Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Nanotechnology ; 32(46)2021 Aug 27.
Article in English | MEDLINE | ID: mdl-34359059

ABSTRACT

The strain has been employed for controlled modification of electronical and mechanical properties of two-dimensional (2D) materials. However, the thermal strain-engineered behaviors of the CVD-grown MoS2have not been systematically explored. Here, we investigated the strain-induced structure and properties of CVD-grown triangular MoS2flakes by several advanced atomic force microscopy. Two different kinds of flakes with sharp-corner or vein-like nanostructures are experimentally discovered due to the size-dependent strain behaviors. The critical size of these two kinds of flakes can be roughly estimated at âˆ¼17µm. Within the small flakes, the sharp-corner regions show specific strain-modified properties due to the suffering of large tensile strain. While in the large MoS2flakes, the complicated vein-like nanoripple structures were formed due to the interface slipping process under the larger tensile strain. Our work not only demonstrates the size-specific strain behaviors of MoS2flakes but also sheds light on the artificial design and preparation of strain-engineered nanostructures for the devices based on the 2D materials.

2.
Nat Commun ; 14(1): 6320, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37813844

ABSTRACT

Polymorphic structures of transition metal dichalcogenides (TMDs) host exotic electronic states, like charge density wave and superconductivity. However, the number of these structures is limited by crystal symmetries, which poses a challenge to achieving tailored lattices and properties both theoretically and experimentally. Here, we report a coloring-triangle (CT) latticed MoTe2 monolayer, termed CT-MoTe2, constructed by controllably introducing uniform and ordered mirror-twin-boundaries into a pristine monolayer via molecular beam epitaxy. Low-temperature scanning tunneling microscopy and spectroscopy (STM/STS) together with theoretical calculations reveal that the monolayer has an electronic Janus lattice, i.e., an energy-dependent atomic-lattice and a Te pseudo-sublattice, and shares the identical geometry with the Mo5Te8 layer. Dirac-like and flat electronic bands inherently existing in the CT lattice are identified by two broad and two prominent peaks in STS spectra, respectively, and verified with density-functional-theory calculations. Two types of intrinsic domain boundaries were observed, one of which maintains the electronic-Janus-lattice feature, implying potential applications as an energy-tunable electron-tunneling barrier in future functional devices.

SELECTION OF CITATIONS
SEARCH DETAIL