Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
Cell ; 141(1): 142-53, 2010 Apr 02.
Article in English | MEDLINE | ID: mdl-20371351

ABSTRACT

Heart diseases are the most common causes of morbidity and death in humans. Using cardiac-specific RNAi-silencing in Drosophila, we knocked down 7061 evolutionarily conserved genes under conditions of stress. We present a first global roadmap of pathways potentially playing conserved roles in the cardiovascular system. One critical pathway identified was the CCR4-Not complex implicated in transcriptional and posttranscriptional regulatory mechanisms. Silencing of CCR4-Not components in adult Drosophila resulted in myofibrillar disarray and dilated cardiomyopathy. Heterozygous not3 knockout mice showed spontaneous impairment of cardiac contractility and increased susceptibility to heart failure. These heart defects were reversed via inhibition of HDACs, suggesting a mechanistic link to epigenetic chromatin remodeling. In humans, we show that a common NOT3 SNP correlates with altered cardiac QT intervals, a known cause of potentially lethal ventricular tachyarrhythmias. Thus, our functional genome-wide screen in Drosophila can identify candidates that directly translate into conserved mammalian genes involved in heart function.


Subject(s)
Drosophila melanogaster/physiology , Models, Animal , Animals , Cardiomyopathies/genetics , Cardiomyopathies/physiopathology , Drosophila melanogaster/embryology , Drosophila melanogaster/genetics , Female , Genome-Wide Association Study , Heart/embryology , Heart/physiology , Humans , Male , Mice , Mice, Knockout , Promoter Regions, Genetic , RNA Interference
2.
Proc Natl Acad Sci U S A ; 117(31): 18822-18831, 2020 08 04.
Article in English | MEDLINE | ID: mdl-32690703

ABSTRACT

Muscle contraction is regulated by the movement of end-to-end-linked troponin-tropomyosin complexes over the thin filament surface, which uncovers or blocks myosin binding sites along F-actin. The N-terminal half of troponin T (TnT), TNT1, independently promotes tropomyosin-based, steric inhibition of acto-myosin associations, in vitro. Recent structural models additionally suggest TNT1 may restrain the uniform, regulatory translocation of tropomyosin. Therefore, TnT potentially contributes to striated muscle relaxation; however, the in vivo functional relevance and molecular basis of this noncanonical role remain unclear. Impaired relaxation is a hallmark of hypertrophic and restrictive cardiomyopathies (HCM and RCM). Investigating the effects of cardiomyopathy-causing mutations could help clarify TNT1's enigmatic inhibitory property. We tested the hypothesis that coupling of TNT1 with tropomyosin's end-to-end overlap region helps anchor tropomyosin to an inhibitory position on F-actin, where it deters myosin binding at rest, and that, correspondingly, cross-bridge cycling is defectively suppressed under diastolic/low Ca2+ conditions in the presence of HCM/RCM lesions. The impact of TNT1 mutations on Drosophila cardiac performance, rat myofibrillar and cardiomyocyte properties, and human TNT1's propensity to inhibit myosin-driven, F-actin-tropomyosin motility were evaluated. Our data collectively demonstrate that removing conserved, charged residues in TNT1's tropomyosin-binding domain impairs TnT's contribution to inhibitory tropomyosin positioning and relaxation. Thus, TNT1 may modulate acto-myosin activity by optimizing F-actin-tropomyosin interfacial contacts and by binding to actin, which restrict tropomyosin's movement to activating configurations. HCM/RCM mutations, therefore, highlight TNT1's essential role in contractile regulation by diminishing its tropomyosin-anchoring effects, potentially serving as the initial trigger of pathology in our animal models and humans.


Subject(s)
Cardiomyopathies/metabolism , Mutation/genetics , Tropomyosin , Troponin T , Actins/chemistry , Actins/metabolism , Animals , Calcium/metabolism , Diastole/genetics , Diastole/physiology , Drosophila Proteins , Humans , Myocytes, Cardiac/chemistry , Myocytes, Cardiac/metabolism , Protein Binding , Rats , Tropomyosin/chemistry , Tropomyosin/metabolism , Troponin T/chemistry , Troponin T/genetics , Troponin T/metabolism
3.
Biophys J ; 121(4): 565-574, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35032456

