Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Clin Transl Med ; 14(4): e1645, 2024 04.
Article in English | MEDLINE | ID: mdl-38572668

ABSTRACT

BACKGROUND: Breast cancer remains a global health challenge, necessitating innovative therapeutic approaches. Immunomodulation and immunotherapy have emerged as promising strategies for breast cancer treatment. Engineered exosomes are the sort of exosomes modified with surface decoration and internal therapeutic molecules. Through suitable modifications, engineered exosomes exhibit the capability to overcome the limitations associated with traditional therapeutic approaches. This ability opens up novel avenues for the development of more effective, personalized, and minimally invasive interventions. MAIN BODY: In this comprehensive review, we explore the molecular insights and therapeutic potential of engineered exosomes in breast cancer. We discuss the strategies employed for exosome engineering and delve into their molecular mechanisms in reshaping the immune microenvironment of breast cancer. CONCLUSIONS: By elucidating the contribution of engineered exosomes to breast cancer immunomodulation, this review underscores the transformative potential of this emerging field for improving breast cancer therapy. HIGHLIGHTS: Surface modification of exosomes can improve the targeting specificity. The engineered exosome-loaded immunomodulatory cargo regulates the tumour immune microenvironment. Engineered exosomes are involved in the immune regulation of breast cancer.


Subject(s)
Breast Neoplasms , Exosomes , Humans , Female , Breast Neoplasms/genetics , Breast Neoplasms/therapy , Exosomes/genetics , Immunotherapy , Tumor Microenvironment , Cell Communication
2.
Int J Biol Macromol ; 261(Pt 2): 129834, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38302029

ABSTRACT

The unique stere-complex crystal formed by poly(ʟ-lactide)/poly(ᴅ-lactide) (PLLA/PDLA) has a significant impact on properties of poly-lactide materials and is considered an effective means to improve the barrier properties of poly-lactide (PLA). In this work, poly-lactide films with different aggregate structures were prepared and the relationship of aggregate structure and barrier properties were explored. The results show that the crystal structure including crystallinity and crystal forms can be controlled by adjusting the isothermal crystallization time and crystallization temperature during the molding process. PLLA/PDLA composite films contain both homochiral crystallites and stereo-complex crystallites, and there is a synergistic crystallization effect between the two of them, which provides the composite films with high crystallinity and excellent barrier properties. Compared to the PLLA with homochiral crystallites, the PLLA/PDLA composite film with only stereo-complex crystallites exhibits higher barrier properties. The linear correlation between the crystallinity and the barrier properties is weak due to the changes in crystallization behavior and then the structure of poly-lactide caused by stereo-complexation. The linear correlation between the crystallinity and the barrier properties of the blend film is strong in the low crystallinity but weak at high crystallinity. Compared to homochiral crystallites, stereo-complex crystallites exhibits lower crystallinity dependence. It has been proven that different crystal forms have different design ideas for preparing high-barrier films, but the stereo-complexation resulting from the intermolecular forces between PLLA and PDLA having complementary chemical structure, is an effective method for enhancing the barrier performances of poly-lactide sustainably.


Subject(s)
Dioxanes , Polyesters , Crystallization , Polyesters/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL