Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Theor Appl Genet ; 136(11): 234, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37878085

ABSTRACT

KEY MESSAGE: A novel strong fertility restorer gene Rf12 for C-type cytoplasmic male sterility of maize was finely mapped on chromosome 2. Its best candidate gene Zm00001d007531 is predicted to encode a p-type PPR protein. The lack of strong restorer gene of maize CMS-C greatly limits its application in hybrid seed production. Therefore, the cloning of maize CMS-C novel strong restorer genes is necessary. In this study, a strong restorer line ZH91 for maize CMS-C was found, and the novel restorer gene named Rf12 in ZH91 had been mapped in a 146 kb physical interval on maize chromosome 2. Using the third-generation high-throughput sequencing (ONT), the whole genome sequence of ZH91 was got, and with integrating the annotation information of the reference genome B73_RefGen_v4 and B73_RefGen_v5, four candidate genes were predicted in ZH91 within the mapping region. Then using gene cloning, stranded specific RNA sequencing, qRT-PCR analysis and subcellular localization, Zm00001d007531 was identified as the most likely candidate gene of Rf12. Zm00001d007531 encodes a p-type PPR protein with 19 PPR motifs and targets mitochondria and chloroplast. Stranded specific RNA sequencing and qRT-PCR results both show that the expression of Zm00001d007531 between anthers of near-isogenic lines C478Rf12Rf12 and C478rf12rf12 was significantly difference in pollen mother cell stage. And the result of sequence alignment for Zm00001d007531 gene in 60 materials showed that there are twelve SNPs in CDS region of Zm00001d007531 were tightly linked to the fertility. The finding of a novel strong restorer germplasm resource ZH91 for maize CMS-C can greatly promote the application of maize CMS-C line in maize hybrid seeds production, and the identification of candidate gene Zm00001d007531 can accelerate the backcrossing process of maize CMS-C strong restorer gene Rf12 to some extent.


Subject(s)
Plant Infertility , Zea mays , Zea mays/genetics , Plant Infertility/genetics , Cytoplasm , Fertility , Genetic Association Studies
2.
Biochem Genet ; 60(1): 351-369, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34224040

ABSTRACT

The callose synthase enzyme genes (Cals) generally plays an important role in resisting to environmental stresses as well as in regulating the microspore development of higher plant. However till now, few researches about ZmCals genes have been reported in maize. In this study, ten ZmCals genes were identified, and they are distributed on four chromosomes in maize. All ZmCals proteins contain Glucan-synthase-domain and Fks1-domain. RNA-seq data from public databases were analyzed and the result suggested that ZmCals involved in the development of various tissues, and a strong expression presented especially in young tissue. qRT-PCR analysis shown that most of ZmCals are highly expressed in root, stem and leaf at jointing stage (V6 stage) with maize inbred line B73. Seven out of 10 ZmCals genes display higher expression during maize anther development especially from stage 6 to stage 8b, the dynamic accumulation process of callose is also observed during these period with aniline blue staining. Above results indicated multiple ZmCals may participate in the deposition of callose in maize anther. Therefore, ZmCals are necessary not only for reproductive organ but also for nutritive organ during maize growth and development. This study lays certain foundation for further investigating the roles of the callose synthase enzymes genes in maize.


Subject(s)
Gene Expression Regulation, Plant , Zea mays , Glucosyltransferases , Phylogeny , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological , Zea mays/genetics , Zea mays/metabolism
3.
Yi Chuan ; 44(2): 134-152, 2022 Feb 20.
Article in English | MEDLINE | ID: mdl-35210215

ABSTRACT

Male sterility refers to the defective development of male reproductive organs, which led to plants incapable of producing normal and functional pollens. Maize (Zea mays L.) is one of the most important food crops, as well as one of the earliest crops to utilize heterosis in breeding. Single cross hybrid has been the main type of maize heterosis utilization for a long time. The planting area of maize hybrid in China has been stable at about 620 million mu. More than one billion kilograms of commercial hybrid seeds are needed each year, and the annual seed production area has been stable at about 2.5 million mu in recent years. So far, manual emasculation has been the major way of maize hybrid seed production in China, which is laborious and time consuming. Generally, spatial isolation is necessary for maize hybrid seed production, this requirement results in only some regions in the country suitable for maize hybrid seed production. Manual emasculation requires seasonal demand of labors. At present, with the urbanization of a large number of rural laborers, the seed production regions experience a serious labor shortage. Accordingly, the cost of seed production increases with the rising of land rent and labor costs. In addition, it is difficult to guarantee the seed purity with manual or mechanical emasculation for hybrid seed production. However, incorporating male sterility into maize hybrid seed production could reduce its cost and ensure hybrid seed purity. It can also avoid the difficulties of manual or mechanical emasculation in field operation under extreme weather conditions. Therefore, it is the inevitable trend of development in the maize seed industry. In this review, we summarize the exploitation and creation of maize cytoplasmic male sterility (CMS), maize genic male sterility (GMS) resources in China, and the developing process from natural discovery to targeted creation of male sterility resources in plants, and the research progress of maize male sterility. We then analyze the application status and existing problems of maize male sterility, based on the development trend of maize seed industry, as well as the research and application status of male sterility in China. We also identify seven aspects that need to be further strengthen, thereby providing the reference for the creation, research and utilization of maize male sterility in the future.


Subject(s)
Infertility, Male , Zea mays , Crops, Agricultural/genetics , Plant Breeding , Plant Infertility/genetics , Seeds/genetics , Zea mays/genetics
4.
Plant Cell Rep ; 40(10): 1957-1970, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34319484

ABSTRACT

KEY MESSAGE: A novel genic male-sterile mutant ms40 was obtained from EMS treated RP125. The key candidate gene ZmbHLH51 located on chromosome 4 was identified by map-based cloning. This study further enriched the male sterile gene resources for both production applications and theoretical studies of abortion mechanisms. Maize male-sterile mutant 40 (ms40) was obtained from the progeny of the ethyl methanesulfonate (EMS) treated inbred line RP125. Genetic analysis indicated that the sterility was controlled by a single recessive nuclear gene. Cytological observation of anthers revealed that the cuticles of ms40 anthers were abnormal, and no Ubisch bodies were observed on the inner surface of ms40 anthers through scanning electron microscopy(SEM). Moreover, its tapetum exhibited delayed degradation and then blocked the formation of normal microspores. Using map-based cloning strategy, the ms40 locus was found to locate in a 282-kb interval on chromosome 4, and five annotated genes were predicted within this region. PCR-based sequencing detected a single non-synonymous SNP (G > A) that changed glycine (G) to arginine (A) in the seventh exon of Zm00001d053895, while no sequence difference between ms40 and RP125 was found for the other four genes. Zm00001d053895 encodes the bHLH transcription factor ZmbHLH51 which is localized in the nucleus. Phylogenetic analysis showed that ZmbHLH51 had the highest homology with Sb04g001650, a tapetum degeneration retardation (TDR) bHLH transcription factor in Sorghum bicolor. Co-expression analysis revealed a total of 1192 genes co-expressed with ZmbHLH51 in maize, 647 of which were anther-specific genes. qRT-PCR results suggested the expression levels of some known genes related to anther development were affected in ms40. In summary, these findings revealed the abortion characteristics of ms40 anthers and lay a foundation for further studies on the mechanisms of male fertility.


Subject(s)
Flowers/growth & development , Flowers/genetics , Plant Infertility/genetics , Plant Proteins/genetics , Zea mays/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Chromosomes, Plant , Gene Expression Regulation, Plant , Genes, Recessive , Mutation , Phylogeny , Plant Proteins/metabolism , Pollen/genetics , Zea mays/cytology
5.
Plant Cell Rep ; 39(3): 393-408, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31834482

ABSTRACT

KEY MESSAGE: Retrotransposon insertion in Brachytic2 generated a new incomplete recessive dwarf allele after spaceflight can moderately reduce plant height in heterozygous and potentially improve maize yield. Plant height and ear height are two important agronomic traits in maize breeding. In this study, two dwarf mutants short internode length1 (sil1) and short internode length2 (sil2) were obtained from two of 398 spaceflighted seeds of inbred line 18-599. The decrease in longitudinal cell number and cell length led to the shortened internodes of sil1 and sil2. A Ty1-copia LTR-retrotransposon, termed ZmRE-1, inserted in the fifth exon of Brachytic2 (Br2) was identified in sil1 and sil2 at exactly the same site, which indicated the transposition of ZmRE-1 probably correlated with the spaceflight. This new dwarf mutant allele was named as br2-sil in this study. The insertion of ZmRE-1 not only led to the loss of normal transcript of Br2 allele, but also reduced the transcript expression of br2-sil allele. Chop-qPCR displayed that the promoter region DNA methylation level of br2-sil allele in sil1 was higher than that of Br2 allele in WT-sil1. We speculated that the increased methylation level might downregulate the br2-sil expression. There was no difference in the seed-setting rate between sil1 and WT-sil1. Meanwhile, br2-sil could reduce plant and ear height effectively in Br2/br2-sil genotype without negative effects on grain yield. Therefore, the application of br2-sil in breeding has the potential to improve the grain yield per unit area through increasing the planting density.


