Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
J Bacteriol ; 197(11): 1873-85, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25802296

ABSTRACT

UNLABELLED: Iron acquisition at the outer membrane (OM) of Gram-negative bacteria is powered by the proton motive force (PMF) of the cytoplasmic membrane (CM), harnessed by the CM-embedded complex of ExbB, ExbD, and TonB. Its stoichiometry, ensemble structural features, and mechanism of action are unknown. By panning combinatorial phage libraries, periplasmic regions of dimerization between ExbD and TonB were predicted. Using overexpression of full-length His6-tagged exbB-exbD and S-tagged tonB, we purified detergent-solubilized complexes of ExbB-ExbD-TonB from Escherichia coli. Protein-detergent complexes of ∼230 kDa with a hydrodynamic radius of ∼6.0 nm were similar to previously purified ExbB4-ExbD2 complexes. Significantly, they differed in electronegativity by native agarose gel electrophoresis. The stoichiometry was determined to be ExbB4-ExbD1-TonB1. Single-particle electron microscopy agrees with this stoichiometry. Two-dimensional averaging supported the phage display predictions, showing two forms of ExbD-TonB periplasmic heterodimerization: extensive and distal. Three-dimensional (3D) particle classification showed three representative conformations of ExbB4-ExbD1-TonB1. Based on our structural data, we propose a model in which ExbD shuttles a proton across the CM via an ExbB interprotein rearrangement. Proton translocation would be coupled to ExbD-mediated collapse of extended TonB in complex with ligand-loaded receptors in the OM, followed by repositioning of TonB through extensive dimerization with ExbD. Here we present the first report for purification of the ExbB-ExbD-TonB complex, molar ratios within the complex (4:1:1), and structural biology that provides insights into 3D organization. IMPORTANCE: Receptors in the OM of Gram-negative bacteria allow entry of iron-bound siderophores that are necessary for pathogenicity. Numerous iron-acquisition strategies rely upon a ubiquitous and unique protein for energization: TonB. Complexed with ExbB and ExbD, the Ton system links the PMF to OM transport. Blocking iron uptake by targeting a vital nanomachine holds promise in therapeutics. Despite much research, the stoichiometry, structural arrangement, and molecular mechanism of the CM-embedded ExbB-ExbD-TonB complex remain unreported. Here we demonstrate in vitro evidence of ExbB4-ExbD1-TonB1 complexes. Using 3D EM, we reconstructed the complex in three conformational states that show variable ExbD-TonB heterodimerization. Our structural observations form the basis of a model for TonB-mediated iron acquisition.


Subject(s)
Cell Membrane/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Cell Membrane/chemistry , Cell Membrane/genetics , Crystallography, X-Ray , Dimerization , Escherichia coli/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Membrane Proteins/genetics , Periplasm/chemistry , Periplasm/genetics , Periplasm/metabolism , Protein Binding
2.
Nature ; 458(7236): 337-41, 2009 Mar 19.
Article in English | MEDLINE | ID: mdl-19212322

ABSTRACT

Since the completion of the genome sequence of Saccharomyces cerevisiae in 1996 (refs 1, 2), there has been a large increase in complete genome sequences, accompanied by great advances in our understanding of genome evolution. Although little is known about the natural and life histories of yeasts in the wild, there are an increasing number of studies looking at ecological and geographic distributions, population structure and sexual versus asexual reproduction. Less well understood at the whole genome level are the evolutionary processes acting within populations and species that lead to adaptation to different environments, phenotypic differences and reproductive isolation. Here we present one- to fourfold or more coverage of the genome sequences of over seventy isolates of the baker's yeast S. cerevisiae and its closest relative, Saccharomyces paradoxus. We examine variation in gene content, single nucleotide polymorphisms, nucleotide insertions and deletions, copy numbers and transposable elements. We find that phenotypic variation broadly correlates with global genome-wide phylogenetic relationships. S. paradoxus populations are well delineated along geographic boundaries, whereas the variation among worldwide S. cerevisiae isolates shows less differentiation and is comparable to a single S. paradoxus population. Rather than one or two domestication events leading to the extant baker's yeasts, the population structure of S. cerevisiae consists of a few well-defined, geographically isolated lineages and many different mosaics of these lineages, supporting the idea that human influence provided the opportunity for cross-breeding and production of new combinations of pre-existing variations.


Subject(s)
Genome, Fungal/genetics , Genomics , Saccharomyces cerevisiae/genetics , Saccharomyces/genetics , Genetics, Population , Geography , INDEL Mutation/genetics , Phenotype , Phylogeny , Polymorphism, Single Nucleotide/genetics , Saccharomyces/classification , Selection, Genetic
3.
J Med Chem ; 64(19): 14266-14282, 2021 10 14.
Article in English | MEDLINE | ID: mdl-34555281

ABSTRACT

Jumonji domain-containing lysine demethylase (KDM) enzymes are encoded by genes of the KDM superfamily. Activities of the KDM4 subfamily promote aggressive phenotypes associated with prostate cancer (PCa). Previously, we discovered a benzimidazole pyrazole molecule that inhibited KDM4 isoforms with properties tractable for development. Here, we demonstrate that a benzyl-substituted variant of this inhibitor exhibits improved potency in biochemical assays, is cell-permeable, and kills PCa cells at low micromolar concentrations. By X-ray crystallography and kinetics-based assays, we demonstrate that the mechanism of inhibition is complex, proceeding via competition with the enzyme for binding of active-site Fe2+ and by populating a distal site on the enzyme surface. Furthermore, we provide evidence that the inhibitor's cytostatic properties arise from direct intracellular inhibition of KDM4 enzymes. PCa cells treated with the inhibitor exhibit reduced expression of genes regulated by the androgen receptor, an outcome accompanied by epigenetic maintenance of a heterochromatic state.


Subject(s)
Jumonji Domain-Containing Histone Demethylases/antagonists & inhibitors , Benzimidazoles , Binding Sites/drug effects , Cell Survival/drug effects , Crystallography, X-Ray , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Enzyme Inhibitors , Humans , Jumonji Domain-Containing Histone Demethylases/metabolism , Models, Molecular , Molecular Structure , Pyrazoles , Structure-Activity Relationship , Tumor Cells, Cultured
4.
J Mol Biol ; 357(1): 236-51, 2006 Mar 17.
Article in English | MEDLINE | ID: mdl-16414071

ABSTRACT

The ferric hydroxamate uptake receptor FhuA from Escherichia coli transports siderophores across the outer membrane (OM). TonB-ExbB-ExbD transduces energy from the cytoplasmic membrane to the OM by contacts between TonB and OM receptors that contain the Ton box, a consensus sequence near the N terminus. Although the Ton box is a region of known contact between OM receptors and TonB, our biophysical studies established that TonB binds to FhuA through multiple regions of interaction. Panning of phage-displayed random peptide libraries (Ph.D.-12, Ph.D.-C7C) against TonB identified peptide sequences that specifically interact with TonB. Analyses of these sequences using the Receptor Ligand Contacts (RELIC) suite of programs revealed clusters of multiply aligned peptides that mapped to FhuA. These clusters localized to a continuous periplasm-accessible surface: Ton box/switch helix; cork domain/beta1 strand; and periplasmic turn 8. Guided by such matches, synthetic oligonucleotides corresponding to DNA sequences identical to fhuA were fused to malE; peptides corresponding to the above regions were displayed at the N terminus of E.coli maltose-binding protein (MBP). Purified FhuA peptides fused to MBP bound specifically to TonB by ELISA. Furthermore, they competed with ligand-loaded FhuA for binding to TonB. RELIC also identified clusters of multiply aligned peptides corresponding to the Ton box regions in BtuB, FepA, and FecA; to periplasmic turn 8 in BtuB and FecA; and to periplasmic turns 1 and 2 in FepA. These experimental outcomes identify specific molecular contacts made between TonB and OM receptors that extend beyond the well-characterized Ton box.


Subject(s)
Bacterial Outer Membrane Proteins/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Membrane Proteins/metabolism , Receptors, Virus/metabolism , Amino Acid Sequence , Bacterial Outer Membrane Proteins/chemistry , Bacterial Outer Membrane Proteins/genetics , Binding Sites , Biological Transport/physiology , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Membrane Proteins/chemistry , Membrane Proteins/genetics , Models, Molecular , Molecular Sequence Data , Peptide Library , Peptides/genetics , Peptides/metabolism , Protein Binding , Protein Structure, Tertiary , Receptors, Virus/chemistry , Receptors, Virus/genetics , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Sequence Alignment
5.
SLAS Discov ; 22(7): 801-812, 2017 08.
Article in English | MEDLINE | ID: mdl-28346812

ABSTRACT

Human lysine demethylase (KDM) enzymes (KDM1-7) constitute an emerging class of therapeutic targets, with activities that support growth and development of metastatic disease. By interacting with and co-activating the androgen receptor, the KDM4 subfamily (KDM4A-E) promotes aggressive phenotypes of prostate cancer (PCa). Knockdown of KDM4 expression or inhibition of KDM4 enzyme activity reduces the proliferation of PCa cell lines and highlights inhibition of lysine demethylation as a possible therapeutic method for PCa treatment. To address this possibility, we screened the ChemBioNet small molecule library for inhibitors of the human KDM4E isoform and identified several compounds with IC50 values in the low micromolar range. Two hits, validated as active by an orthogonal enzyme-linked immunosorbent assay, displayed moderate selectivity toward the KDM4 subfamily and exhibited antiproliferative effects in cellular models of PCa. These compounds were further characterized by their ability to maintain the transcriptionally silent histone H3 tri-methyl K9 epigenetic mark at subcytotoxic concentrations. Taken together, these efforts identify and validate a hydroxyquinoline scaffold and a novel benzimidazole pyrazolone scaffold as tractable for entry into hit-to-lead chemical optimization campaigns.


Subject(s)
Benzimidazoles/pharmacology , Cell Proliferation/drug effects , Enzyme Inhibitors/pharmacology , Jumonji Domain-Containing Histone Demethylases/antagonists & inhibitors , Lysine/antagonists & inhibitors , Prostatic Neoplasms/drug therapy , Pyrazolones/pharmacology , Cell Line, Tumor , Demethylation/drug effects , Histone Demethylases/metabolism , Histones/metabolism , Humans , Hydroxyquinolines/pharmacology , Male , PC-3 Cells , Prostatic Neoplasms/metabolism , Receptors, Androgen/metabolism , Transcription, Genetic/drug effects
6.
Genome Res ; 19(4): 626-35, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19141593

ABSTRACT

Ribosomal DNA (rDNA) plays a key role in ribosome biogenesis, encoding genes for the structural RNA components of this important cellular organelle. These genes are vital for efficient functioning of the cellular protein synthesis machinery and as such are highly conserved and normally present in high copy numbers. In the baker's yeast Saccharomyces cerevisiae, there are more than 100 rDNA repeats located at a single locus on chromosome XII. Stability and sequence homogeneity of the rDNA array is essential for function, and this is achieved primarily by the mechanism of gene conversion. Detecting variation within these arrays is extremely problematic due to their large size and repetitive structure. In an attempt to address this, we have analyzed over 35 Mbp of rDNA sequence obtained from whole-genome shotgun sequencing (WGSS) of 34 strains of S. cerevisiae. Contrary to expectation, we find significant rDNA sequence variation exists within individual genomes. Many of the detected polymorphisms are not fully resolved. For this type of sequence variation, we introduce the term partial single nucleotide polymorphism, or pSNP. Comparative analysis of the complete data set reveals that different S. cerevisiae genomes possess different patterns of rDNA polymorphism, with much of the variation located within the rapidly evolving nontranscribed intergenic spacer (IGS) region. Furthermore, we find that strains known to have either structured or mosaic/hybrid genomes can be distinguished from one another based on rDNA pSNP number, indicating that pSNP dynamics may provide a reliable new measure of genome origin and stability.


Subject(s)
DNA, Fungal/genetics , DNA, Ribosomal/genetics , Genome, Fungal , Polymorphism, Single Nucleotide/genetics , Repetitive Sequences, Nucleic Acid/genetics , Saccharomyces cerevisiae/genetics , Gene Expression Regulation, Fungal , Oligonucleotide Array Sequence Analysis , Saccharomyces cerevisiae/growth & development , Sequence Analysis, DNA
7.
J Biol Chem ; 281(46): 35413-24, 2006 Nov 17.
Article in English | MEDLINE | ID: mdl-16928679

ABSTRACT

For uptake of ferrichrome into bacterial cells, FhuA, a TonB-dependent outer membrane receptor of Escherichia coli, is required. The periplasmic protein FhuD binds and transfers ferrichrome to the cytoplasmic membrane-associated permease FhuB/C. We exploited phage display to map protein-protein interactions in the E. coli cell envelope that contribute to ferrichrome transport. By panning random phage libraries against TonB and against FhuD, we identified interaction surfaces on each of these two proteins. Their interactions were detected in vitro by dynamic light scattering and indicated a 1:1 TonB-FhuD complex. FhuD residue Thr-181, located within the siderophorebinding site and mapping to a predicted TonB-interaction surface, was mutated to cysteine. FhuD T181C was reacted with two thiol-specific fluorescent probes; addition of the siderophore ferricrocin quenched fluorescence emissions of these conjugates. Similarly, quenching of fluorescence from both probes confirmed binding of TonB and established an apparent KD of approximately 300 nM. Prior saturation of the siderophorebinding site of FhuD with ferricrocin did not alter affinity of TonB for FhuD. Binding, further characterized with surface plasmon resonance, indicated a higher affinity complex with KD values in the low nanomolar range. Addition of FhuD to a preformed TonB-FhuA complex resulted in formation of a ternary complex. These observations led us to propose a novel mechanism in which TonB acts as a scaffold, directing FhuD to regions within the periplasm where it is poised to accept and deliver siderophore.


Subject(s)
Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Membrane Proteins/metabolism , Membrane Transport Proteins/metabolism , Periplasmic Binding Proteins/metabolism , Amino Acid Sequence , Escherichia coli Proteins/genetics , Gene Expression Regulation, Bacterial , Membrane Proteins/genetics , Membrane Transport Proteins/genetics , Models, Molecular , Peptide Library , Periplasmic Binding Proteins/genetics , Protein Binding , Protein Conformation , Protein Transport
SELECTION OF CITATIONS
SEARCH DETAIL