Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
Small ; 18(13): e2107160, 2022 04.
Article in English | MEDLINE | ID: mdl-35146899

ABSTRACT

Emerging noninvasive treatments, such as sonodynamic therapy (SDT) and chemodynamic therapy (CDT), have developed as promising alternatives or supplements to traditional chemotherapy. However, their therapeutic effects are limited by the hypoxic environment of tumors. Here, a biodegradable nanocomposite-mesoporous zeolitic-imidazolate-framework@MnO2 /doxorubicin hydrochloride (mZMD) is developed, which achieves enhanced SDT/CDT/chemotherapy through promoting oxidative stress and overcoming the multidrug resistance. The mZMD decomposes under both ultrasound (US) irradiation and specific reactions in the tumor microenvironment (TME). The mZM composite structure reduces the recombination rate of e- and h+ to improve SDT. MnO2 not only oxidizes glutathione in tumor cells to enhance oxidative stress, but also converts the endogenic H2 O2 into O2 to improve the hypoxic TME, which enhances the effects of chemotherapy/SDT. Meanwhile, the generated Mn2+ catalyzes the endogenic H2 O2 into ·OH for CDT, and acts as magnetic resonance imaging agent to guide therapy. In addition, dissociated Zn2+ further breaks the redox balance of TME, and co-inhibits the expression of P-glycoprotein (P-gp) with generated ROS to overcome drug resistance. Thus, the as-prepared intelligent biodegradable mZMD provides an innovative strategy to enhance SDT/CDT/chemotherapy.


Subject(s)
Manganese Compounds , Oxides , Cell Line, Tumor , Drug Resistance, Multiple , Oxidative Stress , Oxides/chemistry , Tumor Microenvironment
2.
J Mater Chem B ; 11(9): 1829-1848, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36786439

ABSTRACT

Although degradable nanomaterials have been widely designed and applied for cancer bioimaging and various cancer treatments, few reviews of biodegradable nanomaterials have been reported. Herein, we have summarized the representative research advances of biodegradable nanomaterials with respect to the mechanism of degradation and their application in tumor imaging and therapy. First, four kinds of tumor microenvironment (TME) responsive degradation are presented, including pH, glutathione (GSH), hypoxia and matrix metalloproteinase (MMP) responsive degradation. Second, external stimulation degradation is summarized briefly. Next, we have outlined the applications of nanomaterials in bioimaging. Finally, we have focused on some typical examples of biodegradable nanomaterials in radiotherapy (RT), photothermal therapy (PTT), starvation therapy, photodynamic therapy (PDT), chemotherapy, chemodynamic therapy (CDT), sonodynamic therapy (SDT), gene therapy, immunotherapy and combination therapy.


Subject(s)
Nanostructures , Neoplasms , Photochemotherapy , Humans , Combined Modality Therapy , Immunotherapy , Glutathione , Tumor Microenvironment
3.
Chem Asian J ; 17(22): e202200740, 2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36070227

ABSTRACT

Cancer is one of the most intractable diseases in the world because of its high recurrence rate, high metastasis rate and high lethality rate. Traditional chemotherapy, radiotherapy and surgery have unsatisfactory therapeutic effects and cause many severe side effects at the same time. Hydrogel is a new type of biomaterial with the advantages of good biocompatibility and easy degradation, which can be used as a carrier of functional nanomaterials for tumor therapy. Herein, we represent the progress of hydrogels with different skeletons and their application as carrier in tumor treatment. The hydrogels are listed as polyethylene glycol-based hydrogels, chitosan-based hydrogels, peptide-based hydrogels, hyaluronic acid-based hydrogels, steroid-based hydrogels and other hydrogels by skeletons, and their properties, modifications and toxicities were introduced. Some representative applications of combined hydrogels with nanomaterial for chemotherapy, photodynamic therapy, photothermal therapy, sonodynamic therapy, chemodynamic therapy and synergistic therapy are highlighted.


Subject(s)
Chitosan , Neoplasms , Humans , Hydrogels , Hyaluronic Acid , Biocompatible Materials , Neoplasms/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL