the antennae of both sexes, indicating their roles in olfaction. Additionally, the qPCR analysis revealed that the 12 CsinOBP genes had distinct expression patterns, while the motif-pattern investigation suggested that the OBPs had different ligands. The ligand-binding assay showed that CsinOBP1 and CsinOBP10 had broader binding spectra than did the other OBPs. Thus, CsinOBP1 was able to bind not only plant volatiles (such as farnesol, cis-3-hexenyl hexanoate, geranylacetone, ß-ionone, 2-tridecanone, and trans-nerolidol) but also the aphid alarm pheromone (E)-ß-farnesene. On the other hand, CsinOBP2 and CsinOBP6 exhibited relatively narrow binding spectra, only binding ethyl benzoate. The study also identified several compounds that can potentially be used to develop slow-release agents attracting C. sinica and to improve search strategies for insect pest control.


Subject(s)
Insect Proteins/genetics , Insecta/genetics , Pheromones/metabolism , Receptors, Odorant/genetics , Volatile Organic Compounds/metabolism , Amino Acid Sequence , Animals , Female , Gene Expression Profiling , Insect Proteins/metabolism , Male , Predatory Behavior , Protein Binding , Receptors, Odorant/metabolism
17.
Int J Biochem Cell Biol ; 104: 66-72, 2018 11.
Article in English | MEDLINE | ID: mdl-30227253

ABSTRACT

The aim of this study was to construct DNA methylation-lncRNA-mRNA interaction trios in peripheral blood mononuclear cells. We first conducted eQTL analyses using genome-wide methylation, lncRNA and mRNA expression data from 43 Chinese females. Next, causal inference test (CIT) was used to detect the lncRNA mediation effects on methylation and mRNA. Methylation-lncRNA cis-eQTL analysis identified 11 significant cis-methylation-lncRNA pairs. Combined with the results from the next lncRNA-mRNA eQTL and methylation-mRNA eQTL analyses, the 11 significant pairs and their corresponding 11,204 target e-mRNAs formed 12,245 trios. Further CIT identified six lncRNAs as mediators in regulating the corresponding pairs between methylation and mRNA. This study detected lncRNAs with mediation effects on the correlations between DNA methylations and a large number of mRNAs.


Subject(s)
Computational Biology , DNA Methylation , RNA, Long Noncoding/genetics , Female , Humans , Quantitative Trait Loci/genetics , RNA, Messenger/genetics
18.
G3 (Bethesda) ; 8(3): 899-908, 2018 03 02.
Article in English | MEDLINE | ID: mdl-29317471

ABSTRACT

Moths can biosynthesize sex pheromones in the female sex pheromone glands (PGs) and can distinguish species-specific sex pheromones using their antennae. However, the biosynthesis and transportation mechanism for Type II sex pheromone components has rarely been documented in moths. In this study, we constructed a massive PG transcriptome database (14.72 Gb) from a moth species, Ectropis grisescens, which uses type II sex pheromones and is a major tea pest in China. We further identified putative sex pheromone biosynthesis and transportation-related unigenes: 111 cytochrome P450 monooxygenases (CYPs), 25 odorant-binding proteins (OBPs), and 20 chemosensory proteins (CSPs). Tissue expression and phylogenetic tree analyses showed that one CYP (EgriCYP341-fragment3), one OBP (EgriOBP4), and one CSP (EgriCSP10) gene displayed an enriched expression in the PGs, and that EgriOBP2, 3, and 25 are clustered in the moth pheromone-binding protein clade. We considered these our candidate genes. Our results yielded large-scale PG sequence information for further functional studies.