ABSTRACT

Myocyte disarray is a hallmark of many cardiac disorders. However, the relationship between alterations in the orientation of individual myofibrils and myofilaments to disease progression has been largely underexplored. This oversight has predominantly been because of a paucity of methods for objective and quantitative analysis. Here, we introduce a novel, less-biased approach to quantify myofibrillar and myofilament orientation in cardiac muscle under near-physiological conditions and demonstrate its superiority as compared with conventional histological assessments. Using small-angle x-ray diffraction, we first investigated changes in myofibrillar orientation at increasing sarcomere lengths in permeabilized, relaxed, wild-type mouse myocardium from the left ventricle by assessing the angular spread of the 1,0 equatorial reflection (angle σ). At a sarcomere length of 1.9 µm, the angle σ was 0.23 ± 0.01 rad, decreased to 0.19 ± 0.01 rad at a sarcomere length of 2.1 µm, and further decreased to 0.15 ± 0.01 rad at a sarcomere length of 2.3 µm (p < 0.0001). Angle σ was significantly larger in R403Q, a MYH7 hypertrophic cardiomyopathy model, porcine myocardium (0.24 ± 0.01 rad) compared with wild-type myocardium (0.14 ± 0.005 rad; p < 0.0001), as well as in human heart failure tissue (0.19 ± 0.006 rad) when compared with nonfailing samples (0.17 ± 0.007 rad; p = 0.01). These data indicate that diseased myocardium suffers from greater myofibrillar disorientation compared with healthy controls. Finally, we showed that conventional, histology-based analysis of disarray can be subject to user bias and/or sampling error and lead to false positives. Our method for directly assessing myofibrillar orientation avoids the artifacts introduced by conventional histological approaches that assess myocyte orientation and only indirectly evaluate myofibrillar orientation, and provides a precise and objective metric for phenotypically characterizing myocardium. The ability to obtain excellent x-ray diffraction patterns from frozen human myocardium provides a new tool for investigating structural anomalies associated with cardiac diseases.


Subject(s)
Cardiomyopathy, Hypertrophic , Myofibrils , Animals , Heart Ventricles/pathology , Mice , Myocardial Contraction , Myocardium/pathology , Sarcomeres , Swine
4.
Int J Mol Sci ; 23(5)2022 Feb 25.
Article in English | MEDLINE | ID: mdl-35269675

ABSTRACT

The myosin molecular motor interacts with actin filaments in an ATP-dependent manner to yield muscle contraction. Myosin heavy chain residue R369 is located within loop 4 at the actin-tropomyosin interface of myosin's upper 50 kDa subdomain. To probe the importance of R369, we introduced a histidine mutation of that residue into Drosophila myosin and implemented an integrative approach to determine effects at the biochemical, cellular, and whole organism levels. Substituting the similarly charged but bulkier histidine residue reduces maximal actin binding in vitro without affecting myosin ATPase activity. R369H mutants exhibit impaired flight ability that is dominant in heterozygotes and progressive with age in homozygotes. Indirect flight muscle ultrastructure is normal in mutant homozygotes, suggesting that assembly defects or structural deterioration of myofibrils are not causative of reduced flight. Jump ability is also reduced in homozygotes. In contrast to these skeletal muscle defects, R369H mutants show normal heart ultrastructure and function, suggesting that this residue is differentially sensitive to perturbation in different myosin isoforms or muscle types. Overall, our findings indicate that R369 is an actin binding residue that is critical for myosin function in skeletal muscles, and suggest that more severe perturbations at this residue may cause human myopathies through a similar mechanism.


Subject(s)
Actins , Muscular Diseases , Actins/metabolism , Animals , Drosophila/metabolism , Drosophila melanogaster/metabolism , Histidine/metabolism , Muscle, Skeletal/metabolism , Muscular Diseases/metabolism , Myosins/genetics , Myosins/metabolism
5.
J Biol Chem ; 295(46): 15527-15539, 2020 11 13.
Article in English | MEDLINE | ID: mdl-32873710

ABSTRACT

Recent proteomics studies of vertebrate striated muscle have identified lysine acetylation at several sites on actin. Acetylation is a reversible post-translational modification that neutralizes lysine's positive charge. Positively charged residues on actin, particularly Lys326 and Lys328, are predicted to form critical electrostatic interactions with tropomyosin (Tpm) that promote its binding to filamentous (F)-actin and bias Tpm to an azimuthal location where it impedes myosin attachment. The troponin (Tn) complex also influences Tpm's position along F-actin as a function of Ca2+ to regulate exposure of myosin-binding sites and, thus, myosin cross-bridge recruitment and force production. Interestingly, Lys326 and Lys328 are among the documented acetylated residues. Using an acetic anhydride-based labeling approach, we showed that excessive, nonspecific actin acetylation did not disrupt characteristic F-actin-Tpm binding. However, it significantly reduced Tpm-mediated inhibition of myosin attachment, as reflected by increased F-actin-Tpm motility that persisted in the presence of Tn and submaximal Ca2+ Furthermore, decreasing the extent of chemical acetylation, to presumptively target highly reactive Lys326 and Lys328, also resulted in less inhibited F-actin-Tpm, implying that modifying only these residues influences Tpm's location and, potentially, thin filament regulation. To unequivocally determine the residue-specific consequences of acetylation on Tn-Tpm-based regulation of actomyosin activity, we assessed the effects of K326Q and K328Q acetyl (Ac)-mimetic actin on Ca2+-dependent, in vitro motility parameters of reconstituted thin filaments (RTFs). Incorporation of K328Q actin significantly enhanced Ca2+ sensitivity of RTF activation relative to control. Together, our findings suggest that actin acetylation, especially Lys328, modulates muscle contraction via disrupting inhibitory Tpm positioning.


Subject(s)
Actins/metabolism , Actomyosin/metabolism , Tropomyosin/metabolism , Acetylation , Actins/chemistry , Actins/genetics , Actomyosin/antagonists & inhibitors , Amino Acid Sequence , Animals , Animals, Genetically Modified/metabolism , Binding Sites , Calcium/metabolism , Cattle , Drosophila/metabolism , Drosophila Proteins/chemistry , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Kinetics , Lysine/metabolism , Molecular Dynamics Simulation , Mutagenesis, Site-Directed , Protein Binding , Rabbits , Swine
6.
J Mol Cell Cardiol ; 139: 135-147, 2020 02.
Article in English | MEDLINE | ID: mdl-31981571

ABSTRACT

OBJECTIVE: Cardiac troponin I (cTnI) is an essential physiological and pathological regulator of cardiac relaxation. Significant to this regulation, the post-translational modification of cTnI through phosphorylation functions as a key mechanism to accelerate myofibril relaxation. Similar to phosphorylation, post-translational modification by acetylation alters amino acid charge and protein function. Recent studies have demonstrated that the acetylation of cardiac myofibril proteins accelerates relaxation and that cTnI is acetylated in the heart. These findings highlight the potential significance of myofilament acetylation; however, it is not known if site-specific acetylation of cTnI can lead to changes in myofilament, myofibril, and/or cellular mechanics. The objective of this study was to determine the effects of mimicking acetylation at a single site of cTnI (lysine-132; K132) on myofilament, myofibril, and cellular mechanics and elucidate its influence on molecular function. METHODS: To determine if pseudo-acetylation of cTnI at 132 modulates thin filament regulation of the acto-myosin interaction, we reconstituted thin filaments containing WT or K132Q (to mimic acetylation) cTnI and assessed in vitro motility. To test if mimicking acetylation at K132 alters cellular relaxation, adult rat ventricular cardiomyocytes were infected with adenoviral constructs expressing either cTnI K132Q or K132 replaced with arginine (K132R; to prevent acetylation) and cell shortening and isolated myofibril mechanics were measured. Finally, to confirm that changes in cell shortening and myofibril mechanics were directly due to pseudo-acetylation of cTnI at K132, we exchanged troponin containing WT or K132Q cTnI into isolated myofibrils and measured myofibril mechanical properties. RESULTS: Reconstituted thin filaments containing K132Q cTnI exhibited decreased calcium sensitivity compared to thin filaments reconstituted with WT cTnI. Cardiomyocytes expressing K132Q cTnI had faster relengthening and myofibrils isolated from these cells had faster relaxation along with decreased calcium sensitivity compared to cardiomyocytes expressing WT or K132R cTnI. Myofibrils exchanged with K132Q cTnI ex vivo demonstrated faster relaxation and decreased calcium sensitivity. CONCLUSIONS: Our results indicate for the first time that mimicking acetylation of a specific cTnI lysine accelerates myofilament, myofibril, and myocyte relaxation. This work underscores the importance of understanding how acetylation of specific sarcomeric proteins affects cardiac homeostasis and disease and suggests that modulation of myofilament lysine acetylation may represent a novel therapeutic target to alter cardiac relaxation.


Subject(s)
Calcium/metabolism , Myocardium/metabolism , Myofibrils/metabolism , Troponin I/metabolism , Acetylation , Animals , Female , Heart Ventricles/cytology , Lysine/metabolism , Myocytes, Cardiac/metabolism , Rats, Inbred Dahl , Rats, Sprague-Dawley
7.
J Physiol ; 598(14): 2897-2908, 2020 07.
Article in English | MEDLINE | ID: mdl-30770548

ABSTRACT

Striated muscle contraction is regulated by Ca2+ -dependent modulation of myosin cross-bridge binding to F-actin by the thin filament troponin (Tn)-tropomyosin (Tm) complex. In the absence of Ca2+ , Tn binds to actin and constrains Tm to an azimuthal location where it sterically occludes myosin binding sites along the thin filament surface. This limits force production and promotes muscle relaxation. In addition to Tn-actin interactions, inhibitory Tm positioning requires associations between other thin filament constituents. For example, the actin 'A-triad', composed of residues K326, K328 and R147, forms numerous, highly favourable electrostatic contacts with Tm that are critical for establishing its inhibitory azimuthal binding position. Here, we review recent findings, including the identification and interrogation of modifications within and proximal to the A-triad that are associated with disease and/or altered muscle behaviour, which highlight the surface feature's role in F-actin-Tm interactions and contractile regulation.


