Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Proc Natl Acad Sci U S A ; 117(25): 14503-14511, 2020 06 23.
Article in English | MEDLINE | ID: mdl-32513712

ABSTRACT

The nanoscale co-organization of neurotransmitter receptors facing presynaptic release sites is a fundamental determinant of their coactivation and of synaptic physiology. At excitatory synapses, how endogenous AMPARs, NMDARs, and mGluRs are co-organized inside the synapse and their respective activation during glutamate release are still unclear. Combining single-molecule superresolution microscopy, electrophysiology, and modeling, we determined the average quantity of each glutamate receptor type, their nanoscale organization, and their respective activation. We observed that NMDARs form a unique cluster mainly at the center of the PSD, while AMPARs segregate in clusters surrounding the NMDARs. mGluR5 presents a different organization and is homogenously dispersed at the synaptic surface. From these results, we build a model predicting the synaptic transmission properties of a unitary synapse, allowing better understanding of synaptic physiology.


Subject(s)
Models, Neurological , Neurons/metabolism , Receptor, Metabotropic Glutamate 5/metabolism , Receptors, AMPA/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Synaptic Transmission/physiology , Animals , Cells, Cultured , Embryo, Mammalian , Female , Glutamic Acid/metabolism , Hippocampus/cytology , Hippocampus/diagnostic imaging , Hippocampus/physiology , Intravital Microscopy , Neurons/ultrastructure , Patch-Clamp Techniques , Primary Cell Culture , Rats , Rats, Sprague-Dawley , Single Molecule Imaging
2.
Nat Commun ; 13(1): 680, 2022 02 03.
Article in English | MEDLINE | ID: mdl-35115539

ABSTRACT

The pruning of dendritic spines during development requires autophagy. This process is facilitated by long-term depression (LTD)-like mechanisms, which has led to speculation that LTD, a fundamental form of synaptic plasticity, also requires autophagy. Here, we show that the induction of LTD via activation of NMDA receptors or metabotropic glutamate receptors initiates autophagy in the postsynaptic dendrites in mice. Dendritic autophagic vesicles (AVs) act in parallel with the endocytic machinery to remove AMPA receptor subunits from the membrane for degradation. During NMDAR-LTD, key postsynaptic proteins are sequestered for autophagic degradation, as revealed by quantitative proteomic profiling of purified AVs. Pharmacological inhibition of AV biogenesis, or conditional ablation of atg5 in pyramidal neurons abolishes LTD and triggers sustained potentiation in the hippocampus. These deficits in synaptic plasticity are recapitulated by knockdown of atg5 specifically in postsynaptic pyramidal neurons in the CA1 area. Conducive to the role of synaptic plasticity in behavioral flexibility, mice with autophagy deficiency in excitatory neurons exhibit altered response in reversal learning. Therefore, local assembly of the autophagic machinery in dendrites ensures the degradation of postsynaptic components and facilitates LTD expression.


Subject(s)
Autophagy/physiology , Dendritic Spines/physiology , Long-Term Synaptic Depression/physiology , Proteome/metabolism , Proteomics/methods , Synaptic Potentials/physiology , Animals , Autophagy/genetics , Autophagy-Related Protein 5/genetics , Autophagy-Related Protein 5/metabolism , Cells, Cultured , Hippocampus/cytology , Hippocampus/metabolism , Hippocampus/physiology , Male , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Neuronal Plasticity/physiology , Neurons/metabolism , Neurons/physiology , Pyramidal Cells/metabolism , Pyramidal Cells/physiology , Receptors, Metabotropic Glutamate/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism
3.
Nat Commun ; 12(1): 2849, 2021 05 14.
Article in English | MEDLINE | ID: mdl-33990590

ABSTRACT

Long-term depression (LTD) of synaptic strength can take multiple forms and contribute to circuit remodeling, memory encoding or erasure. The generic term LTD encompasses various induction pathways, including activation of NMDA, mGlu or P2X receptors. However, the associated specific molecular mechanisms and effects on synaptic physiology are still unclear. We here compare how NMDAR- or P2XR-dependent LTD affect synaptic nanoscale organization and function in rodents. While both LTDs are associated with a loss and reorganization of synaptic AMPARs, only NMDAR-dependent LTD induction triggers a profound reorganization of PSD-95. This modification, which requires the autophagy machinery to remove the T19-phosphorylated form of PSD-95 from synapses, leads to an increase in AMPAR surface mobility. We demonstrate that these post-synaptic changes that occur specifically during NMDAR-dependent LTD result in an increased short-term plasticity improving neuronal responsiveness of depressed synapses. Our results establish that P2XR- and NMDAR-mediated LTD are associated to functionally distinct forms of LTD.


Subject(s)
Disks Large Homolog 4 Protein/physiology , Long-Term Synaptic Depression/physiology , Receptors, N-Methyl-D-Aspartate/physiology , Adenosine Triphosphate/administration & dosage , Animals , Autophagy/physiology , Cells, Cultured , Disks Large Homolog 4 Protein/deficiency , Female , Hippocampus/cytology , Hippocampus/physiology , In Vitro Techniques , Male , Mice , Mice, Inbred C57BL , Miniature Postsynaptic Potentials/physiology , Models, Neurological , N-Methylaspartate/administration & dosage , Neuronal Plasticity/physiology , Neurons/cytology , Neurons/drug effects , Neurons/physiology , Rats , Rats, Sprague-Dawley , Receptors, AMPA/physiology , Receptors, Purinergic P2X/physiology
4.
Cell Rep ; 32(9): 108097, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32877679

ABSTRACT

Cortical plasticity improves behaviors and helps recover lost functions after injury. However, the underlying synaptic mechanisms remain unclear. In mice, we show that trimming all but one whisker enhances sensory responses from the spared whisker in the barrel cortex and occludes whisker-mediated synaptic potentiation (w-Pot) in vivo. In addition, whisker-dependent behaviors that are initially impaired by single-whisker experience (SWE) rapidly recover when associated cortical regions remap. Cross-linking the surface GluA2 subunit of AMPA receptors (AMPARs) suppresses the expression of w-Pot, presumably by blocking AMPAR surface diffusion, in mice with all whiskers intact, indicating that synaptic potentiation in vivo requires AMPAR trafficking. We use this approach to demonstrate that w-Pot is required for SWE-mediated strengthening of synaptic inputs and initiates the recovery of previously learned skills during the early phases of SWE. Taken together, our data reveal that w-Pot mediates cortical remapping and behavioral improvement upon partial sensory deafferentation.


Subject(s)
Neuronal Plasticity/genetics , Receptors, AMPA/metabolism , Animals , Humans , Mice , Sensory Deprivation/physiology
SELECTION OF CITATIONS
SEARCH DETAIL