Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
1.
Nature ; 586(7828): 248-256, 2020 10.
Article in English | MEDLINE | ID: mdl-33028999

ABSTRACT

Nitrous oxide (N2O), like carbon dioxide, is a long-lived greenhouse gas that accumulates in the atmosphere. Over the past 150 years, increasing atmospheric N2O concentrations have contributed to stratospheric ozone depletion1 and climate change2, with the current rate of increase estimated at 2 per cent per decade. Existing national inventories do not provide a full picture of N2O emissions, owing to their omission of natural sources and limitations in methodology for attributing anthropogenic sources. Here we present a global N2O inventory that incorporates both natural and anthropogenic sources and accounts for the interaction between nitrogen additions and the biochemical processes that control N2O emissions. We use bottom-up (inventory, statistical extrapolation of flux measurements, process-based land and ocean modelling) and top-down (atmospheric inversion) approaches to provide a comprehensive quantification of global N2O sources and sinks resulting from 21 natural and human sectors between 1980 and 2016. Global N2O emissions were 17.0 (minimum-maximum estimates: 12.2-23.5) teragrams of nitrogen per year (bottom-up) and 16.9 (15.9-17.7) teragrams of nitrogen per year (top-down) between 2007 and 2016. Global human-induced emissions, which are dominated by nitrogen additions to croplands, increased by 30% over the past four decades to 7.3 (4.2-11.4) teragrams of nitrogen per year. This increase was mainly responsible for the growth in the atmospheric burden. Our findings point to growing N2O emissions in emerging economies-particularly Brazil, China and India. Analysis of process-based model estimates reveals an emerging N2O-climate feedback resulting from interactions between nitrogen additions and climate change. The recent growth in N2O emissions exceeds some of the highest projected emission scenarios3,4, underscoring the urgency to mitigate N2O emissions.


Subject(s)
Nitrous Oxide/analysis , Nitrous Oxide/metabolism , Agriculture , Atmosphere/chemistry , Crops, Agricultural/metabolism , Human Activities , Internationality , Nitrogen/analysis , Nitrogen/metabolism
2.
Glob Chang Biol ; 30(5): e17303, 2024 May.
Article in English | MEDLINE | ID: mdl-38741339

ABSTRACT

Nitrous oxide (N2O) emissions from livestock manure contribute significantly to the growth of atmospheric N2O, a powerful greenhouse gas and dominant ozone-depleting substance. Here, we estimate global N2O emissions from livestock manure during 1890-2020 using the tier 2 approach of the 2019 Refinement to the 2006 IPCC Guidelines. Global N2O emissions from livestock manure increased by ~350% from 451 [368-556] Gg N year-1 in 1890 to 2042 [1677-2514] Gg N year-1 in 2020. These emissions contributed ~30% to the global anthropogenic N2O emissions in the decade 2010-2019. Cattle contributed the most (60%) to the increase, followed by poultry (19%), pigs (15%), and sheep and goats (6%). Regionally, South Asia, Africa, and Latin America dominated the growth in global emissions since the 1990s. Nationally, the largest emissions were found in India (329 Gg N year-1), followed by China (267 Gg N year-1), the United States (163 Gg N year-1), Brazil (129 Gg N year-1) and Pakistan (102 Gg N year-1) in the 2010s. We found a substantial impact of livestock productivity, specifically animal body weight and milk yield, on the emission trends. Furthermore, a large spread existed among different methodologies in estimates of global N2O emission from livestock manure, with our results 20%-25% lower than those based on the 2006 IPCC Guidelines. This study highlights the need for robust time-variant model parameterization and continuous improvement of emissions factors to enhance the precision of emission inventories. Additionally, urgent mitigation is required, as all available inventories indicate a rapid increase in global N2O emissions from livestock manure in recent decades.