Subject(s)
Mutagenesis, Insertional/genetics , Mutation/genetics , Plant Proteins/genetics , Retroelements/genetics , Space Flight , Zea mays/anatomy & histology , Zea mays/genetics , Alleles , Base Sequence , DNA Methylation/genetics , Gene Expression Regulation, Plant , Genes, Recessive , Genetic Association Studies , Genetic Loci , Heterozygote , Homozygote , Inbreeding , Phylogeny , Promoter Regions, Genetic/genetics , Quantitative Trait, Heritable , Reproducibility of Results
6.
BMC Plant Biol ; 19(1): 592, 2019 Dec 27.
Article in English | MEDLINE | ID: mdl-31881988

ABSTRACT

BACKGROUND: The tricarboxylic acid (TCA) cycle is crucial for cellular energy metabolism and carbon skeleton supply. However, the detailed functions of the maize TCA cycle genes remain unclear. RESULTS: In this study, 91 TCA genes were identified in maize by a homology search, and they were distributed on 10 chromosomes and 1 contig. Phylogenetic results showed that almost all maize TCA genes could be classified into eight major clades according to their enzyme families. Sequence alignment revealed that several genes in the same subunit shared high protein sequence similarity. The results of cis-acting element analysis suggested that several TCA genes might be involved in signal transduction and plant growth. Expression profile analysis showed that many maize TCA cycle genes were expressed in specific tissues, and replicate genes always shared similar expression patterns. Moreover, qPCR analysis revealed that some TCA genes were highly expressed in the anthers at the microspore meiosis phase. In addition, we predicted the potential interaction networks among the maize TCA genes. Next, we cloned five TCA genes located on different TCA enzyme complexes, Zm00001d008244 (isocitrate dehydrogenase, IDH), Zm00001d017258 (succinyl-CoA synthetase, SCoAL), Zm00001d025258 (α-ketoglutarate dehydrogenase, αKGDH), Zm00001d027558 (aconitase, ACO) and Zm00001d044042 (malate dehydrogenase, MDH). Confocal observation showed that their protein products were mainly localized to the mitochondria; however, Zm00001d025258 and Zm00001d027558 were also distributed in the nucleus, and Zm00001d017258 and Zm00001d044042 were also located in other unknown positions in the cytoplasm. Through the bimolecular fluorescent complimentary (BiFC) method, it was determined that Zm00001d027558 and Zm00001d044042 could form homologous dimers, and both homologous dimers were mainly distributed in the mitochondria. However, no heterodimers were detected between these five genes. Finally, Arabidopsis lines overexpressing the above five genes were constructed, and those transgenic lines exhibited altered primary root length, salt tolerance, and fertility. CONCLUSION: Sequence compositions, duplication patterns, phylogenetic relationships, cis-elements, expression patterns, and interaction networks were investigated for all maize TCA cycle genes. Five maize TCA genes were overexpressed in Arabidopsis, and they could alter primary root length, salt tolerance, and fertility. In conclusion, our findings may help to reveal the molecular function of the TCA genes in maize.


Subject(s)
Citric Acid Cycle/genetics , Genes, Plant , Zea mays/genetics , Amino Acid Sequence , Arabidopsis/genetics , Computational Biology , Solanum lycopersicum/genetics , Phylogeny , Plant Proteins/genetics , Sequence Alignment , Transcriptome , Zea mays/metabolism
7.
Nucleic Acids Res ; 45(9): 5126-5141, 2017 May 19.
Article in English | MEDLINE | ID: mdl-28175341

ABSTRACT

Natural antisense transcripts (NATs) are a prominent and complex class of regulatory RNAs. Using strand-specific RNA sequencing, we identified 1769 sense and antisense transcript pairs (NAT pairs) in two maize inbreds with different sensitivity to drought, as well as in two derivative recombination inbred lines (RILs). A significantly higher proportion of NATs relative to non-NATs are specifically expressed under water stress (WS). Surprisingly, expression of sense and antisense transcripts produced by NAT pairs is significantly correlated, particularly under WS. We found an unexpected large proportion of NATs with protein coding potential, as estimated by ribosome release scores. Small RNAs significantly accumulate within NAT pairs, with 21 nt smRNA particularly enriched in overlapping regions of these pairs of genes. The abundance of these smRNAs is significantly altered in the leafbladeless1 mutant, suggesting that these genes may be regulated by the tasiRNA pathway. Further, NATs are significantly hypomethylated and include fewer transposable element sequences relative to non-NAT genes. NAT gene regions also exhibit higher levels of H3K36me3, H3K9ac, and H3K4me3, but lower levels of H3K27me3, indicating that NAT gene pairs generally exhibit an open chromatin configuration. Finally, NAT pairs in 368 diverse maize inbreds and 19 segregating populations were specifically enriched for polymorphisms associated with drought tolerance. Taken together, the data highlight the potential impact of that small RNAs and histone modifications have in regulation of NAT expression, and the significance of NATs in response to WS.


Subject(s)
Acclimatization/genetics , RNA, Antisense , RNA, Plant , Zea mays/genetics , Chromatin/metabolism , DNA Methylation , DNA Transposable Elements , DNA, Plant/metabolism , Droughts , Histones/metabolism , RNA, Antisense/biosynthesis , RNA, Plant/biosynthesis , Stress, Physiological
8.
BMC Plant Biol ; 18(1): 190, 2018 Sep 12.
Article in English | MEDLINE | ID: mdl-30208841

ABSTRACT

BACKGROUND: C-type cytoplasmic male sterility (CMS-C) is one of the three major types of cytoplasmic male sterility (CMS) in maize. Rf4 is a dominant restorer gene for CMS-C and has great value in hybrid maize breeding, but little information concerning its functional mechanism is known. RESULTS: To reveal the functional mechanism of Rf4, we developed a pair of maize near-isogenic lines (NILs) for the Rf4 locus, which included a NIL_rf4 male-sterile line and a NIL_Rf4 male fertility-restored line. Genetic analysis and molecular marker detection indicated that the male fertility of NIL_Rf4 was controlled by Rf4. Whole-genome sequencing demonstrated genomic differences between the two NILs was clustered in the Rf4 mapping region. Unmapped reads of NILs were further assembled to uncover Rf4 candidates. RNA-Seq was then performed for the developing anthers of the NILs to identify critical genes and pathways associated with fertility restoration. A total of 7125 differentially expressed genes (DEGs) were identified. These DEGs were significantly enriched in 242 Gene Ontology (GO) categories, wherein 100 DEGs were involved in pollen tube development, pollen tube growth, pollen development, and gametophyte development. Homology analysis revealed 198 male fertility-related DEGs, and pathway enrichment analysis revealed that 58 DEGs were enriched in cell energy metabolism processes involved in glycolysis, the pentose phosphate pathway, and pyruvate metabolism. By querying the Plant Reactome Pathway database, we found that 14 of the DEGs were involved in the mitochondrial tricarboxylic acid (TCA) cycle and that most of them belonged to the isocitrate dehydrogenase (IDH) and oxoglutarate dehydrogenase (OGDH) enzyme complexes. Transcriptome sequencing and real-time quantitative PCR (qPCR) showed that all the above TCA cycle-related genes were up-regulated in NIL_Rf4. The results of our subsequent enzyme-linked immunosorbent assay (ELISA) experiments pointed out that the contents of both the IDH and OGDH enzymes accumulated more in the spikelets of NIL_Rf4 than in those of NIL_rf4. CONCLUSION: The present research provides valuable genomic resources for deep insight into the molecular mechanism underlying CMS-C male fertility restoration. Importantly, our results indicated that genes involved in energy metabolism, especially some mitochondrial TCA cycle-related genes, were associated with maize CMS-C male fertility restoration.


Subject(s)
Citric Acid Cycle/genetics , Genes, Plant , Zea mays/genetics , Enzyme-Linked Immunosorbent Assay , Fertility/genetics , Gene Expression Profiling , Plant Infertility/genetics , Transcriptome , Zea mays/physiology
9.
Plant Mol Biol ; 95(3): 269-278, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28871377

ABSTRACT

KEY MESSAGE: ZmMGT10 was specifically expressed in maize roots and induced by a deficiency of magnesium. Overexpression of ZmMGT10 restored growth deficiency of the Salmonella typhimurium MM281 strain and enhanced the tolerance in Arabidopsis to stress induced by low magnesium levels by increasing uptake of Mg2+ via roots. CorA/MRS2/MGT-type Mg2+ transporters play a significant role in maintaining magnesium (Mg) homeostasis in plants. Although the maize CorA/MRS2/MGT family comprises of 12 members, currently no member has been functionally characterized. Here, we report the isolation and functional characterization of ZmMGT10 from the maize MRS2/MGT gene family. ZmMGT10 has a typical structure feature which includes two conserved TMs near the C-terminal end and an altered AMN tripeptide motif. The high sequence similarity and close phylogenetic relationship indicates that ZmMGT10 is probably the counterpart of Arabidopsis AtMGT6. The complementation of the Salmonella typhimurium mutated MM281 strain indicates that ZmMGT10 possesses the ability to transport Mg2+. ZmMGT10 was specifically expressed in the plant roots and it can be stimulated by a deficiency of Mg. Transgenic Arabidopsis plants which overexpressed ZmMGT10 grew more vigorously than wild-type plants under low Mg conditions, exhibited by longer root length, higher plant fresh weight and chlorophyll content, suggesting ZmMGT10 was essential for plant growth and development under low Mg conditions. Further investigations found that high accumulation of Mg2+ occurred in transgenic plants attributed to improved Mg2+ uptake and thereby enhanced tolerance to Mg deficiency. Results from this investigation illustrate that ZmMGT10 is a Mg transporter of maize which can enhance the tolerance to Mg deficient conditions by improving Mg2+ uptake in the transgenic plants of Arabidopsis.


Subject(s)
Arabidopsis/metabolism , Cation Transport Proteins/metabolism , Magnesium/metabolism , Plant Proteins/metabolism , Zea mays/metabolism , Adaptation, Physiological/genetics , Amino Acid Sequence , Arabidopsis/genetics , Cation Transport Proteins/classification , Cation Transport Proteins/genetics , Chlorophyll/metabolism , Gene Expression Profiling , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Phylogeny , Plant Proteins/genetics , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/metabolism , Plants, Genetically Modified , Reverse Transcriptase Polymerase Chain Reaction , Sequence Homology, Amino Acid , Zea mays/genetics
10.
Yi Chuan ; 38(8): 677-87, 2016 08.
Article in English | MEDLINE | ID: mdl-27531606

ABSTRACT

Male sterility is defined as failing to produce functional pollen during stamen development in plants, and it plays a crucial role in plant reproductive research and hybrid seed production in utilization of crop heterosis. High throughput RNA sequencing (RNA-seq) has been used widely in the study of different fields of life science, as it readily detects all the mRNA and non-coding RNA in cells. Recently, RNA-seq has been reported to be applied in different species and kinds of pollen abortion types in plants, which has contributed to the understanding of the molecular mechanism and metabolic networks of male sterility at the transcription level. In this review, we summarize research progress on the mechanisms of male sterility in plants, focusing on RNA-seq analysis encompassing strategies of RNA library construction, differentially expressed genes and functional characteristics of noncoding RNAs involved in stamen abortion. Furthermore, we also discuss application of transcriptome sequencing technology to elucidate pollen abortion mechanisms and map fertility-related genes. We hope to provide references to the study of male sterility in plants.


Subject(s)
Plant Infertility/genetics , Plants/genetics , Gene Expression Regulation, Plant/genetics , Gene Library , High-Throughput Nucleotide Sequencing/methods , Pollen/genetics , RNA, Messenger/genetics , Sequence Analysis, RNA/methods
11.
Breed Sci ; 65(4): 298-307, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26366112

ABSTRACT

Although the root system is indispensable for absorption of nutrients and water, it is poorly studied in maize owing to the difficulties of direct measurement of roots. Here, 103 maize lines were used to compare root architectures under well-watered and water-stressed conditions. Significant genetic variation, with medium to high heritability and significant correlations, was observed for root traits. Total root length (TRL) and total root surface area (TSA) had high phenotypical diversity, and TRL was positively correlated with TSA, root volume, and root forks. The first two principal components explained 94.01% and 91.15% of total root variation in well-watered and water-stressed conditions, respectively. Thus, TRL and TSA, major contributors to root variation, can be used as favorable selection criteria at the seedling stage. We found that stiff stalk and non-stiff stalk groups (temperate backgrounds) showed relatively higher mean values for root morphological diversity than the TST group (tropical/subtropical background). Of the tested lines, 7, 42, 45, and 9 were classified as drought sensitive, moderately sensitive, moderately drought tolerant, and highly drought tolerant, respectively. Seven of the 9 extremely drought tolerant lines were from the TST group, suggesting that TST germplasms harbor valuable genetic resources for drought tolerance that could be used in breeding to improve abiotic stress tolerance in maize.

12.
Yi Chuan ; 37(12): 1194-203, 2015 12.
Article in Zh | MEDLINE | ID: mdl-26704944

ABSTRACT

Male sterility exists widely in the spermatophytes. It contributes to the study of plant reproductive development and can be used as an effective tool for hybrid seed production in heterosis utilization. Therefore, the study on male sterility is of great value in both theory and application. As one of the largest transcription factor families in plants, basic helix-loop-helix proteins (bHLHs) play a crucial role in regulating plant growth and development. This paper introduces the mechanism of bHLH regulating stamen development in several important model plants. Furthermore, we discuss the molecular mechanisms of genic male sterility resulting from bHLH dysfunction to provide references for crop breeding and theoretical studies.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Plant Infertility , Plant Proteins/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Evolution, Molecular , Phylogeny , Plant Proteins/genetics , Plants/classification , Plants/genetics
13.
BMC Plant Biol ; 14: 83, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24684805

ABSTRACT

BACKGROUND: Drought stress is one of the major limiting factors for maize production. With the availability of maize B73 reference genome and whole-genome resequencing of 15 maize inbreds, common variants (CV) and clustering analyses were applied to identify non-synonymous SNPs (nsSNPs) and corresponding candidate genes for drought tolerance. RESULTS: A total of 524 nsSNPs that were associated with 271 candidate genes involved in plant hormone regulation, carbohydrate and sugar metabolism, signaling molecules regulation, redox reaction and acclimation of photosynthesis to environment were detected by CV and cluster analyses. Most of the nsSNPs identified were clustered in bin 1.07 region that harbored six previously reported QTL with relatively high phenotypic variation explained for drought tolerance. Genes Ontology (GO) analysis of candidate genes revealed that there were 35 GO terms related to biotic stimulus and membrane-bounded organelle, showing significant differences between the candidate genes and the reference B73 background. Changes of expression level in these candidate genes for drought tolerance were detected using RNA sequencing for fertilized ovary, basal leaf meristem tissue and roots collected under drought stressed and well-watered conditions. The results indicated that 70% of candidate genes showed significantly expression changes under two water treatments and our strategies for mining candidate genes are feasible and relatively efficient. CONCLUSIONS: Our results successfully revealed candidate nsSNPs and associated genes for drought tolerance by comparative sequence analysis of 16 maize inbred lines. Both methods we applied were proved to be efficient for identifying candidate genes for complex traits through the next-generation sequencing technologies (NGS). These selected genes will not only facilitate understanding of genetic basis of drought stress response, but also accelerate genetic improvement through marker-assisted selection in maize.


Subject(s)
Adaptation, Physiological/genetics , Genetic Association Studies , Genome, Plant/genetics , Sequence Analysis, DNA/methods , Zea mays/genetics , Zea mays/physiology , Chromosomes, Plant/genetics , Cluster Analysis , Dehydration , Droughts , Gene Ontology , Genes, Plant , Genotype , Inbreeding , Nucleic Acid Denaturation/genetics , Polymerase Chain Reaction , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reproducibility of Results
14.
Yi Chuan ; 36(10): 1021-6, 2014 Oct.
Article in Zh | MEDLINE | ID: mdl-25406250

ABSTRACT

Cytoplasmic male sterility (CMS) is a widespread phenomenon in higher plants and has been applied in the commercial production of hybrid seeds. Two CMS lines A1 and A2 of maize were obtained previously by a transgenic experiment. In this study, we conducted cytological observation of developmental microspores with CMS line A1, A2 and their maintainer line (18 red) using paraffin section technology. We also analyzed DNA methylation levels at different developmental stages using high performance liquid chromatography (HPLC). Our results showed that the pollen abortion of A1 and A2 mainly happened from the tetrad stage to the middle of mononuclear stage. Another abortive phenomenon found in CMS line A2 occurred at the pollen mother cell stage. The DNA methylation level of leaf increased rapidly from the seedling stage to the shooting stage in 18 red, while it remained constant in A1 and A2. For the tassel, the DNA methylation levels in 18 red increased gradually during the anther development, while a peak of DNA methylation level occurred in A1 and A2 at the tetrad stage, corresponding to the abortion period of microspore. This result suggested that the level of DNA methylation in the tassels is associated with the pollen abortion characteristics in CMS lines. In summary, our results implied a connection between pollen abortion and epigenetic regulation in maize CMS.


Subject(s)
Cytoplasm/genetics , DNA Methylation , Plant Infertility/genetics , Pollen/cytology , Pollen/growth & development , Zea mays/cytology , Zea mays/genetics , Zea mays/growth & development
15.
Proc Natl Acad Sci U S A ; 107(45): 19585-90, 2010 Nov 09.
Article in English | MEDLINE | ID: mdl-20974948

ABSTRACT

This paper describes two joint linkage-linkage disequilibrium (LD) mapping approaches: parallel mapping (independent linkage and LD analysis) and integrated mapping (datasets analyzed in combination). These approaches were achieved using 2,052 single nucleotide polymorphism (SNP) markers, including 659 SNPs developed from drought-response candidate genes, screened across three recombinant inbred line (RIL) populations and 305 diverse inbred lines, with anthesis-silking interval (ASI), an important trait for maize drought tolerance, as the target trait. Mapping efficiency was improved significantly due to increased population size and allele diversity and balanced allele frequencies. Integrated mapping identified 18 additional quantitative trait loci (QTL) not detected by parallel mapping. The use of haplotypes improved mapping efficiency, with the sum of phenotypic variation explained (PVE) increasing from 5.4% to 23.3% for single SNP-based analysis. Integrated mapping with haplotype further improved the mapping efficiency, and the most significant QTL had a PVE of up to 34.7%. Normal allele frequencies for 113 of 277 (40.8%) SNPs with minor allele frequency (<5%) in 305 lines were recovered in three RIL populations, three of which were significantly associated with ASI. The candidate genes identified by two significant haplotype loci included one for a SET domain protein involved in the control of flowering time and the other encoding aldo/keto reductase associated with detoxification pathways that contribute to cellular damage due to environmental stress. Joint linkage-LD mapping is a powerful approach for detecting QTL underlying complex traits, including drought tolerance.


Subject(s)
Acclimatization/genetics , Linkage Disequilibrium , Quantitative Trait Loci , Zea mays/genetics , Zea mays/physiology , Alcohol Oxidoreductases/genetics , Aldehyde Reductase , Aldo-Keto Reductases , Computational Biology , Droughts , Flowers/genetics , Haplotypes , Phenotype , Polymorphism, Single Nucleotide
16.
Yi Chuan ; 35(7): 903-12, 2013 Jul.
Article in Zh | MEDLINE | ID: mdl-23853362

ABSTRACT

Three maize (Zea mays L.) inbred lines 08-641, RP125, and 18-599 were carried into cosmic space by recoverable satellite "Shijian 8". Some mutant lines were selected from SP4 and combinations were made according to the NC II genetic design. The materials were planted in Sichuan and Yunnan separately to analyze combining ability based on the incomplete diallel cross design. The results showed that space flight affected the combining ability of mutant lines, and the GCA value of mutant lines were different in two kinds of environmental condition. The GCA of ear length, row per ear, kernel per row, and yield per plant for the mutant line C03 showed substantial increase compared with the control 08-641; the GCA of row per ear, kernel per row, and other yield component traits for the mutant lines C01 and C04 were significantly higher than those of the control. The SCA of yield and yield components for the combinations derived from the mutant lines C06, R18, and S22 were higher than others. These results laid a material foundation for maize breeding and provided some important references for improving and utilizing the mutant lines.


Subject(s)
Space Flight , Zea mays/genetics , Crosses, Genetic , Genotype , Inbreeding , Phenotype , Zea mays/growth & development
17.
BMC Plant Biol ; 12: 65, 2012 May 08.
Article in English | MEDLINE | ID: mdl-22569006

ABSTRACT

BACKGROUND: Little is known about the potential of Brachypodium distachyon as a model for low temperature stress responses in Pooideae. The ice recrystallization inhibition protein (IRIP) genes, fructosyltransferase (FST) genes, and many C-repeat binding factor (CBF) genes are Pooideae specific and important in low temperature responses. Here we used comparative analyses to study conservation and evolution of these gene families in B. distachyon to better understand its potential as a model species for agriculturally important temperate grasses. RESULTS: Brachypodium distachyon contains cold responsive IRIP genes which have evolved through Brachypodium specific gene family expansions. A large cold responsive CBF3 subfamily was identified in B. distachyon, while CBF4 homologs are absent from the genome. No B. distachyon FST gene homologs encode typical core Pooideae FST-motifs and low temperature induced fructan accumulation was dramatically different in B. distachyon compared to core Pooideae species. CONCLUSIONS: We conclude that B. distachyon can serve as an interesting model for specific molecular mechanisms involved in low temperature responses in core Pooideae species. However, the evolutionary history of key genes involved in low temperature responses has been different in Brachypodium and core Pooideae species. These differences limit the use of B. distachyon as a model for holistic studies relevant for agricultural core Pooideae species.


