Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Biochim Biophys Acta Gen Subj ; 1862(7): 1644-1655, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29660372

ABSTRACT

BACKGROUND: Heparan sulfate (HS) 3-O-sulfation can be catalysed by seven 3-O-sulfotransferases (HS3STs) in humans, still it is the rarest modification in HS and its biological function is yet misunderstood. HS3ST2 and HS3ST3B exhibit the same activity in vitro. They are however differently expressed in macrophages depending on cell environment, which suggests that they may be involved in distinct cellular processes. Here, we hypothesized that both isozymes might also display distinct subcellular localizations. METHODS: The subcellular distribution of HS3ST2 and HS3ST3B was analysed by using overexpression systems in HeLa cells. The localization of endogenous HS3ST2 was confirmed by immunostaining in primary macrophages. RESULTS: We found that HS3ST3B was only localized in the Golgi apparatus and no difference between full-length enzyme and truncated construct depleted of its catalytic domain was observed. In contrast, HS3ST2 was clearly visualized at the plasma membrane. Its truncated form remained in the Golgi apparatus, meaning that the catalytic domain might support correct addressing of HS3ST2 to cell surface. Moreover, we found a partial co-localization of HS3ST2 with syndecan-2 in HeLa cells and primary macrophages. Silencing the expression of this proteoglycan altered the localization of HS3ST2, which suggests that syndecan-2 is required to address the isozyme outside of the Golgi apparatus. CONCLUSIONS: We demonstrated that HS3ST3B is a Golgi-resident isozyme, while HS3ST2 is addressed to the plasma membrane with syndecan-2. GENERAL SIGNIFICANCE: The membrane localization of HS3ST2 suggests that this enzyme may participate in discrete processes that occur at the cell surface.


Subject(s)
Amidohydrolases/analysis , Cell Membrane/enzymology , Macrophages/enzymology , Membrane Proteins/analysis , Sulfotransferases/analysis , Amidohydrolases/genetics , Cells, Cultured , Golgi Apparatus/enzymology , HEK293 Cells , HeLa Cells , Humans , Isoenzymes/analysis , Membrane Proteins/genetics , Microscopy, Fluorescence , Monocytes/cytology , RNA, Small Interfering/genetics , Real-Time Polymerase Chain Reaction , Subcellular Fractions/enzymology , Sulfotransferases/genetics , Syndecan-2/analysis
2.
Molecules ; 23(10)2018 Oct 22.
Article in English | MEDLINE | ID: mdl-30360368

ABSTRACT

Heparan sulfate 3-O-sulfotransferases (HS3STs) catalyze the maturation step of heparan sulfate (HS) 3-O-sulfation. This modification is relatively rare. Moreover, only a few biological processes have been described to be influenced by 3-O-sulfated HS, and few ligands have been identified so far. Among them, neuropilin-1 (Nrp1) was reported to exhibit tumor-promoting properties by enhancing the action of various growth factors. We recently demonstrated that transient overexpression of HS3ST2, 3B or 4 enhanced the proliferation of breast cancer MDA-MB-231 cells and promote efficient protection against pro-apoptotic stimuli. Hence, we hypothesized that the pro-tumoral activity of these HS3STs could depend on the expression of Nrp1. To test this, MDA-MB-231 cells were stably transfected with a construct encoding HS3ST3B and the expression of Nrp1 was down-regulated by RNA interference. First, we confirmed that stable expression of HS3ST3B effectively increased cell proliferation and viability. Silencing the expression of Nrp1 markedly attenuated the promoting effects of HS3ST3B, while the same treatment had only a moderate effect on the behavior of the parental cells. Altogether, our findings support the idea that the tumor-promoting effects of HS3ST3B could be dependent on the expression of Nrp1 in cancer cells.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Gene Expression , Neuropilin-1/genetics , Sulfotransferases/metabolism , Cell Line, Tumor , Cell Proliferation , Cell Survival/genetics , Female , Humans , Neuropilin-1/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Sulfotransferases/genetics , Transfection , src-Family Kinases/metabolism
3.
J Cell Biochem ; 117(7): 1529-42, 2016 07.
Article in English | MEDLINE | ID: mdl-26575945

ABSTRACT

Heparan sulfate (HS) is recognized as an important player in a wide range of dynamic steps of inflammatory reactions. Thereby, structural HS remodeling is likely to play an important role in the regulation of inflammatory and immune responses; however, little is known about underlying mechanism. In this study, we analyzed the regulation of expression of HS 3-O-sulfotransferases (HS3STs) in response to inflammatory stimuli. We found that among the seven HS3ST isoenzymes, only the expression of HS3ST3B was markedly up-regulated in human primary monocytes and the related cell line THP1 after exposure to TLR agonists. TNF-α was also efficient, to a lesser extent, to increase HS3ST3B expression, while IL-6, IL-4, and IFN-γ were poor inducers. We then analyzed the molecular mechanisms that regulate the high expression of HS3ST3B in response to LPS. Based on the expression of HS3ST3B transcripts and on the response of a reporter gene containing the HS3ST3B1 promoter, we provide evidence that LPS induces a rapid and strong transcription of HS3ST3B1 gene, which was mainly dependent on the activation of NF-κB and JNK signaling pathways. Additionally, active p38 MAPK and de novo synthesized proteins are involved in post-transcriptional mechanisms to maintain a high level of HS3ST3B mRNA to a steady state. Altogether, our findings indicate that HS3ST3B1 gene behaves as a primary response gene, suggesting that it may play an important role in making 3-O-sulfated HS with specific functions in the regulation of inflammatory and immune responses. J. Cell. Biochem. 117: 1529-1542, 2016. © 2015 Wiley Periodicals, Inc.


Subject(s)
Gene Expression Regulation, Enzymologic/drug effects , Lipopolysaccharides/toxicity , MAP Kinase Signaling System/drug effects , Monocytes/enzymology , RNA Stability/drug effects , Sulfotransferases/biosynthesis , Cell Line, Tumor , Cytokines/biosynthesis , Humans , Inflammation/chemically induced , Inflammation/metabolism , Inflammation/pathology , Monocytes/pathology , p38 Mitogen-Activated Protein Kinases/metabolism
5.
Glycobiology ; 25(5): 502-13, 2015 May.
Article in English | MEDLINE | ID: mdl-25504800

ABSTRACT

Macrophages are major cells of inflammatory process and take part in a large number of physiological and pathological processes. According to tissue environment, they can polarize into pro-inflammatory (M1) or alternative (M2) cells. Although many evidences have hinted to a potential role of cell-surface glycosaminoglycans (GAGs) in the functions of macrophages, the effect of M1 or M2 polarization on the biosynthesis of these polysaccharides has not been investigated so far. GAGs are composed of repeat sulfated disaccharide units. Heparan (HS) and chondroitin/dermatan sulfates (CS/DS) are the major GAGs expressed at the cell membrane. They are involved in numerous biological processes, which rely on their ability to selectively interact with a large panel of proteins. More than 20 genes encoding sulfotransferases have been implicated in HS and CS/DS biosynthesis, and the functional repertoire of HS and CS/DS has been related to the expression of these isoenzymes. In this study, we analyzed the expression of sulfotransferases as a response to macrophage polarization. We found that M1 and M2 activation drastically modified the profiles of expression of numerous HS and CS/DS sulfotransferases. This was accompanied by the expression of GAGs with distinct structural features. We then demonstrated that GAGs of M2 macrophages were efficient to present fibroblast growth factor-2 in an assay of tumor cell proliferation, thus indicating that changes in GAG structure may contribute to the functions of polarized macrophages. Altogether, our findings suggest a regulatory mechanism in which fine modifications in GAG biosynthesis may participate to the plasticity of macrophage functions.


Subject(s)
Glycosaminoglycans/metabolism , Macrophages/metabolism , Sulfotransferases/metabolism , Cells, Cultured , Humans , Isoenzymes/genetics , Isoenzymes/metabolism , Macrophage Activation , Macrophages/enzymology , Macrophages/immunology , Sulfotransferases/genetics
7.
Glycoconj J ; 31(2): 161-9, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24242364

