Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Dev Biol ; 506: 31-41, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38052296

ABSTRACT

During epithelial-to-mesenchymal transition (EMT), significant rearrangements occur in plasma membrane protein and lipid content that are important for membrane function and acquisition of cell motility. To gain insight into how neural crest cells regulate their lipid content at the transcriptional level during EMT, here we identify critical enhancer sequences that regulate the expression of SMPD3, a gene responsible for sphingomyelin hydrolysis to produce ceramide and necessary for neural crest EMT. We uncovered three enhancer regions within the first intron of the SMPD3 locus that drive reporter expression in distinct spatial and temporal domains, together collectively recapitulating the expression domains of endogenous SMPD3 within the ectodermal lineages. We further dissected one enhancer that is specifically active in the migrating neural crest. By mutating putative transcriptional input sites or knocking down upstream regulators, we find that the SOXE-family transcription factors SOX9 and SOX10 regulate the expression of SMPD3 in migrating neural crest cells. Further, ChIP-seq and nascent transcription analysis reveal that SOX10 directly regulates expression of an SMPD3 enhancer specific to migratory neural crest cells. Together these results shed light on how core components of developmental gene regulatory networks interact with metabolic effector genes to control changes in membrane lipid content.


Subject(s)
Avian Proteins , Neural Crest , SOXE Transcription Factors , Sphingomyelin Phosphodiesterase , Gene Expression Regulation, Developmental , Introns , Lipids , Neural Crest/metabolism , SOXE Transcription Factors/genetics , SOXE Transcription Factors/metabolism , Chickens , Animals , Avian Proteins/metabolism , Sphingomyelin Phosphodiesterase/metabolism
2.
Dev Biol ; 483: 39-57, 2022 03.
Article in English | MEDLINE | ID: mdl-34990731

ABSTRACT

Neural crest (NC) cells are a dynamic population of embryonic stem cells that create various adult tissues in vertebrate species including craniofacial bone and cartilage and the peripheral and enteric nervous systems. NC development is thought to be a conserved and complex process that is controlled by a tightly-regulated gene regulatory network (GRN) of morphogens, transcription factors, and cell adhesion proteins. While multiple studies have characterized the expression of several GRN factors in single species, a comprehensive protein analysis that directly compares expression across development is lacking. To address this lack in information, we used three closely related avian models, Gallus gallus (chicken), Coturnix japonica (Japanese quail), and Pavo cristatus (Indian peafowl), to compare the localization and timing of four GRN transcription factors, PAX7, SNAI2, SOX9, and SOX10, from the onset of neurulation to migration. While the spatial expression of these factors is largely conserved, we find that quail NC cells express SNAI2, SOX9, and SOX10 proteins at the equivalent of earlier developmental stages than chick and peafowl. In addition, quail NC cells migrate farther and more rapidly than the larger organisms. These data suggest that despite a conservation of NC GRN players, differences in the timing of NC development between species remain a significant frontier to be explored with functional studies.


Subject(s)
Avian Proteins/genetics , Avian Proteins/metabolism , Cell Movement/genetics , Chickens/genetics , Coturnix/embryology , Coturnix/genetics , Gene Expression Regulation, Developmental , Neural Crest/metabolism , Neurulation/genetics , Animals , Chick Embryo , Chickens/metabolism , Coturnix/metabolism , Female , Gene Regulatory Networks , Neural Crest/embryology , Neural Tube/embryology , Neural Tube/metabolism , Oviparity/genetics , PAX7 Transcription Factor/genetics , PAX7 Transcription Factor/metabolism , SOX9 Transcription Factor/genetics , SOX9 Transcription Factor/metabolism , Snail Family Transcription Factors/genetics , Snail Family Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL