Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 100
Filter
Add more filters

Publication year range
1.
Zhongguo Dang Dai Er Ke Za Zhi ; 25(11): 1107-1112, 2023 Nov 15.
Article in Zh | MEDLINE | ID: mdl-37990453

ABSTRACT

OBJECTIVES: To study the efficacy and safety of Xiyanping injection through intramuscular injection for the treatment of acute bronchitis in children. METHODS: A prospective study was conducted from December 2021 to October 2022, including 78 children with acute bronchitis from three hospitals using a multicenter, randomized, parallel-controlled design. The participants were divided into a test group (conventional treatment plus Xiyanping injection; n=36) and a control group (conventional treatment alone; n=37) in a 1:1 ratio. Xiyanping injection was administered at a dose of 0.3 mL/(kg·d) (total daily dose ≤8 mL), twice daily via intramuscular injection, with a treatment duration of ≤4 days and a follow-up period of 7 days. The treatment efficacy and safety were compared between the two groups. RESULTS: The total effective rate on the 3rd day after treatment in the test group was significantly higher than that in the control group (P<0.05), while there was no significant difference in the total effective rate on the 5th day between the two groups (P>0.05). The rates of fever relief, cough relief, and lung rale relief in the test group on the 3rd day after treatment were higher than those in the control group (P<0.05). The cough relief rate on the 5th day after treatment in the test group was higher than that in the control group (P<0.05), while there was no significant difference in the fever relief rate and lung rale relief rate between the two groups (P>0.05). The cough relief time, daily cough relief time, and nocturnal cough relief time in the test group were significantly shorter than those in the control group (P<0.05), while there were no significant differences in the fever duration and lung rale relief time between the two groups (P>0.05). There was no significant difference in the incidence of adverse events between the two groups (P>0.05). CONCLUSIONS: The overall efficacy of combined routine treatment with intramuscular injection of Xiyanping injection in the treatment of acute bronchitis in children is superior to that of routine treatment alone, without an increase in the incidence of adverse reactions.


Subject(s)
Bronchitis , Cough , Humans , Child , Injections, Intramuscular , Cough/drug therapy , Prospective Studies , Respiratory Sounds , Bronchitis/drug therapy , Treatment Outcome
2.
Int J Comput Vis ; 130(6): 1494-1525, 2022.
Article in English | MEDLINE | ID: mdl-35465628

ABSTRACT

The goal of Facial Kinship Verification (FKV) is to automatically determine whether two individuals have a kin relationship or not from their given facial images or videos. It is an emerging and challenging problem that has attracted increasing attention due to its practical applications. Over the past decade, significant progress has been achieved in this new field. Handcrafted features and deep learning techniques have been widely studied in FKV. The goal of this paper is to conduct a comprehensive review of the problem of FKV. We cover different aspects of the research, including problem definition, challenges, applications, benchmark datasets, a taxonomy of existing methods, and state-of-the-art performance. In retrospect of what has been achieved so far, we identify gaps in current research and discuss potential future research directions.

3.
Sensors (Basel) ; 18(7)2018 Jul 23.
Article in English | MEDLINE | ID: mdl-30041441

ABSTRACT

In this paper, a novel imperceptible, fragile and blind watermark scheme is proposed for speech tampering detection and self-recovery. The embedded watermark data for content recovery is calculated from the original discrete cosine transform (DCT) coefficients of host speech. The watermark information is shared in a frames-group instead of stored in one frame. The scheme trades off between the data waste problem and the tampering coincidence problem. When a part of a watermarked speech signal is tampered with, one can accurately localize the tampered area, the watermark data in the area without any modification still can be extracted. Then, a compressive sensing technique is employed to retrieve the coefficients by exploiting the sparseness in the DCT domain. The smaller the tampered the area, the better quality of the recovered signal is. Experimental results show that the watermarked signal is imperceptible, and the recovered signal is intelligible for high tampering rates of up to 47.6%. A deep learning-based enhancement method is also proposed and implemented to increase the SNR of recovered speech signal.