ABSTRACT

Fibronectin is a major component of the extracellular matrix and serves as support for cell adhesion and migration. Heparin and heparan sulfates (HS) have been reported to be high-affinity ligands for fibronectin. The strongest heparin/HS-binding site, named Hep-II, is located in the C-terminal repeat units FN12-14 of fibronectin. Mutational studies of recombinant fibronectin fragments and elucidation of the X-ray crystallographic structure of Hep-II in complex with heparin allowed localizing the main heparin/HS-binding site in FN13 to two parallel amino acid clusters: R1697, R1698, R1700 and R1714, R1716, R1745. Heparin, which is more sulfated than HS, is a better ligand for fibronectin, indicating that the sulfate density is important for the interactions. However, other studies demonstrated that the position of sulfate groups is also critical for high-affinity binding of the polysaccharides to fibronectin. In the current work, we used molecular docking of Hep-II domain of fibronectin with a series of differently sulfated dodecasaccharides of heparin to determine the implication of each sulfate position in the interaction. By using this approach, we confirmed the implication of R1697, R1698, R1700 and R1714 and we identified other amino acids possibly involved in the interaction. We also confirmed a hierarchic involvement of sulfate position as follows: 2S >> 6S > NS. Interestingly, the formation of stable complexes required a mutual adaptation between Hep-II domain and oligosaccharides, which was different according to the pattern of sulfation. Finally, we demonstrated that 3-O-sulfation of heparin stabilized even more the complex with Hep-II by creating new molecular interactions. Collectively, our models point out the complexity of the molecular interactions between heparin/HS and fibronectin.


Subject(s)
Fibronectins/chemistry , Heparin/chemistry , Models, Molecular , Molecular Docking Simulation , Oligosaccharides/chemistry , Amino Acid Motifs , Binding Sites , Fibronectins/metabolism , Glycosaminoglycans/chemistry , Glycosaminoglycans/metabolism , Heparin/metabolism , Oligosaccharides/metabolism
8.
J Immunol ; 189(4): 2023-32, 2012 Aug 15.
Article in English | MEDLINE | ID: mdl-22798670

ABSTRACT

Extracellular cyclophilin A (CyPA) and CyPB have been well described as chemotactic factors for various leukocyte subsets, suggesting their contribution to inflammatory responses. Unlike CyPA, CyPB accumulates in extracellular matrixes, from which it is released by inflammatory proteases. Hence, we hypothesized that it could participate in tissue inflammation by regulating the activity of macrophages. In the current study, we confirmed that CyPB initiated in vitro migration of macrophages, but it did not induce production of proinflammatory cytokines. In contrast, pretreatment of macrophages with CyPB attenuated the expression of inflammatory mediators induced by LPS stimulation. The expression of TNF-α mRNA was strongly reduced after exposure to CyPB, but it was not accompanied by significant modification in LPS-induced activation of MAPK and NF-κB pathways. LPS activation of a reporter gene under the control of TNF-α gene promoter was also markedly decreased in cells treated with CyPB, suggesting a transcriptional mechanism of inhibition. Consistent with this hypothesis, we found that CyPB induced the expression of B cell lymphoma-3 (Bcl-3), which was accompanied by a decrease in the binding of NF-κB p65 to the TNF-α promoter. As expected, interfering with the expression of Bcl-3 restored cell responsiveness to LPS, thus confirming that CyPB acted by inhibiting initiation of TNF-α gene transcription. Finally, we found that CyPA was not efficient in attenuating the production of TNF-α from LPS-stimulated macrophages, which seemed to be due to a modest induction of Bcl-3 expression. Collectively, these findings suggest an unexpected role for CyPB in attenuation of the responses of proinflammatory macrophages.


Subject(s)
Cyclophilins/metabolism , Macrophages/metabolism , Proto-Oncogene Proteins/biosynthesis , Signal Transduction/physiology , Transcription Factors/biosynthesis , Tumor Necrosis Factor-alpha/biosynthesis , B-Cell Lymphoma 3 Protein , Blotting, Western , Cells, Cultured , Chemotaxis, Leukocyte/immunology , Chromatin Immunoprecipitation , Cyclophilins/immunology , Flow Cytometry , Gene Expression Regulation/immunology , Humans , Lipopolysaccharides/pharmacology , Macrophages/immunology , RNA, Small Interfering , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Tumor Necrosis Factor-alpha/immunology
9.
J Matern Fetal Neonatal Med ; 35(19): 3707-3713, 2022 Oct.
Article in English | MEDLINE | ID: mdl-33106055

ABSTRACT

OBJECTIVE: Newborns are prone to hypothermia immediately following birth. Hypothermia is associated with increased morbidity and mortality rates. We sought to assess the thermal environment and metabolic costs associated with exposure to various situations in the delivery room when skin-to-skin care (SSC) has to be curtailed. METHODS: Environmental variables (air temperature: Ta; relative humidity: RH; radiative temperature: Tr; and air convection velocity) were recorded during sequences reproducing SSC, in the maternity unit's various rooms ("passive environments") and in incubators ("active environments"). Analytical calorimetry was then used to calculate the body heat loss (BHL) from these data. RESULTS: The analysis of 1280 measurements of Ta, RH, Tr, and air convection velocity in SSC, passive and active environments revealed that (i) the thermohygrometric environment during SSC was optimal (Ta: 32.7 ± 3.2 °C; RH: 50.9 ± 5.6%), (ii) BHL rose when SSC had to be interrupted, and (iii) the use of a radiant incubator prevented hypothermia and reduced dry BHL but not humid BHL (9.4 ± 1.5 kcal/kg/h; p < .001), relative to SSC (5.8 ± 2.0 kcal/kg/h; p < .001). CONCLUSION: The newborn infant's thermohygrometric environment is optimal during SSC in the delivery room. When SSC was interrupted, Ta and RH always decreased, and BHL increased in all passive environments.


Subject(s)
Hypothermia , Body Temperature Regulation , Delivery Rooms , Female , Humans , Hypothermia/etiology , Hypothermia/prevention & control , Infant, Newborn , Pregnancy , Skin Care
10.
J Crit Care ; 64: 141-143, 2021 08.
Article in English | MEDLINE | ID: mdl-33906102

ABSTRACT

Airway closure is a physiological phenomenon in which the distal airways are obstructed when the airway pressure drops below the airway opening pressure. We assessed this phenomenon in 27 patients with coronavirus disease 2019-related acute respiratory distress syndrome. Twelve (44%) patients had an airway opening pressure above 5 cmH2O. The median airway opening pressure was 8 cmH2O (interquartile range, 7-10), with a maximum value of 17 cmH2O. Three patients had a baseline positive end-expiratory pressure lower than the airway opening pressure.


Subject(s)
COVID-19/physiopathology , COVID-19/therapy , Positive-Pressure Respiration/methods , Respiratory Distress Syndrome/physiopathology , Respiratory Distress Syndrome/therapy , SARS-CoV-2 , Adult , Aged , Airway Obstruction/prevention & control , Critical Care , Female , France/epidemiology , Humans , Male , Middle Aged , Respiratory Mechanics
11.
Exp Cell Res ; 315(2): 357-69, 2009 Jan 15.
Article in English | MEDLINE | ID: mdl-19026635

ABSTRACT

Nucleolin is an ubiquitous nucleolar phosphoprotein involved in fundamental aspects of transcription regulation, cell proliferation and growth. It has also been described as a shuttling molecule between nucleus, cytosol and the cell surface. Several studies have demonstrated that surface nucleolin serves as a receptor for various extracellular ligands implicated in cell proliferation, differentiation, adhesion, mitogenesis and angiogenesis. Previously, we reported that nucleolin in the extranuclear cell compartment is a glycoprotein containing N- and O-glycans. In the present study, we show that glycosylation is an essential requirement for surface nucleolin expression, since it is prevented when cells are cultured in the presence of tunicamycin, an inhibitor of N-glycosylation. Accordingly, surface but not nuclear nucleolin is radioactively labeled upon metabolic labeling of cells with [(3)H]glucosamine. Besides its well-demonstrated role in the internalization of specific ligands, here we show that ligand binding to surface nucleolin could also induce Ca(2+) entry into cells. Indeed, by flow cytometry, microscopy and patch-clamp experiments, we show that the HB-19 pseudopeptide, which binds specifically surface nucleolin, triggers rapid and intense membrane Ca(2+) fluxes in various types of cells. The use of several drugs then indicated that Store-Operated Ca(2+) Entry (SOCE)-like channels are involved in the generation of these fluxes. Taken together, our findings suggest that binding of an extracellular ligand to surface nucleolin could be involved in the activation of signaling pathways by promoting Ca(2+) entry into cells.


Subject(s)
Calcium/metabolism , Glycoproteins/physiology , Phosphoproteins/physiology , RNA-Binding Proteins/physiology , Antibodies/immunology , Antibodies/pharmacology , Biological Transport/drug effects , Biological Transport/physiology , CD3 Complex/immunology , Calcium Channel Blockers/pharmacology , Calcium Channels/physiology , Calcium Signaling/drug effects , Calcium Signaling/physiology , Cell Line, Tumor , Cell Membrane/drug effects , Cell Membrane/metabolism , Cell Nucleus/metabolism , Cell Proliferation/drug effects , Cytoplasm/metabolism , Egtazic Acid/pharmacology , Glucosamine/metabolism , Glycoproteins/antagonists & inhibitors , Glycoproteins/biosynthesis , Glycosylation/drug effects , Humans , Jurkat Cells , Patch-Clamp Techniques , Peptides/pharmacology , Phosphoproteins/antagonists & inhibitors , Phosphoproteins/biosynthesis , RNA-Binding Proteins/antagonists & inhibitors , RNA-Binding Proteins/biosynthesis , Tunicamycin/pharmacology , Nucleolin
12.
Adv Exp Med Biol ; 606: 163-94, 2008.
Article in English | MEDLINE | ID: mdl-18183929

