Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
J Neurosci ; 44(20)2024 May 15.
Article in English | MEDLINE | ID: mdl-38569924

ABSTRACT

The superior colliculus (SC) is a prominent and conserved visual center in all vertebrates. In mice, the most superficial lamina of the SC is enriched with neurons that are selective for the moving direction of visual stimuli. Here, we study how these direction selective neurons respond to complex motion patterns known as plaids, using two-photon calcium imaging in awake male and female mice. The plaid pattern consists of two superimposed sinusoidal gratings moving in different directions, giving an apparent pattern direction that lies between the directions of the two component gratings. Most direction selective neurons in the mouse SC respond robustly to the plaids and show a high selectivity for the moving direction of the plaid pattern but not of its components. Pattern motion selectivity is seen in both excitatory and inhibitory SC neurons and is especially prevalent in response to plaids with large cross angles between the two component gratings. However, retinal inputs to the SC are ambiguous in their selectivity to pattern versus component motion. Modeling suggests that pattern motion selectivity in the SC can arise from a nonlinear transformation of converging retinal inputs. In contrast, the prevalence of pattern motion selective neurons is not seen in the primary visual cortex (V1). These results demonstrate an interesting difference between the SC and V1 in motion processing and reveal the SC as an important site for encoding pattern motion.


Subject(s)
Mice, Inbred C57BL , Motion Perception , Photic Stimulation , Retina , Superior Colliculi , Visual Pathways , Animals , Superior Colliculi/physiology , Motion Perception/physiology , Mice , Male , Female , Retina/physiology , Photic Stimulation/methods , Visual Pathways/physiology , Neurons/physiology , Pattern Recognition, Visual/physiology
2.
J Neurosci ; 43(38): 6495-6507, 2023 09 20.
Article in English | MEDLINE | ID: mdl-37604691

ABSTRACT

The brain combines two-dimensional images received from the two eyes to form a percept of three-dimensional surroundings. This process of binocular integration in the primary visual cortex (V1) serves as a useful model for studying how neural circuits generate emergent properties from multiple input signals. Here, we perform a thorough characterization of binocular integration using electrophysiological recordings in the V1 of awake adult male and female mice by systematically varying the orientation and phase disparity of monocular and binocular stimuli. We reveal widespread binocular integration in mouse V1 and demonstrate that the three commonly studied binocular properties-ocular dominance, interocular matching, and disparity selectivity-are independent of each other. For individual neurons, the responses to monocular stimulation can predict the average amplitude of binocular response but not its selectivity. Finally, the extensive and independent binocular integration of monocular inputs is seen across cortical layers in both regular-spiking and fast-spiking neurons, regardless of stimulus design. Our data indicate that the current model of simple feedforward convergence is inadequate to account for binocular integration in mouse V1, thus suggesting an indispensable role played by intracortical circuits in binocular computation.SIGNIFICANCE STATEMENT Binocular integration is an important step of visual processing that takes place in the visual cortex. Studying the process by which V1 neurons become selective for certain binocular disparities is informative about how neural circuits integrate multiple information streams at a more general level. Here, we systematically characterize binocular integration in mice. Our data demonstrate more widespread and complex binocular integration in mouse V1 than previously reported. Binocular responses cannot be explained by a simple convergence of monocular responses, contrary to the prevailing model of binocular integration. These findings thus indicate that intracortical circuits must be involved in the exquisite computation of binocular disparity, which would endow brain circuits with the plasticity needed for binocular development and processing.


Subject(s)
Brain , Primary Visual Cortex , Female , Male , Animals , Mice , Dominance, Ocular , Eye , Neurons
3.
Cell ; 139(1): 175-85, 2009 Oct 02.
Article in English | MEDLINE | ID: mdl-19804762

ABSTRACT

Sensory information is represented in the brain in the form of topographic maps, in which neighboring neurons respond to adjacent external stimuli. In the visual system, the superior colliculus receives topographic projections from the retina and primary visual cortex (V1) that are aligned. Alignment may be achieved through the use of a gradient of shared axon guidance molecules, or through a retinal-matching mechanism in which axons that monitor identical regions of visual space align. To distinguish between these possibilities, we take advantage of genetically engineered mice that we show have a duplicated functional retinocollicular map but only a single map in V1. Anatomical tracing revealed that the corticocollicular projection bifurcates to align with the duplicated retinocollicular map in a manner dependent on the normal pattern of spontaneous activity during development. These data suggest a general model in which convergent maps use coincident activity patterns to achieve alignment.


Subject(s)
Brain Mapping , Retina/physiology , Superior Colliculi/physiology , Visual Cortex/physiology , Visual Pathways , Animals , Gene Knock-In Techniques , Homeodomain Proteins/genetics , Homeodomain Proteins/physiology , LIM-Homeodomain Proteins , Mice , Neurogenesis , Ocular Physiological Phenomena , Receptor, EphA3/genetics , Receptor, EphA3/physiology , Transcription Factors
4.
J Neurosci ; 41(3): 461-473, 2021 01 20.
Article in English | MEDLINE | ID: mdl-33214319

ABSTRACT

Neurons in the visual system can be spatially organized according to their response properties such as receptive field location and feature selectivity. For example, the visual cortex of many mammalian species contains orientation and direction columns where neurons with similar preferences are clustered. Here, we examine whether such a columnar structure exists in the mouse superior colliculus (SC), a prominent visual center for motion processing. By performing large-scale physiological recording and two-photon calcium imaging in adult male and female mice, we show that direction-selective neurons in the mouse SC are not organized into stereotypical columns as a function of their preferred directions, although clusters of similarly tuned neurons are seen in a minority of mice. Nearby neurons can prefer similar or opposite directions in a largely position-independent manner. This finding holds true regardless of animal state (anesthetized vs awake, running vs stationary), SC depth (most superficial lamina vs deeper in the SC), research technique (calcium imaging vs electrophysiology), and stimulus type (drifting gratings vs moving dots, full field vs small patch). Together, these results challenge recent reports of region-specific organizations in the mouse SC and reveal how motion direction is represented in this important visual center.


Subject(s)
Superior Colliculi/physiology , Visual Pathways/physiology , Anesthesia , Animals , Electrophysiological Phenomena , Female , Male , Mice , Mice, Inbred C57BL , Motion Perception , Neuroimaging , Photic Stimulation , Running/physiology , Superior Colliculi/cytology , Superior Colliculi/diagnostic imaging , Visual Pathways/diagnostic imaging , Wakefulness
5.
Annu Rev Neurosci ; 36: 51-77, 2013 Jul 08.
Article in English | MEDLINE | ID: mdl-23642132

ABSTRACT

Brain connections are organized into topographic maps that are precisely aligned both within and across modalities. This alignment facilitates coherent integration of different categories of sensory inputs and allows for proper sensorimotor transformations. Topographic maps are established and aligned by multistep processes during development, including interactions of molecular guidance cues expressed in gradients; spontaneous activity-dependent axonal and dendritic remodeling; and sensory-evoked plasticity driven by experience. By focusing on the superior colliculus, a major site of topographic map alignment for different sensory modalities, this review summarizes current understanding of topographic map development in the mammalian visual system and highlights recent advances in map alignment studies. A major goal looking forward is to reveal the molecular and synaptic mechanisms underlying map alignment and to understand the physiological and behavioral consequences when these mechanisms are disrupted at various scales.


Subject(s)
Brain Mapping , Brain/physiology , Signal Transduction/physiology , Visual Pathways/physiology , Animals , Ephrins/metabolism , Functional Laterality , Humans , Receptors, Eph Family/genetics , Receptors, Eph Family/metabolism , Superior Colliculi/physiology , Visual Perception/physiology
6.
J Neurosci ; 39(47): 9360-9368, 2019 11 20.
Article in English | MEDLINE | ID: mdl-31570535

ABSTRACT

Visual responses are extensively shaped by internal factors. This effect is drastic in the primary visual cortex (V1), where locomotion profoundly increases visually-evoked responses. Here we investigate whether a similar effect exists in another major visual structure, the superior colliculus (SC). By performing two-photon calcium imaging of head-fixed male and female mice running on a treadmill, we find that only a minority of neurons in the most superficial lamina of the SC display significant changes during locomotion. This modulation includes both increase and decrease in response amplitude and is similar between excitatory and inhibitory neurons. The overall change in the SC is small, whereas V1 responses almost double during locomotion. Additionally, SC neurons display lower response variability and less spontaneous activity than V1 neurons. Together, these experiments indicate that locomotion-dependent modulation is not a widespread phenomenon in the early visual system and that the SC and V1 use different strategies to encode visual information.SIGNIFICANCE STATEMENT Visual information captured by the retina is processed in parallel through two major pathways, one reaching the primary visual cortex through the thalamus, and the other projecting to the superior colliculus. The two pathways then merge in the higher areas of the visual cortex. Recent studies have shown that behavioral state such as locomotion is an essential component of vision and can strongly affect visual responses in the thalamocortical pathway. Here we demonstrate that neurons in the mouse superior colliculus and primary visual cortex display striking differences in their modulation by locomotion, as well as in response variability and spontaneous activity. Our results reveal an important "division of labor" in visual processing between these two evolutionarily distinct structures.


Subject(s)
Locomotion/physiology , Photic Stimulation/methods , Superior Colliculi/physiology , Visual Cortex/physiology , Visual Pathways/physiology , Visual Perception/physiology , Animals , Female , Male , Mice , Mice, Inbred C57BL , Superior Colliculi/chemistry , Visual Cortex/chemistry , Visual Pathways/chemistry
7.
J Neurophysiol ; 123(4): 1305-1319, 2020 04 01.
Article in English | MEDLINE | ID: mdl-31913758

ABSTRACT

In mouse visual cortex, right after eye opening binocular cells have different preferred orientations for input from the two eyes. With normal visual experience during a critical period, these preferred orientations evolve and eventually become well matched. To gain insight into the matching process, we developed a computational model of a cortical cell receiving orientation selective inputs via plastic synapses. The model captures the experimentally observed matching of the preferred orientations, the dependence of matching on ocular dominance of the cell, and the relationship between the degree of matching and the resulting monocular orientation selectivity. Moreover, our model puts forward testable predictions: 1) The matching speed increases with initial ocular dominance. 2) While the matching improves more slowly for cells that are more orientation selective, the selectivity increases faster for better matched cells during the matching process. This suggests that matching drives orientation selectivity but not vice versa. 3) There are two main routes to matching: the preferred orientations either drift toward each other or one of the orientations switches suddenly. The latter occurs for cells with large initial mismatch and can render the cells monocular. We expect that these results provide insight more generally into the development of neuronal systems that integrate inputs from multiple sources, including different sensory modalities.NEW & NOTEWORTHY Animals gather information through multiple modalities (vision, audition, touch, etc.). These information streams have to be merged coherently to provide a meaningful representation of the world. Thus, for neurons in visual cortex V1, the orientation selectivities for inputs from the two eyes have to match to enable binocular vision. We analyze the postnatal process underlying this matching using computational modeling. It captures recent experimental results and reveals interdependence between matching, ocular dominance, and orientation selectivity.


Subject(s)
Models, Biological , Neuronal Plasticity/physiology , Neurons/physiology , Space Perception/physiology , Vision, Binocular/physiology , Visual Cortex/physiology , Visual Perception/physiology , Animals , Visual Cortex/growth & development
8.
J Neurosci ; 37(24): 5822-5833, 2017 06 14.
Article in English | MEDLINE | ID: mdl-28500220

ABSTRACT

Neural circuits are shaped by experience during critical periods of development. Sensory deprivation during these periods permanently compromises an organism's ability to perceive the outside world. In the mouse visual system, normal visual experience during a critical period in early life drives the matching of individual cortical neurons' orientation preferences through the two eyes, likely a key step in the development of binocular vision. Here, in mice of both sexes, we show that the binocular matching process is completely blocked by monocular deprivation spanning the entire critical period. We then show that 3 weeks of environmental enrichment (EE), a paradigm of enhanced sensory, motor, and cognitive stimulation, is sufficient to rescue binocular matching to the level seen in unmanipulated mice. In contrast, 6 weeks of conventional housing only resulted in a partial rescue. Finally, we use two-photon calcium imaging to track the matching process chronically in individual cells during EE-induced rescue. We find that for cells that are clearly dominated by one of the two eyes, the input representing the weaker eye changes its orientation preference to align with that of the dominant eye. These results thus reveal ocular dominance as a key driver of the binocular matching process, and suggest a model whereby the dominant input instructs the development of the weaker input. Such a mechanism may operate in the development of other systems that need to integrate inputs from multiple sources to generate normal neuronal functions.SIGNIFICANCE STATEMENT Critical periods are developmental windows of opportunity that ensure the proper wiring of neural circuits, as well as windows of vulnerability when abnormal experience could cause lasting damage to the developing brain. In the visual system, critical period plasticity drives the establishment of binocularly matched orientation preferences in cortical neurons. Here, we show that binocular matching is completely blocked by monocular deprivation during the critical period. Moreover, environmental enrichment can fully rescue the disrupted matching, whereas conventional housing of twice the duration results in a partial rescue. We then use two-photon calcium imaging to track individual cells chronically during the EE-induced recovery, and reveal important insights into how appropriate function can be restored to the nervous system after the critical period.


Subject(s)
Choice Behavior/physiology , Cues , Orientation/physiology , Sensory Deprivation/physiology , Vision, Binocular/physiology , Visual Cortex/physiology , Animals , Critical Period, Psychological , Ecosystem , Female , Male , Mice , Mice, Inbred C57BL , Nerve Net/physiology
9.
Proc Natl Acad Sci U S A ; 112(34): E4782-91, 2015 Aug 25.
Article in English | MEDLINE | ID: mdl-26261347

ABSTRACT

Mutations in methyl-CpG-binding protein 2 (MeCP2) cause Rett syndrome, an autism spectrum-associated disorder with a host of neurological and sensory symptoms, but the pathogenic mechanisms remain elusive. Neuronal circuits are shaped by experience during critical periods of heightened plasticity. The maturation of cortical GABA inhibitory circuitry, the parvalbumin(+) (PV(+)) fast-spiking interneurons in particular, is a key component that regulates the initiation and termination of the critical period. Using MeCP2-null mice, we examined experience-dependent development of neural circuits in the primary visual cortex. The functional maturation of parvalbumin interneurons was accelerated upon vision onset, as indicated by elevated GABA synthetic enzymes, vesicular GABA transporter, perineuronal nets, and enhanced GABA transmission among PV interneurons. These changes correlated with a precocious onset and closure of critical period and deficient binocular visual function in mature animals. Reduction of GAD67 expression rescued the precocious opening of the critical period, suggesting its major role in MECP2-mediated regulation of experience-driven circuit development. Our results identify molecular changes in a defined cortical cell type and link aberrant developmental trajectory to functional deficits in a model of neuropsychiatric disorder.


Subject(s)
Methyl-CpG-Binding Protein 2/physiology , Neuronal Plasticity , Visual Cortex/physiology , Animals , Methyl-CpG-Binding Protein 2/genetics , Mice , Mice, Knockout
10.
J Neurosci ; 35(35): 12281-6, 2015 Sep 02.
Article in English | MEDLINE | ID: mdl-26338338

ABSTRACT

Topographic maps are a fundamental feature of the brain's representations of the sensory environment as well as an efficient way to organize motor control networks. Although great progress has been made in our understanding of sensory map development, very little is known about how topographic representations for motor control develop and interface with sensory maps. Here we map the representation for eye movements in the superior colliculus (SC) in awake mice. As stimulation sites were sampled along the anterior-posterior axis, small amplitude, nasally directed (ipsiversive) saccadic eye movements were evoked by microstimulation in anterior SC, followed by a smooth progression to large, temporally directed (contraversive) movements in posterior SC. This progressive change of movement amplitude and direction is consistent with the global polarity of the retinotopic map in the superficial SC, just as in primates and cats. We then investigated the role of visual experience in the development of eye movement map by studying mice reared in complete darkness. Saccades evoked by SC stimulation as well as spontaneous saccadic eye movements were larger in the dark-reared mice, indicating that visual experience is required to fine-tune the gain of saccades and to establish normal eye movement maps in the SC. Our experiments provide a foundation for future studies to investigate the synaptic organization and developmental mechanisms of sensorimotor transformations in mice. SIGNIFICANCE STATEMENT: The superior colliculus (SC) is a midbrain structure important for multisensory integration and sensorimotor transformation. Here we have studied eye movement representations in the SC of mice, a species that has become a popular model in vision research because of available genetic tools. Our studies show mice make saccadic eye movements spontaneously and in response to SC stimulation. The mouse SC contains an eye movement map that has the same global polarity as the overlaying visual map, just like in cats and primates. Furthermore, we show that visual experience is required for establishing the normal eye movement map. Our study provides a necessary basis for future mechanistic studies of how SC motor maps develop and become aligned with sensory maps.