Subject(s)
Gene Expression Profiling , Genes, Insect , Moths/genetics , Moths/metabolism , Sex Attractants/metabolism , Animals , Biological Transport , Camellia sinensis/parasitology , Computational Biology/methods , Female , Gene Expression Regulation , High-Throughput Nucleotide Sequencing , Male , Molecular Sequence Annotation , Moths/classification , Organ Specificity , Phylogeny , Sex Attractants/biosynthesis , Transcriptome
19.
Front Physiol ; 9: 1602, 2018.
Article in English | MEDLINE | ID: mdl-30487755

ABSTRACT

The sibling species Ectropis grisescens and E. obliqua are the major chewing tea pests in China. A difference in sex pheromone components plays a central role in premating isolation in these two species. To investigate the mechanism of premating isolation in these two Ectropis species, we sequenced the transcriptomes of the antennae of female and male E. obliqua individuals and performed phylogenetic analyses, abundance analyses, and tissue expression profile analyses to compare the olfactory genes involved in the detection of sex pheromones. A total of 36 odorant-binding proteins (OBPs) and 52 olfactory receptors (ORs) were identified in E. obliqua. Phylogenetic analyses showed that EoblOBP2, 3, and 25 were grouped in the pheromone-binding protein clade with EgriOBP2, 3, 25, and another lepidopteran PBP. EoblOR25 and 28 were grouped with EgriOR25, 28, and pheromone receptors for the detection of Type-I sex pheromone components. EoblOR24, 31, 37, and 44 were grouped with EgriOR24, 31, 37, and 44. All of these 4 EoblORs and 4 EgriORs showed higher abundance in male antennae than in female ones. Therefore, OBP2, 3, 25 and OR24, 31, 37, 44 of E. grisescens and E. obliqua might be responsible for sex pheromone component detection. However, the sequences of these genes in E. grisescens and E. obliqua were more than 90% identical. This indicates that these orthologous genes might play similar roles in the detection of sex pheromones. In contrast, the observed OBPs and ORs differed in abundance between the antennae of the two Ectropis species. Therefore, we speculate that these two Ectropis species use the different transcript levels of PRs to differentiate sex pheromone components. The results of the present study might contribute in deciphering the mechanism for premating isolation in these species and may be of use in devising strategies for their management.

20.
Environ Pollut ; 224: 171-184, 2017 May.
Article in English | MEDLINE | ID: mdl-28202267

ABSTRACT

A large eddy simulation (LES) model coupled with O3-NOx-VOC chemistry is implemented to simulate the coupled effects of emissions, mixing and chemical pre-processing within an idealised deep (aspect ratio = 2) urban street canyon under a weak wind condition. Reactive pollutants exhibit significant spatial variations in the presence of two vertically aligned unsteady vortices formed in the canyon. Comparison of the LES results from two chemical schemes (simple NOx-O3 chemistry and a more comprehensive Reduced Chemical Scheme (RCS) chemical mechanism) shows that the concentrations of NO2 and Ox inside the street canyon are enhanced by approximately 30-40% via OH/HO2 chemistry. NO, NOx, O3, OH and HO2 are chemically consumed, while NO2 and Ox (total oxidant) are chemically produced within the canyon environment. Within-canyon pre-processing increases oxidant fluxes from the canyon to the overlying boundary layer, and this effect is greater for deeper street canyons (as found in many traditional European urban centres) than shallower (lower aspect ratio) streets. There is clear evidence of distinct behaviours for emitted chemical species and entrained chemical species, and positive (or negative) values of intensities of segregations are found between pairs of species with similar (or opposite) behaviour. The simplified two-box model underestimated NO and O3 levels, but overestimated NO2 levels for both the lower and upper canyon compared with the more realistic LES-chemistry model. This suggests that the segregation effect due to incomplete mixing reduces the chemical conversion rate of NO to NO2. This study reveals the impacts of nonlinear O3-NOx-VOC photochemical processes in the incomplete mixing environment and provides a better understanding of the pre-processing of emissions within canyons, prior to their release to the urban boundary layer, through the coupling of street canyon dynamics and chemistry.


Subject(s)
Air Pollutants/analysis , Air Pollutants/chemistry , Cities , Computer Simulation , Nitrogen Dioxide/chemistry , Oxygen/chemistry , Volatile Organic Compounds/chemistry , Environmental Pollution/analysis , Models, Theoretical , Nitric Oxide/analysis , Nitric Oxide/chemistry , Nitrogen Dioxide/analysis , Oxygen/analysis , Photochemical Processes , Volatile Organic Compounds/analysis , Wind
SELECTION OF CITATIONS
SEARCH DETAIL