4.
IEEE Trans Pattern Anal Mach Intell ; 46(2): 1093-1108, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37930909

ABSTRACT

Image restoration aims to reconstruct the latent sharp image from its corrupted counterpart. Besides dealing with this long-standing task in the spatial domain, a few approaches seek solutions in the frequency domain by considering the large discrepancy between spectra of sharp/degraded image pairs. However, these algorithms commonly utilize transformation tools, e.g., wavelet transform, to split features into several frequency parts, which is not flexible enough to select the most informative frequency component to recover. In this paper, we exploit a multi-branch and content-aware module to decompose features into separate frequency subbands dynamically and locally, and then accentuate the useful ones via channel-wise attention weights. In addition, to handle large-scale degradation blurs, we propose an extremely simple decoupling and modulation module to enlarge the receptive field via global and window-based average pooling. Furthermore, we merge the paradigm of multi-stage networks into a single U-shaped network to pursue multi-scale receptive fields and improve efficiency. Finally, integrating the above designs into a convolutional backbone, the proposed Frequency Selection Network (FSNet) performs favorably against state-of-the-art algorithms on 20 different benchmark datasets for 6 representative image restoration tasks, including single-image defocus deblurring, image dehazing, image motion deblurring, image desnowing, image deraining, and image denoising.

5.
Article in English | MEDLINE | ID: mdl-38917284

ABSTRACT

Image restoration aims to reconstruct a high-quality image from its corrupted version, playing essential roles in many scenarios. Recent years have witnessed a paradigm shift in image restoration from convolutional neural networks (CNNs) to Transformerbased models due to their powerful ability to model long-range pixel interactions. In this paper, we explore the potential of CNNs for image restoration and show that the proposed simple convolutional network architecture, termed ConvIR, can perform on par with or better than the Transformer counterparts. By re-examing the characteristics of advanced image restoration algorithms, we discover several key factors leading to the performance improvement of restoration models. This motivates us to develop a novel network for image restoration based on cheap convolution operators. Comprehensive experiments demonstrate that our ConvIR delivers state-ofthe- art performance with low computation complexity among 20 benchmark datasets on five representative image restoration tasks, including image dehazing, image motion/defocus deblurring, image deraining, and image desnowing.

6.
Article in English | MEDLINE | ID: mdl-39356599

ABSTRACT

Inertial measurement units (IMU) in the capturing device can record the motion information of the device, with gyroscopes measuring angular velocity and accelerometers measuring acceleration. However, conventional deblurring methods seldom incorporate IMU data, and existing approaches that utilize IMU information often face challenges in fully leveraging this valuable data, resulting in noise issues from the sensors. To address these issues, in this paper, we propose a multi-stage deblurring network named INformer, which combines inertial information with the Transformer architecture. Specifically, we design an IMU-image Attention Fusion (IAF) block to merge motion information derived from inertial measurements with blurry image features at the attention level. Furthermore, we introduce an Inertial-Guided Deformable Attention (IGDA) block for utilizing the motion information features as guidance to adaptively adjust the receptive field, which can further refine the corresponding blur kernel for pixels. Extensive experiments on comprehensive benchmarks demonstrate that our proposed method performs favorably against state-of-the-art deblurring approaches.

7.
Article in English | MEDLINE | ID: mdl-38861429

ABSTRACT

Collaborative Metric Learning (CML) has recently emerged as a popular method in recommendation systems (RS), closing the gap between metric learning and collaborative filtering. Following the convention of RS, existing practices exploit unique user representation in their model design. This paper focuses on a challenging scenario where a user has multiple categories of interests. Under this setting, the unique user representation might induce preference bias, especially when the item category distribution is imbalanced. To address this issue, we propose a novel method called Diversity-Promoting Collaborative Metric Learning (DPCML), with the hope of considering the commonly ignored minority interest of the user. The key idea behind DPCML is to introduce a set of multiple representations for each user in the system where users' preference toward an item is aggregated by taking the minimum item-user distance among their embedding set. Specifically, we instantiate two effective assignment strategies to explore a proper quantity of vectors for each user. Meanwhile, a Diversity Control Regularization Scheme (DCRS) is developed to accommodate the multi-vector representation strategy better. Theoretically, we show that DPCML could induce a smaller generalization error than traditional CML. Furthermore, we notice that CML-based approaches usually require negative sampling to reduce the heavy computational burden caused by the pairwise objective therein. In this paper, we reveal the fundamental limitation of the widely adopted hard-aware sampling from the One-Way Partial AUC (OPAUC) perspective and then develop an effective sampling alternative for the CML-based paradigm. Finally, comprehensive experiments over a range of benchmark datasets speak to the efficacy of DPCML.