Subject(s)
Brain Mapping , Eye Movements/physiology , Neural Pathways/physiology , Photic Stimulation , Superior Colliculi/physiology , Vision, Ocular/physiology , Action Potentials/physiology , Animals , Electric Stimulation , Female , Male , Mice , Mice, Inbred C57BL , Reaction Time , Sensory Deprivation , Superior Colliculi/cytology , Wakefulness
11.
J Neurosci ; 35(20): 7992-8003, 2015 May 20.
Article in English | MEDLINE | ID: mdl-25995482

ABSTRACT

The superior colliculus (SC) is a layered midbrain structure important for multimodal integration and sensorimotor transformation. Its superficial layers are purely visual and receive depth-specific projections from distinct subtypes of retinal ganglion cells. Here we use two-photon calcium imaging to characterize the response properties of neurons in the most superficial lamina of the mouse SC, an undersampled population with electrophysiology. We find that these neurons have compact receptive fields with primarily overlapping ON and OFF subregions and are highly direction selective. The high selectivity is observed in both excitatory and inhibitory neurons. These neurons do not cluster according to their direction preference and lack orientation selectivity. In addition, we perform single-unit recordings and show that direction selectivity declines with depth in the SC. Together, our experiments reveal for the first time a highly specialized lamina in the most superficial SC for movement direction, a finding that has important implications for understanding signal transformation in the early visual system.


Subject(s)
Neurons/physiology , Superior Colliculi/physiology , Animals , Calcium Signaling , Female , Male , Mice , Mice, Inbred C57BL , Neurons/classification , Neurons/metabolism , Superior Colliculi/cytology , Visual Pathways/metabolism , Visual Pathways/physiology
12.
Cereb Cortex ; 24(6): 1658-70, 2014 Jun.
Article in English | MEDLINE | ID: mdl-23389996

ABSTRACT

The convergence of eye-specific thalamic inputs to visual cortical neurons forms the basis of binocular vision. Inputs from the same eye that signal light increment (On) and decrement (Off) are spatially segregated into subregions, giving rise to cortical receptive fields (RFs) that are selective for stimulus orientation. Here we map RFs of binocular neurons in the mouse primary visual cortex using spike-triggered average. We find that subregions of the same sign (On-On and Off-Off) preferentially overlap between the 2 monocular RFs, leading to binocularly matched orientation tuning. We further demonstrate that such subregion correspondence and the consequent matching of RF orientation are disrupted in mice reared in darkness during development. Surprisingly, despite the lack of all postnatal visual experience, a substantial degree of subregion correspondence still remains. In addition, dark-reared mice show normal monocular RF structures and binocular overlap. These results thus reveal the specific roles of experience-dependent and -independent processes in binocular convergence and refinement of On and Off inputs onto single cortical neurons.


Subject(s)
Neurons/physiology , Sensory Deprivation/physiology , Vision, Binocular/physiology , Visual Cortex/physiology , Visual Pathways/physiology , Visual Perception/physiology , Action Potentials , Animals , Darkness , Female , Male , Mice, Inbred C57BL , Microelectrodes , Photic Stimulation , Visual Cortex/growth & development , Visual Pathways/growth & development
13.
J Neurosci ; 33(31): 12751-63, 2013 Jul 31.
Article in English | MEDLINE | ID: mdl-23904611

ABSTRACT

The dorsal lateral geniculate nucleus (dLGN) receives visual information from the retina and transmits it to the cortex. In this study, we made extracellular recordings in the dLGN of both anesthetized and awake mice, and found that a surprisingly high proportion of cells were selective for stimulus orientation. The orientation selectivity of dLGN cells was unchanged after silencing the visual cortex pharmacologically, indicating that it is not due to cortical feedback. The orientation tuning of some dLGN cells correlated with their elongated receptive fields, while in others orientation selectivity was observed despite the fact that their receptive fields were circular, suggesting that their retinal input might already be orientation selective. Consistently, we revealed orientation/axis-selective ganglion cells in the mouse retina using multielectrode arrays in an in vitro preparation. Furthermore, the orientation tuning of dLGN cells was largely maintained at different stimulus contrasts, which could be sufficiently explained by a simple linear feedforward model. We also compared the degree of orientation selectivity in different visual structures under the same recording condition. Compared with the dLGN, orientation selectivity is greatly improved in the visual cortex, but is similar in the superior colliculus, another major retinal target. Together, our results demonstrate prominent orientation selectivity in the mouse dLGN, which may potentially contribute to visual processing in the cortex.


Subject(s)
Action Potentials/physiology , Geniculate Bodies/cytology , Neurons/physiology , Orientation/physiology , Visual Perception/physiology , Anesthetics/pharmacology , Animals , Feedback, Physiological , Female , GABA-A Receptor Agonists/pharmacology , In Vitro Techniques , Male , Mice , Mice, Inbred C57BL , Muscimol/pharmacology , Neurons/drug effects , Photic Stimulation , Retina/drug effects , Retina/physiology , Retinal Ganglion Cells/physiology , Superior Colliculi/cytology , Superior Colliculi/physiology , Urethane/pharmacology , Visual Cortex/drug effects , Visual Cortex/physiology , Visual Fields/physiology , Visual Pathways/physiology , Wakefulness
14.
J Neurophysiol ; 111(11): 2276-86, 2014 Jun 01.
Article in English | MEDLINE | ID: mdl-24598523

ABSTRACT

The retina signals stimulus contrast via parallel On and Off pathways and sends the information to higher visual centers. Here we study the role of the On pathway using mice that have null mutations in the On-specific GRM6 receptor in the retina (Pinto LH, Vitaterna MH, Shimomura K, Siepka SM, Balannik V, McDearmon EL, Omura C, Lumayag S, Invergo BM, Brandon M, Glawe B, Cantrell DR, Donald R, Inayat S, Olvera MA, Vessey KA, Kirstan A, McCall MA, Maddox D, Morgans CW, Young B, Pletcher MT, Mullins RF, Troy JB, Takahashi JS. Vis Neurosci 24: 111-123, 2007; Maddox DM, Vessey KA, Yarbrough GL, Invergo BM, Cantrell DR, Inayat S, Balannik V, Hicks WL, Hawes NL, Byers S, Smith RS, Hurd R, Howell D, Gregg RG, Chang B, Naggert JK, Troy JB, Pinto LH, Nishina PM, McCall MA. J Physiol 586: 4409-4424, 2008). In these "nob" mice, single unit recordings in the primary visual cortex (V1) reveal degraded selectivity for orientations due to an increased response at nonpreferred orientations. Contrast sensitivity in the nob mice is reduced with severe deficits at low contrast, consistent with the phenotype of night blindness in human patients with mutations in Grm6. These cortical deficits can be largely explained by reduced input drive and increased response variability seen in nob V1. Interestingly, increased variability is also observed in the superior colliculus of these mice but does not affect its tuning properties. Further, the increased response variability in the nob mice is traced to the retina, a result phenocopied by acute pharmacological blockade of the On pathway in wild-type retina. Together, our results suggest that the On and Off pathways normally interact to increase response reliability in the retina, which in turn propagates to various central visual targets and affects their functional properties.


Subject(s)
Contrast Sensitivity/physiology , Orientation/physiology , Retinal Cone Photoreceptor Cells/physiology , Visual Cortex/physiology , Visual Pathways/physiology , Animals , Contrast Sensitivity/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Mutation , Photic Stimulation/methods , Receptors, Glutamate
15.
eNeuro ; 11(3)2024 Mar.
Article in English | MEDLINE | ID: mdl-38538082

ABSTRACT

Rodent models, such as mice and rats, are commonly used to examine retinal ganglion cell damage in eye diseases. However, as nocturnal animals, rodent retinal structures differ from primates, imposing significant limitations in studying retinal pathology. Tree shrews (Tupaia belangeri) are small, diurnal paraprimates that exhibit superior visual acuity and color vision compared with mice. Like humans, tree shrews have a dense retinal nerve fiber layer (RNFL) and a thick ganglion cell layer (GCL), making them a valuable model for investigating optic neuropathies. In this study, we applied high-resolution visible-light optical coherence tomography to characterize the tree shrew retinal structure in vivo and compare it with that of humans and mice. We quantitatively characterize the tree shrew's retinal layer structure in vivo, specifically examining the sublayer structures within the inner plexiform layer (IPL) for the first time. Next, we conducted a comparative analysis of retinal layer structures among tree shrews, mice, and humans. We then validated our in vivo findings in the tree shrew inner retina using ex vivo confocal microscopy. The in vivo and ex vivo analyses of the shrew retina build the foundation for future work to accurately track and quantify the retinal structural changes in the IPL, GCL, and RNFL during the development and progression of human optic diseases.


Subject(s)
Tupaia , Tupaiidae , Humans , Mice , Animals , Rats , Shrews , Retina/diagnostic imaging , Retinal Ganglion Cells/pathology
16.
IEEE Trans Med Imaging ; 43(8): 2769-2777, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38517719

ABSTRACT

We seek to develop techniques for high-resolution imaging of the tree shrew retina for visualizing and parameterizing retinal ganglion cell (RGC) axon bundles in vivo. We applied visible-light optical coherence tomography fibergraphy (vis-OCTF) and temporal speckle averaging (TSA) to visualize individual RGC axon bundles in the tree shrew retina. For the first time, we quantified individual RGC bundle width, height, and cross-sectional area and applied vis-OCT angiography (vis-OCTA) to visualize the retinal microvasculature in tree shrews. Throughout the retina, as the distance from the optic nerve head (ONH) increased from 0.5 mm to 2.5 mm, bundle width increased by 30%, height decreased by 67%, and cross-sectional area decreased by 36%. We also showed that axon bundles become vertically elongated as they converge toward the ONH. Ex vivo confocal microscopy of retinal flat-mounts immunostained with Tuj1 confirmed our in vivo vis-OCTF findings.


Subject(s)
Axons , Retinal Ganglion Cells , Tomography, Optical Coherence , Tupaiidae , Animals , Tomography, Optical Coherence/methods , Retinal Ganglion Cells/cytology , Axons/physiology
17.
J Neurosci ; 32(28): 9755-68, 2012 Jul 11.
Article in English | MEDLINE | ID: mdl-22787061

ABSTRACT

Precise connections in the brain result from elaborate processes during development. In the visual system, axonal projections from retinal ganglion cells (RGCs) onto the superior colliculus form a precise retinotopic map. Studies have revealed that the development of retinocollicular maps involves three main factors: graded expression of molecular guidance cues such as EphAs and ephrin-As, activity-dependent processes driven by spontaneous activity in RGCs, and different forms of axonal competition. In this study, we developed a new, versatile model including these factors. We first modeled the selective arborization of RGC axons, mediated by EphA/ephrin-A signaling, without assuming that this initial process instructed the map's final topology. We also derived an integro-differential equation modeling a second, dynamic phase in which activity-dependent plasticity of axonal arbors combined with their competition for collicular resources can deeply remodel the topology of immature maps. Our model hence challenges the view that retinotopic maps are instructed by matching molecular gradients and then merely refined by activity-dependent processes. We reproduce fine features of retinotopic map development in wild-type and various transgenic mice, allowing a new understanding of the underlying mechanisms. Our model predicts that competition is not based on comparisons of axonal EphA receptor levels but rather relies on the optimization of collicular resources mediated by neurotrophic receptors such as p75(NTR). Our model finally clarifies the elusive role of reverse signaling between retinal ephrin-As and collicular EphAs by reproducing for the first time the phenotypes of two mouse genotypes in which this function is altered.


Subject(s)
Axons/physiology , Brain Mapping , Models, Neurological , Neurons/cytology , Retina , Superior Colliculi , Animals , Computer Simulation , Mice , Neurons/physiology , Nonlinear Dynamics , Phenotype , Receptor, Nerve Growth Factor/genetics , Receptor, Nerve Growth Factor/metabolism , Receptors, Eph Family/genetics , Receptors, Eph Family/metabolism , Retina/cytology , Retina/growth & development , Superior Colliculi/cytology , Superior Colliculi/growth & development , Visual Pathways/physiology
18.
iScience ; 26(1): 105778, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36594036

ABSTRACT

Despite its importance, the development of higher visual areas (HVAs) at the cellular resolution remains largely unknown. Here, we conducted 2-photon calcium imaging of mouse HVAs lateromedial (LM) and anterolateral (AL) and V1 to observe developmental changes in visual response properties. HVA neurons showed selectivity for orientations and directions similar to V1 neurons at eye opening, which became sharper in the following weeks. Neurons in all areas over all developmental stages tended to respond selectively to dots moving along an axis perpendicular to their preferred orientation at slow speeds, suggesting a certain level of conventional motion coding already at eye opening. In contrast, at high speeds, many neurons responded to dots moving along the axis parallel to the preferred orientation in older animals but rarely after eye opening, indicating a lack of motion-streak coding in the earlier stage. Together, our results uncover the development of visual properties in HVAs.

19.
Front Neural Circuits ; 17: 1084027, 2023.
Article in English | MEDLINE | ID: mdl-36874946

ABSTRACT

The brain creates a single visual percept of the world with inputs from two eyes. This means that downstream structures must integrate information from the two eyes coherently. Not only does the brain meet this challenge effortlessly, it also uses small differences between the two eyes' inputs, i.e., binocular disparity, to construct depth information in a perceptual process called stereopsis. Recent studies have advanced our understanding of the neural circuits underlying stereoscopic vision and its development. Here, we review these advances in the context of three binocular properties that have been most commonly studied for visual cortical neurons: ocular dominance of response magnitude, interocular matching of orientation preference, and response selectivity for binocular disparity. By focusing mostly on mouse studies, as well as recent studies using ferrets and tree shrews, we highlight unresolved controversies and significant knowledge gaps regarding the neural circuits underlying binocular vision. We note that in most ocular dominance studies, only monocular stimulations are used, which could lead to a mischaracterization of binocularity. On the other hand, much remains unknown regarding the circuit basis of interocular matching and disparity selectivity and its development. We conclude by outlining opportunities for future studies on the neural circuits and functional development of binocular integration in the early visual system.


Subject(s)
Dominance, Ocular , Vision, Binocular , Animals , Mice , Ferrets , Brain , Knowledge
20.
Neuron ; 111(12): 1876-1886.e5, 2023 06 21.
Article in English | MEDLINE | ID: mdl-37086721

ABSTRACT

The superficial superior colliculus (sSC) carries out diverse roles in visual processing and behaviors, but how these functions are delegated among collicular neurons remains unclear. Here, using single-cell transcriptomics, we identified 28 neuron subtypes and subtype-enriched marker genes from tens of thousands of adult mouse sSC neurons. We then asked whether the sSC's molecular subtypes are tuned to different visual stimuli. Specifically, we imaged calcium dynamics in single sSC neurons in vivo during visual stimulation and then mapped marker gene transcripts onto the same neurons ex vivo. Our results identify a molecular subtype of inhibitory neuron accounting for ∼50% of the sSC's direction-selective cells, suggesting a genetic logic for the functional organization of the sSC. In addition, our studies provide a comprehensive molecular atlas of sSC neuron subtypes and a multimodal mapping method that will facilitate investigation of their respective functions, connectivity, and development.


Subject(s)
Neurons , Superior Colliculi , Animals , Mice , Visual Perception , Calcium , Gene Expression Profiling , Visual Pathways
SELECTION OF CITATIONS
SEARCH DETAIL