Subject(s)
Livestock , Manure , Nitrous Oxide , Nitrous Oxide/analysis , Manure/analysis , Animals , Air Pollutants/analysis
4.
Glob Chang Biol ; 28(17): 5142-5158, 2022 09.
Article in English | MEDLINE | ID: mdl-35642457

ABSTRACT

Livestock contributes approximately one-third of global anthropogenic methane (CH4 ) emissions. Quantifying the spatial and temporal variations of these emissions is crucial for climate change mitigation. Although country-level information is reported regularly through national inventories and global databases, spatially explicit quantification of century-long dynamics of CH4 emissions from livestock has been poorly investigated. Using the Tier 2 method adopted from the 2019 Refinement to 2006 IPCC guidelines, we estimated CH4 emissions from global livestock at a spatial resolution of 0.083° (~9 km at the equator) during the period 1890-2019. We find that global CH4 emissions from livestock increased from 31.8 [26.5-37.1] (mean [minimum-maximum of 95% confidence interval) Tg CH4 yr-1 in 1890 to 131.7 [109.6-153.7] Tg CH4 yr-1 in 2019, a fourfold increase in the past 130 years. The growth in global CH4 emissions mostly occurred after 1950 and was mainly attributed to the cattle sector. Our estimate shows faster growth in livestock CH4 emissions as compared to the previous Tier 1 estimates and is ~20% higher than the estimate from FAOSTAT for the year 2019. Regionally, South Asia, Brazil, North Africa, China, the United States, Western Europe, and Equatorial Africa shared the majority of the global emissions in the 2010s. South Asia, tropical Africa, and Brazil have dominated the growth in global CH4 emissions from livestock in the recent three decades. Changes in livestock CH4 emissions were primarily associated with changes in population and national income and were also affected by the policy, diet shifts, livestock productivity improvement, and international trade. The new geospatial information on the magnitude and trends of livestock CH4 emissions identifies emission hotspots and spatial-temporal patterns, which will help to guide meaningful CH4 mitigation practices in the livestock sector at both local and global scales.


Subject(s)
Livestock , Methane , Animals , Cattle , Climate Change , Commerce , Internationality
5.
Glob Chang Biol ; 28(1): 182-200, 2022 01.
Article in English | MEDLINE | ID: mdl-34553464

ABSTRACT

The ongoing development of the Global Carbon Project (GCP) global methane (CH4 ) budget shows a continuation of increasing CH4 emissions and CH4 accumulation in the atmosphere during 2000-2017. Here, we decompose the global budget into 19 regions (18 land and 1 oceanic) and five key source sectors to spatially attribute the observed global trends. A comparison of top-down (TD) (atmospheric and transport model-based) and bottom-up (BU) (inventory- and process model-based) CH4 emission estimates demonstrates robust temporal trends with CH4 emissions increasing in 16 of the 19 regions. Five regions-China, Southeast Asia, USA, South Asia, and Brazil-account for >40% of the global total emissions (their anthropogenic and natural sources together totaling >270 Tg CH4  yr-1 in 2008-2017). Two of these regions, China and South Asia, emit predominantly anthropogenic emissions (>75%) and together emit more than 25% of global anthropogenic emissions. China and the Middle East show the largest increases in total emission rates over the 2000 to 2017 period with regional emissions increasing by >20%. In contrast, Europe and Korea and Japan show a steady decline in CH4 emission rates, with total emissions decreasing by ~10% between 2000 and 2017. Coal mining, waste (predominantly solid waste disposal) and livestock (especially enteric fermentation) are dominant drivers of observed emissions increases while declines appear driven by a combination of waste and fossil emission reductions. As such, together these sectors present the greatest risks of further increasing the atmospheric CH4 burden and the greatest opportunities for greenhouse gas abatement.


Subject(s)
Atmosphere , Methane , Animals , China , Livestock , Methane/analysis , Oceans and Seas
6.
Environ Sci Technol ; 56(17): 12024-12035, 2022 09 06.
Article in English | MEDLINE | ID: mdl-35943239

ABSTRACT

Wetlands are large sinks of carbon dioxide (CO2) and sources of methane (CH4). Both fluxes can be altered by wetland management (e.g., restoration), leading to changes in the climate system. Here, we use multiple models to assess CH4 emissions and CO2 sequestration from the wetlands in China and the impacts on climate under three climate scenarios and four wetland management scenarios with various levels of wetland restoration in the 21st century. We find that wetland restoration leads to increased CH4 emissions with a national total of 0.32-11.31 Tg yr-1. These emissions induce an additional radiative forcing of 0.0005-0.0075 W m-2 yr-1 and global annual mean air temperature rise of 0.0003-0.0053 °C yr-1, across all future climate and management scenarios. However, wetland restoration also resulted in net CO2 sequestration, leading to a combined net greenhouse gas sink in all climate management scenarios, except in the highest restoration level combined with the hottest climate scenario. The highest climate cooling was achieved under medium restoration, with the climate scenario consistent with the Paris agreement target of below 2 °C, with a cumulative global warming potential of -3.2 Pg CO2-eq (2020-2100). Wetland restoration in the Qinghai-Tibet Plateau offers the greatest cooling effect.


Subject(s)
Methane , Wetlands , Carbon Dioxide/analysis , China , Feedback , Methane/analysis
7.
Nature ; 531(7593): 225-8, 2016 Mar 10.
Article in English | MEDLINE | ID: mdl-26961656

ABSTRACT

The terrestrial biosphere can release or absorb the greenhouse gases, carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O), and therefore has an important role in regulating atmospheric composition and climate. Anthropogenic activities such as land-use change, agriculture and waste management have altered terrestrial biogenic greenhouse gas fluxes, and the resulting increases in methane and nitrous oxide emissions in particular can contribute to climate change. The terrestrial biogenic fluxes of individual greenhouse gases have been studied extensively, but the net biogenic greenhouse gas balance resulting from anthropogenic activities and its effect on the climate system remains uncertain. Here we use bottom-up (inventory, statistical extrapolation of local flux measurements, and process-based modelling) and top-down (atmospheric inversions) approaches to quantify the global net biogenic greenhouse gas balance between 1981 and 2010 resulting from anthropogenic activities and its effect on the climate system. We find that the cumulative warming capacity of concurrent biogenic methane and nitrous oxide emissions is a factor of about two larger than the cooling effect resulting from the global land carbon dioxide uptake from 2001 to 2010. This results in a net positive cumulative impact of the three greenhouse gases on the planetary energy budget, with a best estimate (in petagrams of CO2 equivalent per year) of 3.9 ± 3.8 (top down) and 5.4 ± 4.8 (bottom up) based on the GWP100 metric (global warming potential on a 100-year time horizon). Our findings suggest that a reduction in agricultural methane and nitrous oxide emissions, particularly in Southern Asia, may help mitigate climate change.


Subject(s)
Atmosphere/chemistry , Carbon Dioxide/metabolism , Ecosystem , Global Warming/statistics & numerical data , Greenhouse Effect/statistics & numerical data , Methane/metabolism , Nitrous Oxide/metabolism , Agriculture/statistics & numerical data , Asia , Carbon Dioxide/analysis , Global Warming/prevention & control , Greenhouse Effect/prevention & control , Human Activities/statistics & numerical data , Methane/analysis , Nitrous Oxide/analysis
8.
New Phytol ; 229(5): 2413-2445, 2021 03.
Article in English | MEDLINE | ID: mdl-32789857

ABSTRACT

Atmospheric carbon dioxide concentration ([CO2 ]) is increasing, which increases leaf-scale photosynthesis and intrinsic water-use efficiency. These direct responses have the potential to increase plant growth, vegetation biomass, and soil organic matter; transferring carbon from the atmosphere into terrestrial ecosystems (a carbon sink). A substantial global terrestrial carbon sink would slow the rate of [CO2 ] increase and thus climate change. However, ecosystem CO2 responses are complex or confounded by concurrent changes in multiple agents of global change and evidence for a [CO2 ]-driven terrestrial carbon sink can appear contradictory. Here we synthesize theory and broad, multidisciplinary evidence for the effects of increasing [CO2 ] (iCO2 ) on the global terrestrial carbon sink. Evidence suggests a substantial increase in global photosynthesis since pre-industrial times. Established theory, supported by experiments, indicates that iCO2 is likely responsible for about half of the increase. Global carbon budgeting, atmospheric data, and forest inventories indicate a historical carbon sink, and these apparent iCO2 responses are high in comparison to experiments and predictions from theory. Plant mortality and soil carbon iCO2 responses are highly uncertain. In conclusion, a range of evidence supports a positive terrestrial carbon sink in response to iCO2 , albeit with uncertain magnitude and strong suggestion of a role for additional agents of global change.


Subject(s)
Carbon Sequestration , Ecosystem , Atmosphere , Carbon Cycle , Carbon Dioxide , Climate Change
9.
Glob Chang Biol ; 27(9): 1692-1703, 2021 05.
Article in English | MEDLINE | ID: mdl-33629799

ABSTRACT

Globally, collapse of ecosystems-potentially irreversible change to ecosystem structure, composition and function-imperils biodiversity, human health and well-being. We examine the current state and recent trajectories of 19 ecosystems, spanning 58° of latitude across 7.7 M km2 , from Australia's coral reefs to terrestrial Antarctica. Pressures from global climate change and regional human impacts, occurring as chronic 'presses' and/or acute 'pulses', drive ecosystem collapse. Ecosystem responses to 5-17 pressures were categorised as four collapse profiles-abrupt, smooth, stepped and fluctuating. The manifestation of widespread ecosystem collapse is a stark warning of the necessity to take action. We present a three-step assessment and management framework (3As Pathway Awareness, Anticipation and Action) to aid strategic and effective mitigation to alleviate further degradation to help secure our future.


Subject(s)
Coral Reefs , Ecosystem , Antarctic Regions , Biodiversity , Climate Change , Humans
10.
Philos Trans A Math Phys Eng Sci ; 379(2210): 20200454, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34565221

ABSTRACT

Atmospheric methane removal (e.g. in situ methane oxidation to carbon dioxide) may be needed to offset continued methane release and limit the global warming contribution of this potent greenhouse gas. Because mitigating most anthropogenic emissions of methane is uncertain this century, and sudden methane releases from the Arctic or elsewhere cannot be excluded, technologies for methane removal or oxidation may be required. Carbon dioxide removal has an increasingly well-established research agenda and technological foundation. No similar framework exists for methane removal. We believe that a research agenda for negative methane emissions-'removal' or atmospheric methane oxidation-is needed. We outline some considerations for such an agenda here, including a proposed Methane Removal Model Intercomparison Project (MR-MIP). This article is part of a discussion meeting issue 'Rising methane: is warming feeding warming? (part 1)'.

11.
Glob Chang Biol ; 26(6): 3325-3335, 2020 06.
Article in English | MEDLINE | ID: mdl-31953897

ABSTRACT

Conservation agriculture has been shown to have multiple benefits for soils, crop yield and the environment, and consequently, no-till, the central practice of conservation agriculture, has rapidly expanded. However, studies show that the potential for carbon (C) sequestration in no-till farming sometimes is not realized, let alone the ability to maintain or improve crop yield. Here we present a global analysis of no-till-induced changes of soil C and crop yield based on 260 and 1,970 paired studies; respectively. We show that, relative to local conventional tillage, arid regions can benefit the most from conservation agriculture by achieving a win-win outcome of enhanced C sequestration and increased crop yield. However, more humid regions are more likely to increase SOC only, while some colder regions have yield losses and soil C loss as likely as soil C gains. In addition to site-specific characteristics and management, a careful assessment of the regional climate is needed to determine the potential benefits of adopting conservation agriculture.


Subject(s)
Carbon Sequestration , Soil , Agriculture , Carbon , Climate , Crops, Agricultural
12.
Glob Chang Biol ; 26(4): 2390-2402, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32017317

ABSTRACT

Several lines of evidence point to an increase in the activity of the terrestrial biosphere over recent decades, impacting the global net land carbon sink (NLS) and its control on the growth of atmospheric carbon dioxide (ca ). Global terrestrial gross primary production (GPP)-the rate of carbon fixation by photosynthesis-is estimated to have risen by (31 ± 5)% since 1900, but the relative contributions of different putative drivers to this increase are not well known. Here we identify the rising atmospheric CO2 concentration as the dominant driver. We reconcile leaf-level and global atmospheric constraints on trends in modeled biospheric activity to reveal a global CO2 fertilization effect on photosynthesis of 30% since 1900, or 47% for a doubling of ca above the pre-industrial level. Our historic value is nearly twice as high as current estimates (17 ± 4)% that do not use the full range of available constraints. Consequently, under a future low-emission scenario, we project a land carbon sink (174 PgC, 2006-2099) that is 57 PgC larger than if a lower CO2 fertilization effect comparable with current estimates is assumed. These findings suggest a larger beneficial role of the land carbon sink in modulating future excess anthropogenic CO2 consistent with the target of the Paris Agreement to stay below 2°C warming, and underscore the importance of preserving terrestrial carbon sinks.

13.
Glob Chang Biol ; 26(1): 300-318, 2020 01.
Article in English | MEDLINE | ID: mdl-31670435

ABSTRACT

With accumulation of carbon cycle observations and model developments over the past decades, exploring interannual variation (IAV) of terrestrial carbon cycle offers the opportunity to better understand climate-carbon cycle relationships. However, despite growing research interest, uncertainties remain on some fundamental issues, such as the contributions of different regions, constituent fluxes and climatic factors to carbon cycle IAV. Here we overviewed the literature on carbon cycle IAV about current understanding of these issues. Observations and models of the carbon cycle unanimously show the dominance of tropical land ecosystems to the signal of global carbon cycle IAV, where tropical semiarid ecosystems contribute as much as the combination of all other tropical ecosystems. Vegetation photosynthesis contributes more than ecosystem respiration to IAV of the global net land carbon flux, but large uncertainties remain on the contribution of fires and other disturbance fluxes. Climatic variations are the major drivers to the IAV of net land carbon flux. Although debate remains on whether the dominant driver is temperature or moisture variability, their interaction,that is, the dependence of carbon cycle sensitivity to temperature on moisture conditions, is emerging as key regulators of the carbon cycle IAV. On timescales from the interannual to the centennial, global carbon cycle variability will be increasingly contributed by northern land ecosystems and oceans. Therefore, both improving Earth system models (ESMs) with the progressive understanding on the fast processes manifested at interannual timescale and expanding carbon cycle observations at broader spatial and longer temporal scales are critical to better prediction on evolution of the carbon-climate system.


Subject(s)
Carbon Dioxide , Ecosystem , Carbon , Carbon Cycle , Photosynthesis , Temperature
14.
Glob Chang Biol ; 26(3): 1068-1084, 2020 03.
Article in English | MEDLINE | ID: mdl-31828914

ABSTRACT

Robust estimates of CO2 budget, CO2 exchanged between the atmosphere and terrestrial biosphere, are necessary to better understand the role of the terrestrial biosphere in mitigating anthropogenic CO2 emissions. Over the past decade, this field of research has advanced through understanding of the differences and similarities of two fundamentally different approaches: "top-down" atmospheric inversions and "bottom-up" biosphere models. Since the first studies were undertaken, these approaches have shown an increasing level of agreement, but disagreements in some regions still persist, in part because they do not estimate the same quantity of atmosphere-biosphere CO2 exchange. Here, we conducted a thorough comparison of CO2 budgets at multiple scales and from multiple methods to assess the current state of the science in estimating CO2 budgets. Our set of atmospheric inversions and biosphere models, which were adjusted for a consistent flux definition, showed a high level of agreement for global and hemispheric CO2 budgets in the 2000s. Regionally, improved agreement in CO2 budgets was notable for North America and Southeast Asia. However, large gaps between the two methods remained in East Asia and South America. In other regions, Europe, boreal Asia, Africa, South Asia, and Oceania, it was difficult to determine whether those regions act as a net sink or source because of the large spread in estimates from atmospheric inversions. These results highlight two research directions to improve the robustness of CO2 budgets: (a) to increase representation of processes in biosphere models that could contribute to fill the budget gaps, such as forest regrowth and forest degradation; and (b) to reduce sink-source compensation between regions (dipoles) in atmospheric inversion so that their estimates become more comparable. Advancements on both research areas will increase the level of agreement between the top-down and bottom-up approaches and yield more robust knowledge of regional CO2 budgets.


Subject(s)
Carbon Dioxide , Ecosystem , Africa , Asia , Europe , North America , South America
15.
Nature ; 509(7502): 600-3, 2014 May 29.
Article in English | MEDLINE | ID: mdl-24847888

ABSTRACT

The land and ocean act as a sink for fossil-fuel emissions, thereby slowing the rise of atmospheric carbon dioxide concentrations. Although the uptake of carbon by oceanic and terrestrial processes has kept pace with accelerating carbon dioxide emissions until now, atmospheric carbon dioxide concentrations exhibit a large variability on interannual timescales, considered to be driven primarily by terrestrial ecosystem processes dominated by tropical rainforests. We use a terrestrial biogeochemical model, atmospheric carbon dioxide inversion and global carbon budget accounting methods to investigate the evolution of the terrestrial carbon sink over the past 30 years, with a focus on the underlying mechanisms responsible for the exceptionally large land carbon sink reported in 2011 (ref. 2). Here we show that our three terrestrial carbon sink estimates are in good agreement and support the finding of a 2011 record land carbon sink. Surprisingly, we find that the global carbon sink anomaly was driven by growth of semi-arid vegetation in the Southern Hemisphere, with almost 60 per cent of carbon uptake attributed to Australian ecosystems, where prevalent La Niña conditions caused up to six consecutive seasons of increased precipitation. In addition, since 1981, a six per cent expansion of vegetation cover over Australia was associated with a fourfold increase in the sensitivity of continental net carbon uptake to precipitation. Our findings suggest that the higher turnover rates of carbon pools in semi-arid biomes are an increasingly important driver of global carbon cycle inter-annual variability and that tropical rainforests may become less relevant drivers in the future. More research is needed to identify to what extent the carbon stocks accumulated during wet years are vulnerable to rapid decomposition or loss through fire in subsequent years.


Subject(s)
Carbon Sequestration , Desert Climate , Ecosystem , Atmosphere/chemistry , Australia , Carbon Dioxide/analysis , El Nino-Southern Oscillation , Fires , Models, Theoretical , Rain , Seasons , Uncertainty
16.
Glob Chang Biol ; 25(11): 3741-3752, 2019 11.
Article in English | MEDLINE | ID: mdl-31310672

ABSTRACT

Carbon (C) emission and uptake due to land use and land cover change (LULCC) are the most uncertain term in the global carbon budget primarily due to limited LULCC data and inadequate model capability (e.g., underrepresented agricultural managements). We take the commonly used FAOSTAT-based global Land Use Harmonization data (LUH2) and a new high-resolution multisource harmonized national LULCC database (YLmap) to drive a land ecosystem model (DLEM) in the conterminous United States. We found that recent cropland abandonment and forest recovery may have been overestimated in the LUH2 data derived from national statistics, causing previously reported C emissions from land use have been underestimated due to the definition of cropland and aggregated LULCC signals at coarse resolution. This overestimation leads to a strong C sink (30.3 ± 2.5 Tg C/year) in model simulations driven by LUH2 in the United States during the 1980-2016 period, while we find a moderate C source (13.6 ± 3.5 Tg C/year) when using YLmap. This divergence implies that previous C budget analyses based on the global LUH2 dataset have underestimated C emission in the United States owing to the delineation of suitable cropland and aggregated land conversion signals at coarse resolution which YLmap overcomes. Thus, to obtain more accurate quantification of LULCC-induced C emission and better serve global C budget accounting, it is urgently needed to develop fine-scale country-specific LULCC data to characterize the details of land conversion.


Subject(s)
Carbon , Ecosystem , Agriculture , Forests , United States
17.
Glob Chang Biol ; 25(2): 640-659, 2019 02.
Article in English | MEDLINE | ID: mdl-30414347

ABSTRACT

Our understanding and quantification of global soil nitrous oxide (N2 O) emissions and the underlying processes remain largely uncertain. Here, we assessed the effects of multiple anthropogenic and natural factors, including nitrogen fertilizer (N) application, atmospheric N deposition, manure N application, land cover change, climate change, and rising atmospheric CO2 concentration, on global soil N2 O emissions for the period 1861-2016 using a standard simulation protocol with seven process-based terrestrial biosphere models. Results suggest global soil N2 O emissions have increased from 6.3 ± 1.1 Tg N2 O-N/year in the preindustrial period (the 1860s) to 10.0 ± 2.0 Tg N2 O-N/year in the recent decade (2007-2016). Cropland soil emissions increased from 0.3 Tg N2 O-N/year to 3.3 Tg N2 O-N/year over the same period, accounting for 82% of the total increase. Regionally, China, South Asia, and Southeast Asia underwent rapid increases in cropland N2 O emissions since the 1970s. However, US cropland N2 O emissions had been relatively flat in magnitude since the 1980s, and EU cropland N2 O emissions appear to have decreased by 14%. Soil N2 O emissions from predominantly natural ecosystems accounted for 67% of the global soil emissions in the recent decade but showed only a relatively small increase of 0.7 ± 0.5 Tg N2 O-N/year (11%) since the 1860s. In the recent decade, N fertilizer application, N deposition, manure N application, and climate change contributed 54%, 26%, 15%, and 24%, respectively, to the total increase. Rising atmospheric CO2 concentration reduced soil N2 O emissions by 10% through the enhanced plant N uptake, while land cover change played a minor role. Our estimation here does not account for indirect emissions from soils and the directed emissions from excreta of grazing livestock. To address uncertainties in estimating regional and global soil N2 O emissions, this study recommends several critical strategies for improving the process-based simulations.


Subject(s)
Climate Change , Greenhouse Gases/analysis , Industrial Development , Nitrous Oxide/analysis , Soil/chemistry , Air Pollutants/analysis , Models, Theoretical , Time Factors , Uncertainty
18.
Proc Natl Acad Sci U S A ; 113(46): 13104-13108, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27799533

ABSTRACT

Conventional calculations of the global carbon budget infer the land sink as a residual between emissions, atmospheric accumulation, and the ocean sink. Thus, the land sink accumulates the errors from the other flux terms and bears the largest uncertainty. Here, we present a Bayesian fusion approach that combines multiple observations in different carbon reservoirs to optimize the land (B) and ocean (O) carbon sinks, land use change emissions (L), and indirectly fossil fuel emissions (F) from 1980 to 2014. Compared with the conventional approach, Bayesian optimization decreases the uncertainties in B by 41% and in O by 46%. The L uncertainty decreases by 47%, whereas F uncertainty is marginally improved through the knowledge of natural fluxes. Both ocean and net land uptake (B + L) rates have positive trends of 29 ± 8 and 37 ± 17 Tg C⋅y-2 since 1980, respectively. Our Bayesian fusion of multiple observations reduces uncertainties, thereby allowing us to isolate important variability in global carbon cycle processes.

19.
Glob Chang Biol ; 23(2): 793-800, 2017 02.
Article in English | MEDLINE | ID: mdl-27392297

ABSTRACT

Recent evidence shows that warm semi-arid ecosystems are playing a disproportionate role in the interannual variability and greening trend of the global carbon cycle given their mean lower productivity when compared with other biomes (Ahlström et al. 2015 Science, 348, 895). Using multiple observations (land-atmosphere fluxes, biomass, streamflow and remotely sensed vegetation cover) and two state-of-the-art biospheric models, we show that climate variability and extremes lead to positive or negative responses in the biosphere, depending on vegetation type. We find Australia to be a global hot spot for variability, with semi-arid ecosystems in that country exhibiting increased carbon uptake due to both asymmetry in the interannual distribution of rainfall (extrinsic forcing), and asymmetry in the response of gross primary production (GPP) to rainfall change (intrinsic response). The latter is attributable to the pulse-response behaviour of the drought-adapted biota of these systems, a response that is estimated to be as much as half of that from the CO2 fertilization effect during 1990-2013. Mesic ecosystems, lacking drought-adapted species, did not show an intrinsic asymmetric response. Our findings suggest that a future more variable climate will induce large but contrasting ecosystem responses, differing among biomes globally, independent of changes in mean precipitation alone. The most significant changes are occurring in the extensive arid and semi-arid regions, and we suggest that the reported increased carbon uptake in response to asymmetric responses might be contributing to the observed greening trends there.


Subject(s)
Carbon Cycle , Desert Climate , Ecosystem , Australia , Droughts
20.
Glob Chang Biol ; 22(12): 3984-3995, 2016 12.
Article in English | MEDLINE | ID: mdl-27286408

ABSTRACT

Over the past century, major shifts in the geographic distribution of tree species have occurred in response to changes in land use and climate. We analyse species distribution and abundance from about 33 000 forest inventory plots in Spain sampled twice over a period of 10-12 years. We show a dominance of range contraction (extinction), and demographic decline over range expansion (colonization), with seven of 11 species exhibiting extinction downhill of their distribution. Contrary to expectations, these dynamics are not always consistent with climate warming over the study period, but result from legacies in forest structure due to past land use change and fire occurrence. We find that these changes have led to the expansion of broadleaf species (i.e. family Fagaceae) over areas formerly dominated by conifer species (i.e. family Pinaceae), due to the greater capacity of the former to respond to most disturbances and their higher competitive ability. This recent and rapid transition from conifers to broadleaves has important implications in forest dynamics and ecosystem services they provide. The finding raises the question as to whether the increasing dominance of relatively drought-sensitive broadleaf species will diminish resilience of Mediterranean forests to very likely drier conditions in the future.


Subject(s)
Biodiversity , Forests , Trees/classification , Climate , Spain
SELECTION OF CITATIONS
SEARCH DETAIL