8.
IEEE Trans Pattern Anal Mach Intell ; 46(8): 5541-5555, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38412089

ABSTRACT

Optical aberration is a ubiquitous degeneration in realistic lens-based imaging systems. Optical aberrations are caused by the differences in the optical path length when light travels through different regions of the camera lens with different incident angles. The blur and chromatic aberrations manifest significant discrepancies when the optical system changes. This work designs a transferable and effective image simulation system of simple lenses via multi-wavelength, depth-aware, spatially-variant four-dimensional point spread functions (4D-PSFs) estimation by changing a small amount of lens-dependent parameters. The image simulation system can alleviate the overhead of dataset collecting and exploiting the principle of computational imaging for effective optical aberration correction. With the guidance of domain knowledge about the image formation model provided by the 4D-PSFs, we establish a multi-scale optical aberration correction network for degraded image reconstruction, which consists of a scene depth estimation branch and an image restoration branch. Specifically, we propose to predict adaptive filters with the depth-aware PSFs and carry out dynamic convolutions, which facilitate the model's generalization in various scenes. We also employ convolution and self-attention mechanisms for global and local feature extraction and realize a spatially-variant restoration. The multi-scale feature extraction complements the features across different scales and provides fine details and contextual features. Extensive experiments demonstrate that our proposed algorithm performs favorably against state-of-the-art restoration methods.

9.
IEEE Trans Pattern Anal Mach Intell ; 46(10): 6713-6730, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38598383

ABSTRACT

A long-standing topic in artificial intelligence is the effective recognition of patterns from noisy images. In this regard, the recent data-driven paradigm considers 1) improving the representation robustness by adding noisy samples in training phase (i.e., data augmentation) or 2) pre-processing the noisy image by learning to solve the inverse problem (i.e., image denoising). However, such methods generally exhibit inefficient process and unstable result, limiting their practical applications. In this paper, we explore a non-learning paradigm that aims to derive robust representation directly from noisy images, without the denoising as pre-processing. Here, the noise-robust representation is designed as Fractional-order Moments in Radon space (FMR), with also beneficial properties of orthogonality and rotation invariance. Unlike earlier integer-order methods, our work is a more generic design taking such classical methods as special cases, and the introduced fractional-order parameter offers time-frequency analysis capability that is not available in classical methods. Formally, both implicit and explicit paths for constructing the FMR are discussed in detail. Extensive simulation experiments and robust visual applications are provided to demonstrate the uniqueness and usefulness of our FMR, especially for noise robustness, rotation invariance, and time-frequency discriminability.

10.
Article in English | MEDLINE | ID: mdl-38896521

ABSTRACT

Rank aggregation with pairwise comparisons is widely encountered in sociology, politics, economics, psychology, sports, etc. Given the enormous social impact and the consequent incentives, the potential adversary has a strong motivation to manipulate the ranking list. However, the ideal attack opportunity and the excessive adversarial capability cause the existing methods to be impractical. To fully explore the potential risks, we leverage an online attack on the vulnerable data collection process. Since it is independent of rank aggregation and lacks effective protection mechanisms, we disrupt the data collection process by fabricating pairwise comparisons without knowledge of the future data or the true distribution. From the game-theoretic perspective, the confrontation scenario between the online manipulator and the ranker who takes control of the original data source is formulated as a distributionally robust game that deals with the uncertainty of knowledge. Then we demonstrate that the equilibrium in the above game is potentially favorable to the adversary by analyzing the vulnerability of the sampling algorithms such as Bernoulli and reservoir methods. According to the above theoretical analysis, different sequential manipulation policies are proposed under a Bayesian decision framework and a large class of parametric pairwise comparison models. For attackers with complete knowledge, we establish the asymptotic optimality of the proposed policies. To increase the success rate of the sequential manipulation with incomplete knowledge, a distributionally robust estimator, which replaces the maximum likelihood estimation in a saddle point problem, provides a conservative data generation solution. Finally, the corroborating empirical evidence shows that the proposed method manipulates the results of rank aggregation methods in a sequential manner.

11.
IEEE Trans Pattern Anal Mach Intell ; 46(9): 6367-6383, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38530739

ABSTRACT

Fast adversarial training (FAT) is an efficient method to improve robustness in white-box attack scenarios. However, the original FAT suffers from catastrophic overfitting, which dramatically and suddenly reduces robustness after a few training epochs. Although various FAT variants have been proposed to prevent overfitting, they require high training time. In this paper, we investigate the relationship between adversarial example quality and catastrophic overfitting by comparing the training processes of standard adversarial training and FAT. We find that catastrophic overfitting occurs when the attack success rate of adversarial examples becomes worse. Based on this observation, we propose a positive prior-guided adversarial initialization to prevent overfitting by improving adversarial example quality without extra training time. This initialization is generated by using high-quality adversarial perturbations from the historical training process. We provide theoretical analysis for the proposed initialization and propose a prior-guided regularization method that boosts the smoothness of the loss function. Additionally, we design a prior-guided ensemble FAT method that averages the different model weights of historical models using different decay rates. Our proposed method, called FGSM-PGK, assembles the prior-guided knowledge, i.e., the prior-guided initialization and model weights, acquired during the historical training process. The proposed method can effectively improve the model's adversarial robustness in white-box attack scenarios. Evaluations of four datasets demonstrate the superiority of the proposed method.

12.
Article in English | MEDLINE | ID: mdl-37022900

ABSTRACT

Most multi-exposure image fusion (MEF) methods perform unidirectional alignment within limited and local regions, which ignore the effects of augmented locations and preserve deficient global features. In this work, we propose a multi-scale bidirectional alignment network via deformable self-attention to perform adaptive image fusion. The proposed network exploits differently exposed images and aligns them to the normal exposure in varying degrees. Specifically, we design a novel deformable self-attention module that considers variant long-distance attention and interaction and implements the bidirectional alignment for image fusion. To realize adaptive feature alignment, we employ a learnable weighted summation of different inputs and predict the offsets in the deformable self-attention module, which facilitates that the model generalizes well in various scenes. In addition, the multi-scale feature extraction strategy makes the features across different scales complementary and provides fine details and contextual features. Extensive experiments demonstrate that our proposed algorithm performs favorably against state-of-the-art MEF methods.

13.
IEEE Trans Image Process ; 32: 5465-5477, 2023.
Article in English | MEDLINE | ID: mdl-37773909

ABSTRACT

Context modeling or multi-level feature fusion methods have been proved to be effective in improving semantic segmentation performance. However, they are not specialized to deal with the problems of pixel-context mismatch and spatial feature misalignment, and the high computational complexity hinders their widespread application in real-time scenarios. In this work, we propose a lightweight Context and Spatial Feature Calibration Network (CSFCN) to address the above issues with pooling-based and sampling-based attention mechanisms. CSFCN contains two core modules: Context Feature Calibration (CFC) module and Spatial Feature Calibration (SFC) module. CFC adopts a cascaded pyramid pooling module to efficiently capture nested contexts, and then aggregates private contexts for each pixel based on pixel-context similarity to realize context feature calibration. SFC splits features into multiple groups of sub-features along the channel dimension and propagates sub-features therein by the learnable sampling to achieve spatial feature calibration. Extensive experiments on the Cityscapes and CamVid datasets illustrate that our method achieves a state-of-the-art trade-off between speed and accuracy. Concretely, our method achieves 78.7% mIoU with 70.0 FPS and 77.8% mIoU with 179.2 FPS on the Cityscapes and CamVid test sets, respectively. The code is available at https://nave.vr3i.com/ and https://github.com/kaigelee/CSFCN.

14.
IEEE Trans Image Process ; 32: 4393-4406, 2023.
Article in English | MEDLINE | ID: mdl-37490377

ABSTRACT

Sketch classification models have been extensively investigated by designing a task-driven deep neural network. Despite their successful performances, few works have attempted to explain the prediction of sketch classifiers. To explain the prediction of classifiers, an intuitive way is to visualize the activation maps via computing the gradients. However, visualization based explanations are constrained by several factors when directly applying them to interpret the sketch classifiers: (i) low-semantic visualization regions for human understanding. and (ii) neglecting of the inter-class correlations among distinct categories. To address these issues, we introduce a novel explanation method to interpret the decision of sketch classifiers with stroke-level evidences. Specifically, to achieve stroke-level semantic regions, we first develop a sketch parser that parses the sketch into strokes while preserving their geometric structures. Then, we design a counterfactual map generator to discover the stroke-level principal components for a specific category. Finally, based on the counterfactual feature maps, our model could explain the question of "why the sketch is classified as X" by providing positive and negative semantic explanation evidences. Experiments conducted on two public sketch benchmarks, Sketchy-COCO and TU-Berlin, demonstrate the effectiveness of our proposed model. Furthermore, our model could provide more discriminative and human understandable explanations compared with these existing works.

15.
IEEE Trans Pattern Anal Mach Intell ; 45(6): 7668-7685, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37819793

ABSTRACT

Nowadays, machine learning (ML) and deep learning (DL) methods have become fundamental building blocks for a wide range of AI applications. The popularity of these methods also makes them widely exposed to malicious attacks, which may cause severe security concerns. To understand the security properties of the ML/DL methods, researchers have recently started to turn their focus to adversarial attack algorithms that could successfully corrupt the model or clean data owned by the victim with imperceptible perturbations. In this paper, we study the Label Flipping Attack (LFA) problem, where the attacker expects to corrupt an ML/DL model's performance by flipping a small fraction of the labels in the training data. Prior art along this direction adopts combinatorial optimization problems, leading to limited scalability toward deep learning models. To this end, we propose a novel minimax problem which provides an efficient reformulation of the sample selection process in LFA. In the new optimization problem, the sample selection operation could be implemented with a single thresholding parameter. This leads to a novel training algorithm called Sample Thresholding. Since the objective function is differentiable and the model complexity does not depend on the sample size, we can apply Sample Thresholding to attack deep learning models. Moreover, since the victim's behavior is not predictable in a poisonous attack setting, we have to employ surrogate models to simulate the true model employed by the victim model. Seeing the problem, we provide a theoretical analysis of such a surrogate paradigm. Specifically, we show that the performance gap between the true model employed by the victim and the surrogate model is small under mild conditions. On top of this paradigm, we extend Sample Thresholding to the crowdsourced ranking task, where labels collected from the annotators are vulnerable to adversarial attacks. Finally, experimental analyses on three real-world datasets speak to the efficacy of our method.

16.
IEEE Trans Image Process ; 32: 5394-5407, 2023.
Article in English | MEDLINE | ID: mdl-37721874

ABSTRACT

Human parsing aims to segment each pixel of the human image with fine-grained semantic categories. However, current human parsers trained with clean data are easily confused by numerous image corruptions such as blur and noise. To improve the robustness of human parsers, in this paper, we construct three corruption robustness benchmarks, termed LIP-C, ATR-C, and Pascal-Person-Part-C, to assist us in evaluating the risk tolerance of human parsing models. Inspired by the data augmentation strategy, we propose a novel heterogeneous augmentation-enhanced mechanism to bolster robustness under commonly corrupted conditions. Specifically, two types of data augmentations from different views, i.e., image-aware augmentation and model-aware image-to-image transformation, are integrated in a sequential manner for adapting to unforeseen image corruptions. The image-aware augmentation can enrich the high diversity of training images with the help of common image operations. The model-aware augmentation strategy that improves the diversity of input data by considering the model's randomness. The proposed method is model-agnostic, and it can plug and play into arbitrary state-of-the-art human parsing frameworks. The experimental results show that the proposed method demonstrates good universality which can improve the robustness of the human parsing models and even the semantic segmentation models when facing various image common corruptions. Meanwhile, it can still obtain approximate performance on clean data.

17.
IEEE Trans Pattern Anal Mach Intell ; 45(1): 1017-1035, 2023 Jan.
Article in English | MEDLINE | ID: mdl-34995181

ABSTRACT

The recently proposed Collaborative Metric Learning (CML) paradigm has aroused wide interest in the area of recommendation systems (RS) owing to its simplicity and effectiveness. Typically, the existing literature of CML depends largely on the negative sampling strategy to alleviate the time-consuming burden of pairwise computation. However, in this work, by taking a theoretical analysis, we find that negative sampling would lead to a biased estimation of the generalization error. Specifically, we show that the sampling-based CML would introduce a bias term in the generalization bound, which is quantified by the per-user Total Variance (TV) between the distribution induced by negative sampling and the ground truth distribution. This suggests that optimizing the sampling-based CML loss function does not ensure a small generalization error even with sufficiently large training data. Moreover, we show that the bias term will vanish without the negative sampling strategy. Motivated by this, we propose an efficient alternative without negative sampling for CML named Sampling-Free Collaborative Metric Learning (SFCML), to get rid of the sampling bias in a practical sense. Finally, comprehensive experiments over seven benchmark datasets speak to the supriority of the proposed algorithm.