Subject(s)
Brachypodium/genetics , Cold-Shock Response , Fructans/metabolism , Multigene Family , Adaptation, Physiological , Amino Acid Motifs , Amino Acid Sequence , Brachypodium/physiology , Cold Temperature , Evolution, Molecular , Flowers/genetics , Flowers/physiology , Fructans/genetics , Genes, Plant , Models, Biological , Oligonucleotide Array Sequence Analysis , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Seasons , Sequence Alignment , Species Specificity , Transcriptome
18.
J Integr Plant Biol ; 54(6): 358-73, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22583799

ABSTRACT

The control of flowering is not only important for reproduction, but also plays a key role in the processes of domestication and adaptation. To reveal the genetic architecture for flowering time and photoperiod sensitivity, a comprehensive evaluation of the relevant literature was performed and followed by meta analysis. A total of 25 synthetic consensus quantitative trait loci (QTL) and four hot-spot genomic regions were identified for photoperiod sensitivity including 11 genes related to photoperiod response or flower morphogenesis and development. Besides, a comparative analysis of the QTL for flowering time and photoperiod sensitivity highlighted the regions containing shared and unique QTL for the two traits. Candidate genes associated with maize flowering were identified through integrated analysis of the homologous genes for flowering time in plants and the consensus QTL regions for photoperiod sensitivity in maize (Zea mays L.). Our results suggest that the combination of literature review, meta-analysis and homologous blast is an efficient approach to identify new candidate genes and create a global view of the genetic architecture for maize photoperiodic flowering. Sequences of candidate genes can be used to develop molecular markers for various models of marker-assisted selection, such as marker-assisted recurrent selection and genomic selection that can contribute significantly to crop environmental adaptation.


Subject(s)
Flowers/physiology , Photoperiod , Quantitative Trait Loci , Zea mays/genetics , Gene Expression Regulation, Plant , Genes, Plant
19.
Funct Integr Genomics ; 11(1): 179-91, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21042925

ABSTRACT

In higher plants, microRNA (miRNA) is involved in regulation of developmental processes, including sexual organ development. Seven novel miRNA families with one known miRNA were isolated by constructing a small RNA library from a mixture of anther from a cytoplasmic male sterile line and its maintainer. Two miRNAs are conserved in plant species. A total of 18 potential targets were identified for the eight miRNA families, including 15 proteins annotated with function and three unknown proteins. The known proteins include several proteins relevant to cell structure and stress response, transcription factors, and enzymes associated with metabolic and signaling pathways, playing important roles in microspore development. Quantitative real-time PCR assay revealed different expression patterns of the miRNAs between the cytoplasmic male sterile line and its maintainer. Each of the miRNAs tended to be down-regulated after the tetrad stage in a fertile line. However, most of the miRNAs in the cytoplasmic male sterile line were shown to be up-regulated from the tetrad to mononuclear stage, displaying special expression patterns differing from the ones in fertile line. We conclude that additional inactive miRNA pathways are essential during pollen development for a fertile line to ensure male fertility. Contrarily, miRNAs are up-regulated during the period from the tetrad to mononuclear stage, which contributes to pollen abortion for a cytoplasmic male sterile line.


Subject(s)
Cytoplasm/metabolism , Gene Expression Regulation, Plant , Genes, Plant/genetics , MicroRNAs/genetics , Plant Infertility/genetics , Zea mays/genetics , Gene Expression Profiling , Oligonucleotide Array Sequence Analysis
20.
Yi Chuan ; 33(2): 175-81, 2011 Feb.
Article in Zh | MEDLINE | ID: mdl-21377975

ABSTRACT

Three maize male sterile mutants were obtained from the offsprings of two maize inbred lines 18-599 and 08-641, which were carried into space by the Shijian 8 Satellite. The stability of male sterile expression was observed in different locations, years, and seasons. In order to analyze the genetic characteristic of male sterility, testcross, backcross and reciprocal cross were made with these male sterile plants. The results showed that the male sterility character was stable in different locations, years, and seasons, and the sterility was inheritable. Because the maintainer lines and restorer lines for these sterile materials were found, and there was no male sterile plant separated among the reciprocal cross F2. Thus, we concluded that these mutants could be cytoplasmic male sterile. Combining the results of male fertility restoration test and PCR analysis, we could conclude that the three male sterile mutants were classified into the CMS-C type in maize. Owing to their difference in fertility restoration, these mutants may belong to different subgroups of CMS-C type. The discovery of the three male sterile mutants increased the genetic diversity of CMS-C type, improved the tolerance to Bipolaris maydis, and laid a foundation for extensive application of CMS-C in seeds production.


Subject(s)
Cytoplasm/physiology , Mutation , Plant Infertility , Space Flight , Zea mays/genetics , Breeding , Cytoplasm/genetics , Zea mays/physiology
SELECTION OF CITATIONS
SEARCH DETAIL