Subject(s)
Actins , Calcium , Actin Cytoskeleton , Muscle Contraction , Myosins , Tropomyosin
8.
Hum Mol Genet ; 26(24): 4799-4813, 2017 12 15.
Article in English | MEDLINE | ID: mdl-28973424

ABSTRACT

Myosin storage myopathy (MSM) is a congenital skeletal muscle disorder caused by missense mutations in the ß-cardiac/slow skeletal muscle myosin heavy chain rod. It is characterized by subsarcolemmal accumulations of myosin that have a hyaline appearance. MSM mutations map near or within the assembly competence domain known to be crucial for thick filament formation. Drosophila MSM models were generated for comprehensive physiological, structural, and biochemical assessment of the mutations' consequences on muscle and myosin structure and function. L1793P, R1845W, and E1883K MSM mutant myosins were expressed in an indirect flight (IFM) and jump muscle myosin null background to study the effects of these variants without confounding influences from wild-type myosin. Mutant animals displayed highly compromised jump and flight ability, disrupted muscle proteostasis, and severely perturbed IFM structure. Electron microscopy revealed myofibrillar disarray and degeneration with hyaline-like inclusions. In vitro assembly assays demonstrated a decreased ability of mutant myosin to polymerize, with L1793P filaments exhibiting shorter lengths. In addition, limited proteolysis experiments showed a reduced stability of L1793P and E1883K filaments. We conclude that the disrupted hydropathy or charge of residues in the heptad repeat of the mutant myosin rods likely alters interactions that stabilize coiled-coil dimers and thick filaments, causing disruption in ordered myofibrillogenesis and/or myofibrillar integrity, and the consequent myosin aggregation. Our Drosophila models are the first to recapitulate the human MSM phenotype with ultrastructural inclusions, suggesting that the diminished ability of the mutant myosin to form stable thick filaments contributes to the dystrophic phenotype observed in afflicted subjects.


Subject(s)
Muscular Diseases/congenital , Myosin Heavy Chains/genetics , Amino Acid Sequence , Animals , Animals, Genetically Modified , Cytoskeleton/metabolism , Drosophila/genetics , Drosophila/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Humans , Muscle, Skeletal/metabolism , Muscular Diseases/genetics , Muscular Diseases/physiopathology , Mutation, Missense , Myofibrils/metabolism , Myosin Heavy Chains/metabolism , Myosins/metabolism , Sarcomeres/metabolism
9.
FASEB J ; 32(8): 4203-4213, 2018 08.
Article in English | MEDLINE | ID: mdl-29522375

ABSTRACT

Supranormal contractile properties are frequently associated with cardiac diseases. Anesthetic agents, including propofol, can depress myocardial contraction. We tested the hypothesis that fropofol, a propofol derivative, reduces force development in cardiac muscles via inhibition of cross-bridge cycling and may therefore have therapeutic potential. Force and intracellular Ca2+ concentration ([Ca2+]i) transients of rat trabecular muscles were determined. Myofilament ATPase, actin-activated myosin ATPase, and velocity of actin filaments propelled by myosin were also measured. Fropofol dose dependently decreased force without altering [Ca2+]i in normal and pressure-induced hypertrophied-hypercontractile muscles. Similarly, fropofol depressed maximum Ca2+-activated force ( Fmax) and increased the [Ca2+]i required for 50% of Fmax (Ca50) at steady state without affecting the Hill coefficient in both intact and skinned cardiac fibers. The drug also depressed cardiac myofibrillar and actin-activated myosin ATPase activity. In vitro actin sliding velocity was significantly reduced when fropofol was introduced during rigor binding of cross-bridges. The data suggest that the depressing effects of fropofol on cardiac contractility are likely to be related to direct targeting of actomyosin interactions. From a clinical standpoint, these findings are particularly significant, given that fropofol is a nonanesthetic small molecule that decreases myocardial contractility specifically and thus may be useful in the treatment of hypercontractile cardiac disorders.-Ren, X., Schmidt, W., Huang, Y., Lu, H., Liu, W., Bu, W., Eckenhoff, R., Cammarato, A., Gao, W. D. Fropofol decreases force development in cardiac muscle.


Subject(s)
Anesthetics/pharmacology , Heart/drug effects , Myocardium/metabolism , Propofol/pharmacology , Actins/metabolism , Actomyosin/metabolism , Adenosine Triphosphatases/metabolism , Animals , Calcium/metabolism , Muscle Contraction/drug effects , Myocardial Contraction/drug effects , Myosins/metabolism , Rats
10.
J Mol Cell Cardiol ; 119: 64-74, 2018 06.
Article in English | MEDLINE | ID: mdl-29684406

ABSTRACT

Dysregulation of L-type Ca2+ channels (LTCCs) underlies numerous cardiac pathologies. Understanding their modulation with high fidelity relies on investigating LTCCs in their native environment with intact interacting proteins. Such studies benefit from genetic manipulation of endogenous channels in cardiomyocytes, which often proves cumbersome in mammalian models. Drosophila melanogaster, however, offers a potentially efficient alternative as it possesses a relatively simple heart, is genetically pliable, and expresses well-conserved genes. Fluorescence in situ hybridization confirmed an abundance of Ca-α1D and Ca-α1T mRNA in fly myocardium, which encode subunits that specify hetero-oligomeric channels homologous to mammalian LTCCs and T-type Ca2+ channels, respectively. Cardiac-specific knockdown of Ca-α1D via interfering RNA abolished cardiac contraction, suggesting Ca-α1D (i.e. A1D) represents the primary functioning Ca2+ channel in Drosophila hearts. Moreover, we successfully isolated viable single cardiomyocytes and recorded Ca2+ currents via patch clamping, a feat never before accomplished with the fly model. The profile of Ca2+ currents recorded in individual cells when Ca2+ channels were hypomorphic, absent, or under selective LTCC blockage by nifedipine, additionally confirmed the predominance of A1D current across all activation voltages. T-type current, activated at more negative voltages, was also detected. Lastly, A1D channels displayed Ca2+-dependent inactivation, a critical negative feedback mechanism of LTCCs, and the current through them was augmented by forskolin, an activator of the protein kinase A pathway. In sum, the Drosophila heart possesses a conserved compendium of Ca2+ channels, suggesting that the fly may serve as a robust and effective platform for studying cardiac channelopathies.


Subject(s)
Calcium Channels, L-Type/metabolism , Channelopathies/metabolism , Drosophila melanogaster/physiology , Myocardium/metabolism , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Action Potentials/physiology , Analysis of Variance , Animals , Calcium Channel Blockers/pharmacology , Calcium Channels/genetics , Calcium Channels/metabolism , Calcium Channels, T-Type/metabolism , Calcium Signaling , Cardiotonic Agents/pharmacology , Colforsin/pharmacology , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Feedback, Physiological/physiology , Female , Gene Expression , Gene Knockdown Techniques , In Situ Hybridization, Fluorescence , Male , Myocardial Contraction/physiology , Nifedipine/pharmacology , Patch-Clamp Techniques
11.
Circ Res ; 114(2): e6-17, 2014 Jan 17.
Article in English | MEDLINE | ID: mdl-24221941

ABSTRACT

RATIONALE: Regulation of striated muscle contraction is achieved by Ca2+ -dependent steric modulation of myosin cross-bridge cycling on actin by the thin filament troponin-tropomyosin complex. Alterations in the complex can induce contractile dysregulation and disease. For example, mutations between or near residues 112 to 136 of cardiac troponin-T, the crucial TnT1 (N-terminal domain of troponin-T)-tropomyosin-binding region, cause cardiomyopathy. The Drosophila upheld(101) Glu/Lys amino acid substitution lies C-terminally adjacent to this phylogenetically conserved sequence. OBJECTIVE: Using a highly integrative approach, we sought to determine the molecular trigger of upheld(101) myofibrillar degeneration, to evaluate contractile performance in the mutant cardiomyocytes, and to examine the effects of the mutation on the entire Drosophila heart to elucidate regulatory roles for conserved TnT1 regions and provide possible mechanistic insight into cardiac dysfunction. METHODS AND RESULTS: Live video imaging of Drosophila cardiac tubes revealed that the troponin-T mutation prolongs systole and restricts diastolic dimensions of the heart, because of increased numbers of actively cycling myosin cross-bridges. Elevated resting myocardial stiffness, consistent with upheld(101) diastolic dysfunction, was confirmed by an atomic force microscopy-based nanoindentation approach. Direct visualization of mutant thin filaments via electron microscopy and 3-dimensional reconstruction resolved destabilized tropomyosin positioning and aberrantly exposed myosin-binding sites under low Ca2+ conditions. CONCLUSIONS: As a result of troponin-tropomyosin dysinhibition, upheld(101) hearts exhibited cardiac dysfunction and remodeling comparable to that observed during human restrictive cardiomyopathy. Thus, reversal of charged residues about the conserved tropomyosin-binding region of TnT1 may perturb critical intermolecular associations required for proper steric regulation, which likely elicits myopathy in our Drosophila model.


Subject(s)
Cardiomyopathies/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Myofibrils/metabolism , Troponin T/metabolism , Ventricular Dysfunction/metabolism , Ventricular Function , Amino Acid Sequence , Animals , Calcium/metabolism , Cardiomyopathies/genetics , Cardiomyopathies/pathology , Cardiomyopathies/physiopathology , Diastole , Disease Models, Animal , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/ultrastructure , Excitation Contraction Coupling , Female , Genotype , Heterocyclic Compounds, 4 or More Rings/pharmacology , Male , Microscopy, Electron , Microscopy, Video , Molecular Sequence Data , Mutation , Myofibrils/drug effects , Myofibrils/ultrastructure , Phenotype , Systole , Tropomyosin/metabolism , Troponin T/genetics , Ventricular Dysfunction/genetics , Ventricular Dysfunction/pathology , Ventricular Dysfunction/physiopathology , Ventricular Remodeling
12.
PLoS Genet ; 9(6): e1003544, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23818860

ABSTRACT

Dominant mutations in the alpha-B crystallin (CryAB) gene are responsible for a number of inherited human disorders, including cardiomyopathy, skeletal muscle myopathy, and cataracts. The cellular mechanisms of disease pathology for these disorders are not well understood. Among recent advances is that the disease state can be linked to a disturbance in the oxidation/reduction environment of the cell. In a mouse model, cardiomyopathy caused by the dominant CryAB(R120G) missense mutation was suppressed by mutation of the gene that encodes glucose 6-phosphate dehydrogenase (G6PD), one of the cell's primary sources of reducing equivalents in the form of NADPH. Here, we report the development of a Drosophila model for cellular dysfunction caused by this CryAB mutation. With this model, we confirmed the link between G6PD and mutant CryAB pathology by finding that reduction of G6PD expression suppressed the phenotype while overexpression enhanced it. Moreover, we find that expression of mutant CryAB in the Drosophila heart impaired cardiac function and increased heart tube dimensions, similar to the effects produced in mice and humans, and that reduction of G6PD ameliorated these effects. Finally, to determine whether CryAB pathology responds generally to NADPH levels we tested mutants or RNAi-mediated knockdowns of phosphogluconate dehydrogenase (PGD), isocitrate dehydrogenase (IDH), and malic enzyme (MEN), the other major enzymatic sources of NADPH, and we found that all are capable of suppressing CryAB(R120G) pathology, confirming the link between NADP/H metabolism and CryAB.


Subject(s)
Drosophila melanogaster/genetics , Metabolic Networks and Pathways/genetics , NADP/metabolism , alpha-Crystallin B Chain/genetics , Animals , Cardiomyopathies/etiology , Cardiomyopathies/genetics , Cardiomyopathies/metabolism , Cardiomyopathies/pathology , Cataract/genetics , Cataract/pathology , Drosophila melanogaster/enzymology , Drosophila melanogaster/metabolism , Glucosephosphate Dehydrogenase/genetics , Glucosephosphate Dehydrogenase/metabolism , Humans , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , Malate Dehydrogenase/genetics , Malate Dehydrogenase/metabolism , Mice , Muscular Diseases/genetics , Muscular Diseases/pathology , Mutation, Missense , NADP/genetics , Phosphogluconate Dehydrogenase/genetics , Phosphogluconate Dehydrogenase/metabolism , alpha-Crystallin B Chain/metabolism
13.
J Cell Mol Med ; 16(8): 1656-62, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22225769

ABSTRACT

Aging is marked by a decline in LV diastolic function, which encompasses abnormalities in diastolic relaxation, chamber filling and/or passive myocardial stiffness. Genetic tractability and short life span make Drosophila melanogaster an ideal organism to study the effects of aging on heart function, including senescent-associated changes in gene expression and in passive myocardial stiffness. However, use of the Drosophila heart tube to probe deterioration of diastolic performance is subject to at least two challenges: the extent of genetic homology to mammals and the ability to resolve mechanical properties of the bilayered fly heart, which consists of a ventral muscle layer that covers the contractile cardiomyocytes. Here, we argue for widespread use of Drosophila as a novel myocardial aging model by (1) describing diastolic dysfunction in flies, (2) discussing how critical pathways involved in dysfunction are conserved across species and (3) demonstrating the advantage of an atomic force microscopy-based analysis method to measure stiffness of the multilayered Drosophila heart tube versus isolated myocytes from other model systems. By using powerful Drosophila genetic tools, we aim to efficiently alter changes observed in factors that contribute to diastolic dysfunction to understand how one might improve diastolic performance at advanced ages in humans.


Subject(s)
Diastole/physiology , Drosophila melanogaster/physiology , Myocardium/pathology , Aging/pathology , Animals , Disease Models, Animal
14.
Biology (Basel) ; 11(8)2022 Jul 29.
Article in English | MEDLINE | ID: mdl-36009764

ABSTRACT

The R249Q mutation in human ß-cardiac myosin results in hypertrophic cardiomyopathy. We previously showed that inserting this mutation into Drosophila melanogaster indirect flight muscle myosin yields mechanical and locomotory defects. Here, we use transgenic Drosophila mutants to demonstrate that residue R249 serves as a critical communication link within myosin that controls both ATPase activity and myofibril integrity. R249 is located on a ß-strand of the central transducer of myosin, and our molecular modeling shows that it interacts via a salt bridge with D262 on the adjacent ß-strand. We find that disrupting this interaction via R249Q, R249D or D262R mutations reduces basal and actin-activated ATPase activity, actin in vitro motility and flight muscle function. Further, the R249D mutation dramatically affects myofibril assembly, yielding abnormalities in sarcomere lengths, increased Z-line thickness and split myofibrils. These defects are exacerbated during aging. Re-establishing the ß-strand interaction via a R249D/D262R double mutation restores both basal ATPase activity and myofibril assembly, indicating that these properties are dependent upon transducer inter-strand communication. Thus, the transducer plays an important role in myosin function and myofibril architecture.