18.
IEEE Trans Neural Netw Learn Syst ; 34(10): 7635-7647, 2023 Oct.
Article in English | MEDLINE | ID: mdl-35113790

ABSTRACT

The existing deep multiview clustering (MVC) methods are mainly based on autoencoder networks, which seek common latent variables to reconstruct the original input of each view individually. However, due to the view-specific reconstruction loss, it is challenging to extract consistent latent representations over multiple views for clustering. To address this challenge, we propose adversarial MVC (AMvC) networks in this article. The proposed AMvC generates each view's samples conditioning on the fused latent representations among different views to encourage a more consistent clustering structure. Specifically, multiview encoders are used to extract latent descriptions from all the views, and the corresponding generators are used to generate the reconstructed samples. The discriminative networks and the mean squared loss are jointly utilized for training the multiview encoders and generators to balance the distinctness and consistency of each view's latent representation. Moreover, an adaptive fusion layer is developed to obtain a shared latent representation, on which a clustering loss and the l1,2 -norm constraint are further imposed to improve clustering performance and distinguish the latent space. Experimental results on video, image, and text datasets demonstrate that the effectiveness of our AMvC is over several state-of-the-art deep MVC methods.

19.
IEEE Trans Pattern Anal Mach Intell ; 45(5): 5337-5354, 2023 May.
Article in English | MEDLINE | ID: mdl-36074881

ABSTRACT

Image forensics is a rising topic as the trustworthy multimedia content is critical for modern society. Like other vision-related applications, forensic analysis relies heavily on the proper image representation. Despite the importance, current theoretical understanding for such representation remains limited, with varying degrees of neglect for its key role. For this gap, we attempt to investigate the forensic-oriented image representation as a distinct problem, from the perspectives of theory, implementation, and application. Our work starts from the abstraction of basic principles that the representation for forensics should satisfy, especially revealing the criticality of robustness, interpretability, and coverage. At the theoretical level, we propose a new representation framework for forensics, called dense invariant representation (DIR), which is characterized by stable description with mathematical guarantees. At the implementation level, the discrete calculation problems of DIR are discussed, and the corresponding accurate and fast solutions are designed with generic nature and constant complexity. We demonstrate the above arguments on the dense-domain pattern detection and matching experiments, providing comparison results with state-of-the-art descriptors. Also, at the application level, the proposed DIR is initially explored in passive and active forensics, namely copy-move forgery detection and perceptual hashing, exhibiting the benefits in fulfilling the requirements of such forensic tasks.

20.
IEEE Trans Pattern Anal Mach Intell ; 45(8): 10228-10246, 2023 Aug.
Article in English | MEDLINE | ID: mdl-35731775

ABSTRACT

The Area Under the ROC Curve (AUC) is a crucial metric for machine learning, which evaluates the average performance over all possible True Positive Rates (TPRs) and False Positive Rates (FPRs). Based on the knowledge that a skillful classifier should simultaneously embrace a high TPR and a low FPR, we turn to study a more general variant called Two-way Partial AUC (TPAUC), where only the region with TPR ≥ α, FPR ≤ ß is included in the area. Moreover, a recent work shows that the TPAUC is essentially inconsistent with the existing Partial AUC metrics where only the FPR range is restricted, opening a new problem to seek solutions to leverage high TPAUC. Motivated by this, we present the first trial in this article to optimize this new metric. The critical challenge along this course lies in the difficulty of performing gradient-based optimization with end-to-end stochastic training, even with a proper choice of surrogate loss. To address this issue, we propose a generic framework to construct surrogate optimization problems, which supports efficient end-to-end training with deep learning. Moreover, our theoretical analyses show that: 1) the objective function of the surrogate problems will achieve an upper bound of the original problem under mild conditions, and 2) optimizing the surrogate problems leads to good generalization performance in terms of TPAUC with a high probability. Finally, empirical studies over several benchmark datasets speak to the efficacy of our framework.


Subject(s)
Algorithms , Machine Learning , Area Under Curve
SELECTION OF CITATIONS
SEARCH DETAIL