ABSTRACT

Lactoferrin (Lf) is an iron binding glycoprotein of the transferrin family that is expressed in most biological fluids and is a major component of mammals' innate immune system. Its protective effect ranges from direct antimicrobial activities against a large panel of microorganisms, including bacteria, viruses, fungi, and parasites, to anti-inflammatory and anticancer activities. This plethora of activities is made possible by mechanisms of action implementing not only the capacity of Lf to bind iron but also interactions of Lf with molecular and cellular components of both host and pathogens. This chapter summarizes our current understanding of the Lf structure-function relationships that explain the roles of Lf in host defense.


Subject(s)
Lactoferrin/chemistry , Lactoferrin/metabolism , Animals , Anti-Infective Agents/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Antineoplastic Agents/pharmacology , Humans , Lactoferrin/genetics , Milk, Human/chemistry , Structure-Activity Relationship
13.
PLoS One ; 13(3): e0194676, 2018.
Article in English | MEDLINE | ID: mdl-29547633

ABSTRACT

Heparan sulfate 3-O-sulfotransferases (HS3STs) catalyze the final maturation step of heparan sulfates. Although seven HS3ST isozymes have been described in human, 3-O-sulfation is a relatively rare modification, and only a few biological processes have been described to be influenced by 3-O-sulfated motifs. A conflicting literature has recently reported that HS3ST2, 3A, 3B and 4 may exhibit either tumor-promoting or anti-oncogenic properties, depending on the model used and cancer cell phenotype. Hence, we decided to compare the consequences of the overexpression of each of these HS3STs in the same cellular model. We demonstrated that, unlike HS3ST3A, the other three isozymes enhanced the proliferation of breast cancer MDA-MB-231 and BT-20 cells. Moreover, the colony forming capacity of MDA-MB-231 cells was markedly increased by the expression of HS3ST2, 3B and 4. No notable difference was observed between the three isozymes, meaning that the modifications catalyzed by each HS3ST had the same functional impact on cell behavior. We then demonstrated that overexpression of HS3ST2, 3B and 4 was accompanied by increased activation of c-Src, Akt and NF-κB and up-regulation of the anti-apoptotic proteins survivin and XIAP. In line with these findings, we showed that HS3ST-transfected cells are more resistant to cell death induction by pro-apoptotic stimuli or NK cells. Altogether, our findings demonstrate that HS3ST2, 3B and 4 share the same pro-tumoral activity and support the idea that these HS3STs could compensate each other for loss of their expression depending on the molecular signature of cancer cells and/or changes in the tumor environment.


Subject(s)
Breast Neoplasms/pathology , Cell Proliferation/genetics , Heparitin Sulfate/metabolism , Sulfotransferases/physiology , Apoptosis/genetics , Breast Neoplasms/genetics , Breast Neoplasms/immunology , Breast Neoplasms/metabolism , Cell Line, Tumor , Cell Survival/genetics , Female , Gene Expression Regulation, Enzymologic/physiology , Gene Expression Regulation, Neoplastic , Humans , Killer Cells, Natural/immunology , Signal Transduction/genetics , Sulfotransferases/genetics , Sulfotransferases/metabolism
14.
FEBS Open Bio ; 7(2): 133-148, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28174681

ABSTRACT

Heparan sulfates (HS) are involved in numerous biological processes, which rely on their ability to interact with a large panel of proteins. Although the reaction of 3-O-sulfation can be catalysed by the largest family of HS sulfotransferases, very few mechanisms have been associated with this modification and to date, only glycoprotein D (gD) of herpes simplex virus-1 (HSV-1 gD) and cyclophilin B (CyPB) have been well-described as ligands for 3-O-sulfated HS. Here, we hypothesized that both ligands could induce the same responses via a mechanism dependent on 3-O-sulfated HS. First, we checked that HSV-1 gD was as efficient as CyPB to induce the activation of the same signalling events in primary macrophages. We then demonstrated that both ligands efficiently reduced staurosporin-induced apoptosis and modulated the expression of apoptotic genes. In addition to 3-O-sulfated HS, HSV-1 gD was reported to interact with other receptors, including herpes virus entry mediator (HVEM), nectin-1 and -2. Thus, we decided to identify the contribution of each binding site in the responses triggered by HSV-1 gD and CyPB. We found that knock-down of 3-O-sulfotransferase 2, which is the main 3-O-sulfated HS-generating enzyme in macrophages, strongly reduced the responses induced by both ligands. Moreover, silencing the expression of HVEM rendered macrophages unresponsive to either HSV-1 gD and CyPB, thus indicating that both proteins induced the same responses by interacting with a complex formed by 3-O-sulfated HS and HVEM. Collectively, our results suggest that HSV-1 might hijack the binding sites for CyPB in order to protect macrophages against apoptosis for efficient infection.

15.
Toxicol Rep ; 4: 566-573, 2017.
Article in English | MEDLINE | ID: mdl-29152461

ABSTRACT

Icodextrin is a starch derivative used for preparing solutions of peritoneal dialysis. Unfortunately, peptidoglycans (PGN) and lipopolysaccharides (LPS) have been reported to contaminate certain icodextrin batches and to contribute to the development of sterile peritonitis. The decision of selecting or rejecting icodextrin batches is however difficult, because of limitations in the detection of these bacterial contaminants. Besides monocyte activation tests of cytokine release, a number of bio-assays using stably TLR-transfected cell lines have been developed. Here, we compared the efficacy of TLR2- and TLR4-transfected cells to detect bacterial contamination with the responses of monocytes exposed to the same icodextrin samples. In contrast to monocyte models of cytokine release, we found that TLR2- and TLR4-transfected cell lines are highly sensitive to detect little PGN and LPS contaminations in the presence of icodextrin. With the intent to increase PGN reactivity, mutanolysin was used to generate soluble fragments in icodextrin samples. We found that such an enzymatic treatment led to an enhanced response of TLR2-transfected cells, even though parental icodextrin samples were poorly reactive. Altogether, these findings indicate that the use of TLR2- and TLR4-transfected cell lines is a valuable approach for helping to the decision of selecting icodextrin batches for peritoneal dialysis.

16.
Int J Biochem Cell Biol ; 80: 57-65, 2016 11.
Article in English | MEDLINE | ID: mdl-27693418

ABSTRACT

Heparan sulfate (HS) 6-O-endosulfatases (Sulfs) have emerged recently as critical regulators of many physiological and pathological processes. By removing 6-O-sulfates from specific HS sequences, they modulate the activities of a variety of growth factors and morphogens, including fibroblast growth factor (FGF)-1. However, little is known about the functions of Sulfs in inflammation. Tumour-necrosis factor (TNF)-α plays an important role in regulating the behaviour of fibroblasts. In this study, we examined the effect of this inflammatory cytokine on the expression of Sulfs in human MRC-5 fibroblasts. Compositional analysis of HS from TNF-α-treated cells showed a strong reduction in the amount of the trisulfated UA2S-GlcNS6S disaccharide, which suggested a selective reaction of 6-O-desulfation. Real-time PCR analysis revealed that TNF-α increased Sulf-1 expression in a dose- and time-dependent manner, via a mechanism involving NF-ĸB, ERK1/2 and p38 MAPK. In addition, we confirmed that cell stimulation with TNF-α was accompanied by the secretion of an active form of Sulf-1. To study the function of Sulf- 1, we examined the responses induced by FGF-1. We showed that ERK1/2 activation and cell proliferation were markedly reduced in TNF-α-treated MRC-5 cells compared with untreated cells. Silencing the expression of Sulf-1 by RNA interference restored the responses induced by FGF-1, which indicated that TNF-α-mediated induction of the sulfatase indeed resulted in alterations of HS biological properties. Taken together, our results indicate that Sulf-1 is responsive to TNF-α stimulation and may function as an autocrine regulator of fibroblast expansion in the course of an inflammatory response.


Subject(s)
Fibroblasts/drug effects , Fibroblasts/metabolism , Gene Expression Regulation, Enzymologic/drug effects , Heparitin Sulfate/metabolism , Sulfotransferases/genetics , Sulfotransferases/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Cell Line , Humans , Sulfotransferases/biosynthesis
17.
Biochem J ; 382(Pt 2): 733-40, 2004 Sep 01.
Article in English | MEDLINE | ID: mdl-15109301

ABSTRACT

Cyclophilin B (CyPB) is a heparin-binding protein first identified as a receptor for cyclosporin A. In previous studies, we reported that CyPB triggers chemotaxis and integrin-mediated adhesion of T-lymphocytes by way of interaction with two types of binding sites. The first site corresponds to a signalling receptor; the second site has been identified as heparan sulphate (HS) and appears crucial to induce cell adhesion. Characterization of the HS-binding unit is critical to understand the requirement of HS in pro-adhesive activity of CyPB. By using a strategy based on gel mobility shift assays with fluorophore-labelled oligosaccharides, we demonstrated that the minimal heparin unit required for efficient binding of CyPB is an octasaccharide. The mutants CyPB(KKK-) [where KKK- refers to the substitutions K3A(Lys3-->Ala)/K4A/K5A] and CyPB(DeltaYFD) (where Tyr14-Phe-Asp16 has been deleted) failed to interact with octasaccharides, confirming that the Y14FD16 and K3KK5 clusters are required for CyPB binding. Molecular modelling revealed that both clusters are spatially arranged so that they may act synergistically to form a binding site for the octasaccharide. We then demonstrated that heparin-derived octasaccharides and higher degree of polymerization oligosaccharides inhibited the interaction between CyPB and fluorophore-labelled HS chains purified from T-lymphocytes, and strongly reduced the HS-dependent pro-adhesive activity of CyPB. However, oligosaccharides or heparin were unable to restore adhesion of heparinase-treated T-lymphocytes, indicating that HS has to be present on the cell membrane to support the pro-adhesive activity of CyPB. Altogether, these results demonstrate that the octasaccharide is likely to be the minimal length unit required for efficient binding of CyPB to cell surface HS and consequent HS-dependent cell responses.


Subject(s)
Cyclophilins/metabolism , Heparin/metabolism , Heparitin Sulfate/metabolism , Oligosaccharides/metabolism , Antigens, Surface/metabolism , Binding Sites , Cyclophilins/genetics , Electrophoretic Mobility Shift Assay/methods , Fluorescent Dyes/metabolism , Humans , Mutation/genetics , Oligosaccharides/chemistry , Peptidylprolyl Isomerase , Protein Binding , Staining and Labeling/methods , T-Lymphocytes/chemistry
18.
Clin Exp Metastasis ; 30(7): 919-31, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23739843

ABSTRACT

Distant metastasis account for about 90 % of cancer associated deaths, and yet the oncology field is cruelly lacking tools to accurately predict and/or prevent metastasis. Distant metastasis occurs when circulating tumor cells interact with the endothelium of distant organs and extravasate from the blood vessel into the surrounding tissue. Selectins are a family of carbohydrate receptors well depicted for their role in tumor cells extravasation. They mediate primary interactions of cancer cells with endothelial cells, as well as secondary interactions with leucocytes and platelets, which are also promoting metastasis. The cancer associated carbohydrate antigen sialyl-Lewis x (sLe(x)) has been repeatedly shown to be involved, as selectin ligand, in these interactions. However, recent studies have highlighted that glycosaminoglycans (GAGs), another class of glycans, may also serve as ligands for selectins. We report herein that cancer-associated GAGs are differentially recognized by selectins according to their density of sulfation and the pH conditions of the binding. We also show that these parameters regulate platelets-cancer cells heterotypic aggregation, supporting the idea that GAGs may have pro-metastatic function. Combining our experimental results with in depth analyses of molecular dockings, we propose a model of GAG/selectin interactions robust enough to recapitulate the differential binding of selectins to GAGs, the competition between GAGs and sLe(x) for selectin binding and the effect of sub-physiological pH on GAGs affinities towards selectins. Altogether, our data suggest GAGs to be good ligands for selectins, potentially promoting distant metastasis in a complementary way to sLe(x).


Subject(s)
Breast Neoplasms/metabolism , Glycosaminoglycans/metabolism , Neoplasm Metastasis , Selectins/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Female , Humans , Ligands
19.
PLoS One ; 7(3): e32421, 2012.
Article in English | MEDLINE | ID: mdl-22403657

ABSTRACT

BACKGROUND: Tuberculosis remains one of the most important causes of global mortality and morbidity, and the molecular mechanisms of the pathogenesis are still incompletely understood. Only few virulence factors of the causative agent Mycobacterium tuberculosis are known. One of them is the heparin-binding haemagglutinin (HBHA), an important adhesin for epithelial cells and an extrapulmonary dissemination factor. HBHA mediates mycobacterial adherence to epithelial cells via the interactions of its C-terminal, lysine rich repeat domain with sulfated glycoconjugates on the surface of epithelial cells. METHODOLOGY/PRINCIPAL FINDINGS: Using defined heparin sulfate (HS) analogs, we determined the minimal heparin fragment length for HBHA binding and structural adaptations of the HBHA heparin-binding domain (HBD) upon binding to heparin. The NMR studies show significant shifts of all residues in the HBD upon interaction with heparin, with stronger shifts in the last repeats compared to the upstream repeats, and indicated that the HS fragments with 14 sugar units cover the entire C-terminal lysine-rich domain of HBHA. The differential implication of the repeats is determined by the relative position of prolines and lysines within each repeat, and may contribute to binding specificity. GAG binding induces a non-homogeneous structural rearrangement in the HBD, with stabilization of a nascent α-helix only in the last penta-repeats. CONCLUSION/SIGNIFICANCE: Mycobacterial HBHA undergoes structural adaptation upon interaction with GAGs, which is likely involved in binding specificities of the adhesin, and mycobacterial pathogens may use HBD polymorphisms for host or organ specificity. Further studies will aim at decoding the complementarity between HBD repeats and HS sequence.


Subject(s)
Adhesins, Bacterial/chemistry , Adhesins, Bacterial/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Heparin/metabolism , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Mycobacterium tuberculosis , Repetitive Sequences, Amino Acid , Amino Acid Sequence , Heparin/chemistry , Molecular Sequence Data , Molecular Weight , Oligosaccharides/chemistry , Oligosaccharides/metabolism , Protein Binding , Protein Structure, Tertiary , Species Specificity , Thermodynamics
20.
FEBS J ; 278(14): 2552-64, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21575138

ABSTRACT

Nucleolin is a major nucleolar protein involved in fundamental processes of ribosome biogenesis, regulation of cell proliferation and growth. Nucleolin is known to shuttle between nucleus, cytoplasm and cell surface. We have previously found that nucleolin undergoes complex N- and O-glycosylations in extra-nuclear isoforms. We found that surface nucleolin is exclusively glycosylated and that N-glycosylation is required for its expression on the cells. Interestingly, the two N-glycans are located in the RNA-binding domains (RBDs) which participate in the self-association properties of nucleolin. We hypothesized that the occupancy of RBDs by N-glycans plays a role in these self-association properties. Here, owing to the inability to quantitatively produce full-size nucleolin, we expressed four N-glycosylation nucleolin variants lacking the N-terminal acidic domain in a baculovirus/insect cell system. As assessed by heptafluorobutyrate derivatization and mass spectrometry, this strategy allowed the production of proteins bearing or not paucimannosidic-type glycans on either one or two of the potential N-glycosylation sites. Their structure was investigated by circular dichroism and fluorimetry, and their ability to self-interact was analyzed by electrophoresis and surface plasmon resonance. Our results demonstrate that all nucleolin-derived variants are able to self-interact and that N-glycosylation on both RBD1 and RBD3, or RBD3 alone, but not RBD1 alone, modifies the structure of the N-terminally truncated nucleolin and enhances its self-association properties. In contrast, N-glycosylation does not modify interaction with lactoferrin, a ligand of cell surface nucleolin. Our results suggest that the occupancy of the N-glycosylation sites may contribute to expression and functions of surface nucleolin.


Subject(s)
Phosphoproteins/metabolism , Protein Processing, Post-Translational , RNA-Binding Proteins/metabolism , Cell Line , Circular Dichroism , Dimerization , Gas Chromatography-Mass Spectrometry , Genes, Reporter , Glycopeptides/chemistry , Glycosylation , Humans , Mutagenesis, Site-Directed , Mutant Proteins/chemistry , Mutant Proteins/genetics , Mutant Proteins/isolation & purification , Mutant Proteins/metabolism , Peptide Fragments/chemistry , Peptide Fragments/genetics , Peptide Fragments/isolation & purification , Peptide Fragments/metabolism , Phosphoproteins/chemistry , Phosphoproteins/genetics , Phosphoproteins/isolation & purification , Protein Interaction Domains and Motifs , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/isolation & purification , Protein Isoforms/metabolism , Protein Structure, Secondary , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/genetics , RNA-Binding Proteins/isolation & purification , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/isolation & purification , Recombinant Fusion Proteins/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Surface Plasmon Resonance , Nucleolin
SELECTION OF CITATIONS
SEARCH DETAIL