15.
Biophys J ; 101(11): 2629-37, 2011 Dec 07.
Article in English | MEDLINE | ID: mdl-22261050

ABSTRACT

Drosophila melanogaster is a genetically malleable organism with a short life span, making it a tractable system in which to study mechanical effects of genetic perturbation and aging on tissues, e.g., impaired heart function. However, Drosophila heart-tube studies can be hampered by its bilayered structure: a ventral muscle layer covers the contractile cardiomyocytes. Here we propose an atomic force microscopy-based analysis that uses a linearized-Hertz method to measure individual mechanical components of soft composite materials. The technique was verified using bilayered polydimethylsiloxane. We further demonstrated its biological utility via its ability to resolve stiffness changes due to RNA interference to reduce myofibrillar content or due to aging in Drosophila myocardial layers. This protocol provides a platform to assess the mechanics of soft biological composite systems and, to our knowledge, for the first time, permits direct measurement of how genetic perturbations, aging, and disease can impact cardiac function in situ.


Subject(s)
Aging/physiology , Drosophila melanogaster/growth & development , Drosophila melanogaster/physiology , Heart/physiology , Myofibrils/physiology , Aging/drug effects , Animals , Biomechanical Phenomena/drug effects , Dimethylpolysiloxanes/pharmacology , Drosophila melanogaster/drug effects , Gene Knockdown Techniques , Heart/anatomy & histology , Heart/drug effects , Microscopy, Atomic Force , Myocardium/ultrastructure , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/ultrastructure , Myofibrils/drug effects , Myosin Heavy Chains/metabolism , Nanotechnology , Organ Specificity/drug effects
16.
J Gen Physiol ; 153(3)2021 03 01.
Article in English | MEDLINE | ID: mdl-33492345

ABSTRACT

Reversible Ca2+ binding to troponin is the primary on-off switch of the contractile apparatus of striated muscles, including the heart. Dominant missense mutations in human cardiac troponin genes are among the causes of hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy. Structural understanding of troponin action has recently advanced considerably via electron microscopy and molecular dynamics studies of the thin filament. As a result, it is now possible to examine cardiomyopathy-inducing troponin mutations in thin-filament structural context, and from that to seek new insight into pathogenesis and into the troponin regulatory mechanism. We compiled from consortium reports a representative set of troponin mutation sites whose pathogenicity was determined using standardized clinical genetics criteria. Another set of sites, apparently tolerant of amino acid substitutions, was compiled from the gnomAD v2 database. Pathogenic substitutions occurred predominantly in the areas of troponin that contact actin or tropomyosin, including, but not limited to, two regions of newly proposed structure and long-known implication in cardiomyopathy: the C-terminal third of troponin I and a part of the troponin T N terminus. The pathogenic mutations were located in troponin regions that prevent contraction under low Ca2+ concentration conditions. These regions contribute to Ca2+-regulated steric hindrance of myosin by the combined effects of troponin and tropomyosin. Loss-of-function mutations within these parts of troponin result in loss of inhibition, consistent with the hypercontractile phenotype characteristic of HCM. Notably, pathogenic mutations are absent in our dataset from the Ca2+-binding, activation-producing troponin C (TnC) N-lobe, which controls contraction by a multi-faceted mechanism. Apparently benign mutations are also diminished in the TnC N-lobe, suggesting mutations are poorly tolerated in that critical domain.


Subject(s)
Cardiomyopathies , Tropomyosin , Actin Cytoskeleton/genetics , Actins/genetics , Calcium , Cardiomyopathies/genetics , Humans , Mutation , Tropomyosin/genetics , Troponin I/genetics , Troponin T/genetics
17.
Sci Rep ; 11(1): 1884, 2021 01 21.
Article in English | MEDLINE | ID: mdl-33479423

ABSTRACT

Mosquitoes are vectors for some of the most devastating diseases on the planet. Given the centrality of acoustic sensing in the precopulatory behavior of these vectors, the use of an exogenous acoustic stimulus offers the potential of interfering with the courtship behavior of these insects. Previous research on the acoustotactic response of mosquitoes has been conducted on tethered preparations using low-intensity sound stimuli. To quantify differences in acoustotactic responses between mosquitos of distinct sex and species, we examined the effects of incidental sound stimuli on the flight behavior of free-flying male vs. female Aedes aegypti and Anopheles gambiae mosquitoes. The key variables were sound frequency (100-1000 Hz) and intensity (67-103 dB, measured at 12.5 cm from the source), and the acoustotactic response was measured in terms of the relative increase in flight speed in response to the stimulus. The data show, for the first time, significant sex- and species-specific differences in acoustotactic responses. A. aegypti exhibited a greater response to sound stimulus compared to An. gambiae, and the response also extended over a larger range of frequencies. Furthermore, the males of both species displayed a greater acoustotactic response than females, with An. gambiae females exhibiting minimal response to sound.


Subject(s)
Aedes/physiology , Anopheles/physiology , Flight, Animal/physiology , Mosquito Vectors/physiology , Sexual Behavior, Animal/physiology , Sound , Acoustic Stimulation , Animals , Female , Male , Species Specificity
18.
Mol Biol Cell ; 32(18): 1690-1706, 2021 08 19.
Article in English | MEDLINE | ID: mdl-34081531

ABSTRACT

Dilated cardiomyopathy (DCM), a life-threatening disease characterized by pathological heart enlargement, can be caused by myosin mutations that reduce contractile function. To better define the mechanistic basis of this disease, we employed the powerful genetic and integrative approaches available in Drosophila melanogaster. To this end, we generated and analyzed the first fly model of human myosin-induced DCM. The model reproduces the S532P human ß-cardiac myosin heavy chain DCM mutation, which is located within an actin-binding region of the motor domain. In concordance with the mutation's location at the actomyosin interface, steady-state ATPase and muscle mechanics experiments revealed that the S532P mutation reduces the rates of actin-dependent ATPase activity and actin binding and increases the rate of actin detachment. The depressed function of this myosin form reduces the number of cross-bridges during active wing beating, the power output of indirect flight muscles, and flight ability. Further, S532P mutant hearts exhibit cardiac dilation that is mutant gene dose-dependent. Our study shows that Drosophila can faithfully model various aspects of human DCM phenotypes and suggests that impaired actomyosin interactions in S532P myosin induce contractile deficits that trigger the disease.


Subject(s)
Actomyosin/metabolism , Cardiomyopathy, Dilated/genetics , Drosophila Proteins/genetics , Mutation , Myosin Heavy Chains/genetics , Actins/metabolism , Animals , Animals, Genetically Modified , Cardiac Myosins/genetics , Cardiomyopathy, Dilated/physiopathology , Disease Models, Animal , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Flight, Animal , Humans , Locomotion , Muscle, Skeletal/physiopathology , Myofibrils/pathology , Myosin Heavy Chains/metabolism
19.
Nat Commun ; 12(1): 3175, 2021 05 26.
Article in English | MEDLINE | ID: mdl-34039988

ABSTRACT

Antagonistic pleiotropy is a foundational theory that predicts aging-related diseases are the result of evolved genetic traits conferring advantages early in life. Here we examine CaMKII, a pluripotent signaling molecule that contributes to common aging-related diseases, and find that its activation by reactive oxygen species (ROS) was acquired more than half-a-billion years ago along the vertebrate stem lineage. Functional experiments using genetically engineered mice and flies reveal ancestral vertebrates were poised to benefit from the union of ROS and CaMKII, which conferred physiological advantage by allowing ROS to increase intracellular Ca2+ and activate transcriptional programs important for exercise and immunity. Enhanced sensitivity to the adverse effects of ROS in diseases and aging is thus a trade-off for positive traits that facilitated the early and continued evolutionary success of vertebrates.


Subject(s)
Aging/physiology , Biological Evolution , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Reactive Oxygen Species/metabolism , Vertebrates/physiology , Animals , Animals, Genetically Modified , CRISPR-Cas Systems/genetics , Calcium Signaling/physiology , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster , Female , Gene Editing , Gene Knock-In Techniques , Male , Mice , Models, Animal , Oxidation-Reduction , Phylogeny , Physical Fitness/physiology , Point Mutation
20.
Biophys J ; 99(3): 862-8, 2010 Aug 04.
Article in English | MEDLINE | ID: mdl-20682264

ABSTRACT

The structural mechanics of tropomyosin are essential determinants of its affinity and positioning on F-actin. Thus, tissue-specific differences among tropomyosin isoforms may influence both access of actin-binding proteins along the actin filaments and the cooperativity of actin-myosin interactions. Here, 40 nm long smooth and striated muscle tropomyosin molecules were rotary-shadowed and compared by means of electron microscopy. Electron microscopy shows that striated muscle tropomyosin primarily consists of single molecules or paired molecules linked end-to-end. In contrast, smooth muscle tropomyosin is more a mixture of varying-length chains of end-to-end polymers. Both isoforms are characterized by gradually bending molecular contours that lack obvious signs of kinking. The flexural stiffness of the tropomyosins was quantified and evaluated. The persistence lengths along the shaft of rotary-shadowed smooth and striated muscle tropomyosin molecules are equivalent to each other (approximately 100 nm) and to values obtained from molecular-dynamics simulations of the tropomyosins; however, the persistence length surrounding the end-to-end linkage is almost twofold higher for smooth compared to cardiac muscle tropomyosin. The tendency of smooth muscle tropomyosin to form semi-rigid polymers with continuous and undampened rigidity may compensate for the lack of troponin-based structural support in smooth muscles and ensure positional fidelity on smooth muscle thin filaments.


Subject(s)
Microscopy, Electron , Muscle, Smooth/metabolism , Muscle, Smooth/ultrastructure , Tropomyosin/ultrastructure , Animals , Biomechanical Phenomena , Cattle , Chickens , Myocardium/metabolism , Myocardium/ultrastructure , Protein Multimerization , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL