Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
Add more filters

Affiliation country
Publication year range
1.
Int J Mol Sci ; 25(3)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38339055

ABSTRACT

MicroRNAs are small regulatory molecules that control gene expression. An emerging property of muscle miRNAs is the cooperative regulation of transcriptional and epitranscriptional events controlling muscle phenotype. miR-155 has been related to muscular dystrophy and muscle cell atrophy. However, the function of miR-155 and its molecular targets in muscular dystrophies remain poorly understood. Through in silico and in vitro approaches, we identify distinct transcriptional profiles induced by miR-155-5p in muscle cells. The treated myotubes changed the expression of 359 genes (166 upregulated and 193 downregulated). We reanalyzed muscle transcriptomic data from dystrophin-deficient patients and detected overlap with gene expression patterns in miR-155-treated myotubes. Our analysis indicated that miR-155 regulates a set of transcripts, including Aldh1l, Nek2, Bub1b, Ramp3, Slc16a4, Plce1, Dync1i1, and Nr1h3. Enrichment analysis demonstrates 20 targets involved in metabolism, cell cycle regulation, muscle cell maintenance, and the immune system. Moreover, digital cytometry confirmed a significant increase in M2 macrophages, indicating miR-155's effects on immune response in dystrophic muscles. We highlight a critical miR-155 associated with disease-related pathways in skeletal muscle disorders.


Subject(s)
MicroRNAs , Muscular Dystrophy, Duchenne , Humans , Muscle, Skeletal/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Muscle Fibers, Skeletal/metabolism , Cell Differentiation/genetics , Muscular Dystrophy, Duchenne/genetics
2.
J Transl Med ; 21(1): 116, 2023 02 11.
Article in English | MEDLINE | ID: mdl-36774484

ABSTRACT

BACKGROUND: Computed tomographies (CT) are useful for identifying muscle loss in non-small lung cancer (NSCLC) cachectic patients. However, we lack consensus on the best cutoff point for pectoralis muscle loss. We aimed to characterize NSCLC patients based on muscularity, clinical data, and the transcriptional profile from the tumor microenvironment to build a cachexia classification model. METHODS: We used machine learning to generate a muscle loss prediction model, and the tumor's cellular and transcriptional profile was characterized in patients with low muscularity. First, we measured the pectoralis muscle area (PMA) of 211 treatment-naive NSCLC patients using CT available in The Cancer Imaging Archive. The cutoffs were established using machine learning algorithms (CART and Cutoff Finder) on PMA, clinical, and survival data. We evaluated the prediction model in a validation set (36 NSCLC). Tumor RNA-Seq (GSE103584) was used to profile the transcriptome and cellular composition based on digital cytometry. RESULTS: CART demonstrated that a lower PMA was associated with a high risk of death (HR = 1.99). Cutoff Finder selected PMA cutoffs separating low-muscularity (LM) patients based on the risk of death (P-value = 0.003; discovery set). The cutoff presented 84% of success in classifying low muscle mass. The high risk of LM patients was also found in the validation set. Tumor RNA-Seq revealed 90 upregulated secretory genes in LM that potentially interact with muscle cell receptors. The LM upregulated genes enriched inflammatory biological processes. Digital cytometry revealed that LM patients presented high proportions of cytotoxic and exhausted CD8+ T cells. CONCLUSIONS: Our prediction model identified cutoffs that distinguished patients with lower PMA and survival with an inflammatory and immunosuppressive TME enriched with inflammatory factors and CD8+ T cells.


Subject(s)
Lung Neoplasms , Tumor Microenvironment , Humans , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Tomography, X-Ray Computed/methods , Pectoralis Muscles/pathology
3.
Cell Commun Signal ; 20(1): 176, 2022 11 09.
Article in English | MEDLINE | ID: mdl-36352420

ABSTRACT

BACKGROUND: Serous ovarian carcinoma is the most frequent histological subgroup of ovarian cancer and the leading cause of death among gynecologic tumors. The tumor microenvironment and cancer-associated fibroblasts (CAFs) have a critical role in the origin and progression of cancer. We comprehensively characterized the crosstalk between CAFs and ovarian cancer cells from malignant fluids to identify specific ligands and receptors mediating intercellular communications and disrupted pathways related to prognosis and therapy response. METHODS: Malignant fluids of serous ovarian cancer, including tumor-derived organoids, CAFs-enriched (eCAFs), and malignant effusion cells (no cultured) paired with normal ovarian tissues, were explored by RNA-sequencing. These data were integrated with single-cell RNA-sequencing data of ascites from ovarian cancer patients. The most relevant ligand and receptor interactions were used to identify differentially expressed genes with prognostic values in ovarian cancer. RESULTS: CAF ligands and epithelial cancer cell receptors were enriched for PI3K-AKT, focal adhesion, and epithelial-mesenchymal transition signaling pathways. Collagens, MIF, MDK, APP, and laminin were detected as the most significant signaling, and the top ligand-receptor interactions THBS2/THBS3 (CAFs)-CD47 (cancer cells), MDK (CAFs)-NCL/SDC2/SDC4 (cancer cells) as potential therapeutic targets. Interestingly, 34 genes encoding receptors and ligands of the PI3K pathway were associated with the outcome, response to treatment, and overall survival in ovarian cancer. Up-regulated genes from this list consistently predicted a worse overall survival (hazard ratio > 1.0 and log-rank P < 0.05) in two independent validation cohorts. CONCLUSIONS: This study describes critical signaling pathways, ligands, and receptors involved in the communication between CAFs and cancer cells that have prognostic and therapeutic significance in ovarian cancer. Video abstract.


Subject(s)
Ovarian Neoplasms , Phosphatidylinositol 3-Kinases , Humans , Female , Phosphatidylinositol 3-Kinases/metabolism , Ligands , Fibroblasts/metabolism , Ovarian Neoplasms/pathology , Tumor Microenvironment/genetics , Sequence Analysis, RNA , RNA/metabolism , Cell Line, Tumor
4.
BMC Biol ; 19(1): 52, 2021 03 19.
Article in English | MEDLINE | ID: mdl-33740955

ABSTRACT

BACKGROUND: Eukaryote genomes frequently harbor supernumerary B chromosomes in addition to the "standard" A chromosome set. B chromosomes are thought to arise as byproducts of genome rearrangements and have mostly been considered intraspecific oddities. However, their evolutionary transcendence beyond species level has remained untested. RESULTS: Here we reveal that the large metacentric B chromosomes reported in several fish species of the genus Astyanax arose in a common ancestor at least 4 million years ago. We generated transcriptomes of A. scabripinnis and A. paranae 0B and 1B individuals and used these assemblies as a reference for mapping all gDNA and RNA libraries to quantify coverage differences between B-lacking and B-carrying genomes. We show that the B chromosomes of A. scabripinnis and A. paranae share 19 protein-coding genes, of which 14 and 11 were also present in the B chromosomes of A. bockmanni and A. fasciatus, respectively. Our search for B-specific single-nucleotide polymorphisms (SNPs) identified the presence of B-derived transcripts in B-carrying ovaries, 80% of which belonged to nobox, a gene involved in oogenesis regulation. Importantly, the B chromosome nobox paralog is expressed > 30× more than the A chromosome paralog. This indicates that the normal regulation of this gene is altered in B-carrying females, which could potentially facilitate B inheritance at higher rates than Mendelian law prediction. CONCLUSIONS: Taken together, our results demonstrate the long-term survival of B chromosomes despite their lack of regular pairing and segregation during meiosis and that they can endure episodes of population divergence leading to species formation.


Subject(s)
Characidae/genetics , Chromosomes/genetics , Genome , Polymorphism, Single Nucleotide , Animals , Chromosome Mapping , Female , Male , Species Specificity
5.
Int J Mol Sci ; 22(19)2021 Sep 23.
Article in English | MEDLINE | ID: mdl-34638557

ABSTRACT

Chronic myeloid leukemia (CML), a hematopoietic neoplasm arising from the fusion of BCR (breakpoint cluster region) gene on chromosome 22 to the ABL (Abelson leukemia virus) gene on chromosome 9 (BCR-ABL1 oncogene), originates from a small population of leukemic stem cells with extensive capacity for self-renewal and an inflammatory microenvironment. Currently, CML treatment is based on tyrosine kinase inhibitors (TKIs). However, allogeneic hematopoietic stem cell transplantation (HSCT-allo) is currently the only effective treatment of CML. The difficulty of finding a compatible donor and high rates of morbidity and mortality limit transplantation treatment. Despite the safety and efficacy of TKIs, patients can develop resistance. Thus, microRNAs (miRNAs) play a prominent role as biomarkers and post-transcriptional regulators of gene expression. The aim of this study was to analyze the miRNA profile in CML patients who achieved cytogenetic remission after treatment with both HSCT-allo and TKI. Expression analyses of the 758 miRNAs were performed using reverse transcription quantitative polymerase chain reaction (RT-qPCR). Bioinformatics tools were used for data analysis. We detected miRNA profiles using their possible target genes and target pathways. MiR-125a-3p stood out among the downregulated miRNAs, showing an interaction network with 52 target genes. MiR-320b was the only upregulated miRNA, with an interaction network of 26 genes. The results are expected to aid future studies of miRNAs, residual leukemic cells, and prognosis in CML.


Subject(s)
Antineoplastic Agents/therapeutic use , Gene Expression Regulation, Neoplastic/drug effects , Imatinib Mesylate/therapeutic use , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , MicroRNAs/metabolism , Adult , Computational Biology , Down-Regulation/drug effects , Female , Hematopoietic Stem Cell Transplantation , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/blood , Male , MicroRNAs/genetics , Middle Aged , Protein Interaction Maps/drug effects , Up-Regulation/drug effects
6.
Int J Mol Sci ; 22(6)2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33804272

ABSTRACT

In fish, fasting leads to loss of muscle mass. This condition triggers oxidative stress, and therefore, antioxidants can be an alternative to muscle recovery. We investigated the effects of antioxidant ascorbic acid (AA) on the morphology, antioxidant enzyme activity, and gene expression in the skeletal muscle of pacu (Piaractus mesopotamicus) following fasting, using in vitro and in vivo strategies. Isolated muscle cells of the pacu were subjected to 72 h of nutrient restriction, followed by 24 h of incubation with nutrients or nutrients and AA (200 µM). Fish were fasted for 15 days, followed by 6 h and 15 and 30 days of refeeding with 100, 200, and 400 mg/kg of AA supplementation. AA addition increased cell diameter and the expression of anabolic and cell proliferation genes in vitro. In vivo, 400 mg/kg of AA increased anabolic and proliferative genes expression at 6 h of refeeding, the fiber diameter and the expression of genes related to cell proliferation at 15 days, and the expression of catabolic and oxidative metabolism genes at 30 days. Catalase activity remained low in the higher supplementation group. In conclusion, AA directly affected the isolated muscle cells, and the higher AA supplementation positively influenced muscle growth after fasting.


Subject(s)
Ascorbic Acid/pharmacology , Characiformes/growth & development , Muscle, Skeletal/drug effects , Animals , Antioxidants/chemistry , Antioxidants/pharmacology , Catalase/genetics , Dietary Supplements , Gene Expression/drug effects , Muscle Development/drug effects , Muscle, Skeletal/growth & development
7.
J Pineal Res ; 69(4): e12693, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32910542

ABSTRACT

Melatonin is a ubiquitous molecule with a broad spectrum of functions including widespread anti-cancer activities. Identifying how melatonin intervenes in complex molecular signaling at the gene level is essential to guide proper therapies. Using meta-analysis approach, herein we examined the role of melatonin in regulating the expression of 46 microRNAs (miRNAs) and their target genes in breast, oral, gastric, colorectal, and prostate cancers, and glioblastoma. The deregulated miRNA-associated target genes revealed their involvement in the regulation of cellular proliferation, differentiation, apoptosis, senescence, and autophagy. Melatonin changes the expression of miRNA-associated genes in breast, gastric, and oral cancers. These genes are associated with cellular senescence, the hedgehog signaling pathway, cell proliferation, p53 signaling, and the hippo signaling pathway. Conversely, colorectal and prostate cancers as well as glioblastoma and oral carcinoma present a clear pattern of less pronounced changes in the expression of miRNA-associated genes. Most notably, colorectal cancer displayed a unique molecular change in response to melatonin. Considering breast cancer network complexity, we compared the genes found during the meta-analysis with RNA-Seq data from breast cancer-bearing mice treated with melatonin. Mechanistically, melatonin upregulated genes associated with immune responses and apoptotic processes, whereas it downregulated genes involved in cellular aggressiveness/metastasis (eg, mitosis, telomerase activity, and angiogenesis). We further characterized the expression profile of our gene subsets with human breast cancer and found eight upregulated genes and 16 downregulated genes that were appositively correlated with melatonin. Our results pose a multi-dimension network of tumor-associated genes regulated by miRNAs potentially targeted by melatonin.


Subject(s)
Gene Expression Regulation, Neoplastic , Melatonin/metabolism , MicroRNAs , Neoplasms , RNA, Neoplasm , Animals , Humans , MicroRNAs/biosynthesis , MicroRNAs/genetics , Neoplasms/genetics , Neoplasms/metabolism , RNA, Neoplasm/biosynthesis , RNA, Neoplasm/genetics
8.
Article in English | MEDLINE | ID: mdl-31077846

ABSTRACT

Pacu is a tropical fish with important value to aquaculture. During cellular metabolism, reactive oxygen species (ROS) are produced, which can influence muscle growth. Resveratrol is an effective antioxidant that scavenges ROS and can modulate physical performance preventing oxidative stress. We investigated the effects of resveratrol and exercise on pacu muscle growth characteristics. Four groups were used: fish fed with control diet /without exercise (C); fish fed with control diet/subjected to exercise (CE); fish fed resveratrol-supplemented diet/without exercise (R); and fish fed resveratrol-supplemented diet/subjected to exercise (RE). At 30 days, the RE group presented a significant increase in body weight, fewer muscle fibers in the 20-40 µm and more fibers in the >60 µm diameter class compared to the C group. At day 7, catalase activity decreased in CE and RE groups. Superoxide dismutase activity decreased only in the CE group. Myod and mtor gene expression was higher in R and RE and igf-1 was up-regulated in the RE group. Murf1a level decreased in CE, R, and RE, while sdha expression was higher in the RE group. We suggest that resveratrol in combination with exercise was beneficial for muscle growth and metabolism, increasing the expression levels of genes related to muscle anabolism and oxidative metabolism, besides the decrease of catabolic gene expression. Notably, all of these changes occurred together with muscle hypertrophy and increased body weight. Our results show a positive application for resveratrol in association with exercise as a strategy to improve the growth performance of juvenile pacus.


Subject(s)
Antioxidants/pharmacology , Characiformes/growth & development , Muscle, Skeletal/growth & development , Resveratrol/pharmacology , Animal Feed , Animals , Aquaculture , Characiformes/genetics , Dietary Supplements , Gene Expression/drug effects , Humans , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Physical Conditioning, Animal
9.
Int J Mol Sci ; 20(8)2019 Apr 22.
Article in English | MEDLINE | ID: mdl-31013615

ABSTRACT

Cancer cachexia is a multifactorial syndrome that leads to significant weight loss. Cachexia affects 50%-80% of cancer patients, depending on the tumor type, and is associated with 20%-40% of cancer patient deaths. Besides the efforts to identify molecular mechanisms of skeletal muscle atrophy-a key feature in cancer cachexia-no effective therapy for the syndrome is currently available. MicroRNAs are regulators of gene expression, with therapeutic potential in several muscle wasting disorders. We performed a meta-analysis of previously published gene expression data to reveal new potential microRNA-mRNA networks associated with muscle atrophy in cancer cachexia. We retrieved 52 differentially expressed genes in nine studies of muscle tissue from patients and rodent models of cancer cachexia. Next, we predicted microRNAs targeting these differentially expressed genes. We also include global microRNA expression data surveyed in atrophying skeletal muscles from previous studies as background information. We identified deregulated genes involved in the regulation of apoptosis, muscle hypertrophy, catabolism, and acute phase response. We further predicted new microRNA-mRNA interactions, such as miR-27a/Foxo1, miR-27a/Mef2c, miR-27b/Cxcl12, miR-27b/Mef2c, miR-140/Cxcl12, miR-199a/Cav1, and miR-199a/Junb, which may contribute to muscle wasting in cancer cachexia. Finally, we found drugs targeting MSTN, CXCL12, and CAMK2B, which may be considered for the development of novel therapeutic strategies for cancer cachexia. Our study has broadened the knowledge of microRNA-regulated networks that are likely associated with muscle atrophy in cancer cachexia, pointing to their involvement as potential targets for novel therapeutic strategies.


Subject(s)
Cachexia/etiology , Gene Regulatory Networks , MicroRNAs/genetics , Neoplasms/complications , Neoplasms/genetics , Cachexia/metabolism , Computational Biology/methods , Gene Expression Profiling , Gene Expression Regulation , Gene Ontology , Humans , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Neoplasms/metabolism , Protein Interaction Mapping , Protein Interaction Maps , Reproducibility of Results , Transcriptome
10.
Biochem Biophys Res Commun ; 503(1): 109-115, 2018 09 03.
Article in English | MEDLINE | ID: mdl-29852164

ABSTRACT

Duchenne Muscular Dystrophy (DMD) is characterized by muscle extracellular matrix disorganization due to the increased collagen deposition leading to fibrosis that significantly exacerbates disease progression. Fractal dimension analysis is a method that quantifies tissue/cellular disorganization and characterizes complex structures. The first objective of the present study was use fractal analysis to evaluate extracellular matrix disorganization in mdx mice soleus muscle. Next, we mimic a hyper-proliferation of fibrogenic cells by co-culturing NIH3T3 fibroblasts and C2C12 myoblasts to test whether fibroblasts induce disorganization in myoblast arrangement. Here, we show mdx presented high skeletal muscle disorganization as revealed by fractal analysis. Similarly, this method revealed that myoblasts co-cultured with fibroblast also presented cellular arrangement disorganization. We also reanalyzed skeletal muscle microarrays transcriptomic data from mdx and DMD patients that revealed transcripts related to extracellular matrix organization. This analysis also identified Osteoglycin, which was validated as a potential regulator of ECM organization in mdx dystrophic muscles. Our results demonstrate that fractal dimension is useful tool for the analysis of skeletal muscle disorganization in DMD and also reveal a fibroblast-myoblast cross-talk that contributes to "in vitro" myoblast disarrangement.


Subject(s)
Fractals , Muscle, Skeletal/pathology , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/pathology , Animals , Cell Proliferation , Coculture Techniques , Disease Models, Animal , Extracellular Matrix/genetics , Extracellular Matrix/pathology , Fibroblasts/pathology , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Inbred mdx , Muscle, Skeletal/metabolism , Myoblasts, Skeletal/metabolism , Myoblasts, Skeletal/pathology , NIH 3T3 Cells , Up-Regulation
11.
Toxicol Appl Pharmacol ; 338: 93-102, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29155087

ABSTRACT

Capsaicin (8-Methyl-N-vanillyl-(trans)-6-nonenamide) is the major pungent ingredient found in chili peppers consumed worldwide. Most reports on capsaicin potential carcinogenicity have yielded inconsistent findings. Some studies have shown that capsaicin exerts anti-proliferative and pro-apoptotic effects on different cancer cell lines, while others have reported an association between capsaicin at high doses with mutagenicity and carcinogenicity. Thus, this study aimed at assessing the effects of capsaicin administration on 1,2-dimethyl-hydrazine (DMH)-induced colon carcinogenesis in male Wistar rats. Our results show that capsaicin administration, before and during carcinogen exposure, modified DMH-induced cytotoxicity and genotoxicity, promoting anti-proliferative and pro-apoptotic responses through the expression of the genes involved in apoptosis, cell cycle suppression and cell/tissue differentiation. Furthermore, capsaicin reduced aberrant crypt foci (ACF) number and multiplicity, although there were no differences in tumor incidence and multiplicity among the groups. Taken together, the results suggest that capsaicin may have a preventive effect against DMH-induced colorectal carcinogenesis.


Subject(s)
1,2-Dimethylhydrazine/toxicity , Capsaicin/pharmacology , Colon/drug effects , Colonic Neoplasms/prevention & control , Precancerous Conditions/prevention & control , Animals , Caco-2 Cells , Cell Proliferation/drug effects , Colon/pathology , Colonic Neoplasms/chemically induced , DNA Damage , Humans , Male , Precancerous Conditions/chemically induced , Rats , Rats, Wistar
12.
Mol Carcinog ; 56(1): 184-196, 2017 01.
Article in English | MEDLINE | ID: mdl-27061051

ABSTRACT

MicroRNAs (miRNAs) are post-transcriptional gene expression regulators which expression is frequently altered in hepatocellular carcinoma (HCC). ß-ionone (ßI) is noted for its ability to inhibit persistent preneoplastic lesions (pPNLs) in liver rats. We evaluated the expression of miRNAs involved in carcinogenesis and possible targets modulated by ßI, in pPNLs and surrounding of microdissected tissues. Rats subjected to resistant hepatocyte model were treated during promotion stage with ßI (16 mg/100 g body weight) or corn oil (CO; 0.25 mL/100 g body weight; controls). Five animals receive no treatment (NT). In CO group, 38 and 29 miRNAs showed reduced expression relative to NT (P < 0.05) in pPNLs and surrounding, respectively. No miRNAs showed increased expression in surrounding of the CO compared to NT group; however, 30 miRNAs showed increased expression (P ≤ 0.05) in pPNLs of the CO group. There was no difference between ßI and CO groups (P > 0.05) in the expression of miRNAs in surrounding. In pPNLs ßI increased expression of miR-122 and miR-34a (P ≤ 0.05) and reduced of Igf2 (P ≤ 0.05), target of the latter, compared to CO. Additionally, ßI decreased the expression of miR-181c and its target Gdf2 (P ≤ 0.05). ßI reduced the expression of miR-181b and miR-708 (P ≤ 0.05) and increased the expression of their respective target mRNAs Timp3 and Mtss1 (P ≤ 0.05), relative to CO group. Modulation of miRNAs target genes by ßI was confirmed in vitro. ßI is a promising chemopreventive agent in the initial stages of hepatocarcinogenesis, as it modulates the expression of the miRNAs and target genes that can alter the metastatic phenotype of HCC. © 2016 Wiley Periodicals, Inc.


Subject(s)
Anticarcinogenic Agents/therapeutic use , Carcinoma, Hepatocellular/prevention & control , Gene Expression Regulation, Neoplastic/drug effects , Liver Neoplasms/prevention & control , Liver/drug effects , MicroRNAs/genetics , Norisoprenoids/therapeutic use , Animals , Carcinogenesis/drug effects , Carcinogenesis/metabolism , Carcinogenesis/pathology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Humans , Liver/metabolism , Liver/pathology , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Male , Precancerous Conditions/genetics , Precancerous Conditions/pathology , Precancerous Conditions/prevention & control , Rats , Rats, Wistar
13.
Int J Exp Pathol ; 98(2): 109-116, 2017 04.
Article in English | MEDLINE | ID: mdl-28543723

ABSTRACT

Protein restriction during gestation can alter the skeletal muscle phenotype of offspring; however, little is known with regard to whether this also affects the neuromuscular junction (NMJ), as muscle phenotype maintenance depends upon NMJ functional integrity. This study aimed to evaluate the effects of a low protein (6%) intake by dams throughout gestation on male offspring NMJ morphology and nicotinic acetylcholine receptor (nAChR) α1, γ and ε subunit expression in the soleus (SOL) and extensor digitorum longus (EDL) muscles. Four groups of male Wistar offspring rats were studied. The offspring of dams fed low-protein (6% protein, LP) and normal protein (17% protein, NP) diets were evaluated at 30 and 120 days of age, and the SOL and EDL muscles were collected for analysis. Morphological studies using transmission electron microscopy revealed that only SOL NMJs were affected in 30-day-old offspring in the LP group compared with the NP group. SOL NMJs exhibited fewer synaptic folds, the postsynaptic membranes were smooth and myelin figures were also frequently observed in the terminal axons. With regard to the expression of mRNAs encoding nAChR subunits, only 30-day-old LP offspring EDL muscles exhibited reduced α, γ and ε subunit expression compared with the NP group. In conclusion, our results demonstrate that a low-protein diet (6%) imposed throughout pregnancy impairs the expression of mRNAs encoding the nAChR α, γ and ε subunits in EDL NMJs and promotes morphological changes in SOL NMJs of 30-day-old offspring, indicating specific differences among muscle types following long-term maternal protein restriction.


Subject(s)
Diet, Protein-Restricted/adverse effects , Neuromuscular Junction/ultrastructure , Receptors, Nicotinic/genetics , Animals , Female , Male , Muscle, Skeletal/metabolism , Muscle, Skeletal/ultrastructure , Neuromuscular Junction/metabolism , Phenotype , Pregnancy , RNA, Messenger/metabolism , Rats , Rats, Wistar
14.
Int J Exp Pathol ; 97(3): 238-47, 2016 06.
Article in English | MEDLINE | ID: mdl-27365256

ABSTRACT

Pulmonary arterial hypertension (PAH) is a chronic disease which causes overload to the right ventricle. The effect of preventive training on cardiac remodelling in this condition is still unknown. This study aimed to evaluate the influence of preventive training on hypertrophy, heart function and gene expression of calcium transport proteins in rats with monocrotaline-induced PAH. Thirty-two male Wistar rats were randomly divided into four groups: S, sedentary control; T, trained control; SM, sedentary monocrotaline; and TM, trained monocrotaline. The preventive training protocol was performed on a treadmill for 13 weeks, five times/week. The first two weeks were adopted for adaptation to training with gradual increases in speed/time. The speed of the physical training from the third to tenth weeks was gradually increased from 0.9 to 1.1 km/h for 60 min. Next, monocrotaline was applied (60 mg/kg) to induce PAH and lactate threshold analysis performed to determine the training speeds. The training speed of the TM group in the following two weeks was 0.8 km/h for 60 min and the T = 0.9 km/h for 60 min; in the final two weeks, both groups trained at the same speed and duration 0.9 km/h, 60 min. Cardiac function was assessed through echocardiography, ventricular hypertrophy through histomorphometric analysis and gene expression through RT-qPCR. Right cardiac function assessed through the peak flow velocity was SM = 75.5 cm/s vs. TM = 92.0 cm/s (P = 0.001), and ventricular hypertrophy was SM = 106.4 µm² vs. TM = 77.7 µm² (P = 0.004). There was a decrease in the gene expression of ryanodine S = 1.12 au vs. SM = 0.60 au (P = 0.02) without alterations due to training. Thus, we conclude that prior physical training exerts a cardioprotective effect on the right ventricle in the monocrotaline rat model.


Subject(s)
Cardiotonic Agents/pharmacology , Heart Ventricles/drug effects , Monocrotaline/pharmacology , Aerobiosis , Animals , Disease Models, Animal , Hypertension, Pulmonary/prevention & control , Hypertrophy, Right Ventricular/prevention & control , Male , Physical Conditioning, Animal/methods , Rats, Wistar
15.
Exp Physiol ; 101(8): 1075-85, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27219629

ABSTRACT

NEW FINDINGS: What is the central question of this study? We investigated the effects of physical training on phenotypic (fibre-type content) and myogenic features (MyoD and myogenin expression) in skeletal muscle during the transition from cardiac hypertrophy to heart failure. What is the main finding and its importance? We provide new insight into skeletal muscle adaptations by showing that physical training increases the type I fibre content during the transition from cardiac hypertrophy to heart failure, without altering MyoD and myogenin expression. These results have important clinical implications for patients with heart failure, because this population has reduced muscle oxidative capacity. The purpose of this study was to investigate the effects of physical training (PT) on phenotypic features (fibre-type content) and myogenic regulatory factors (MyoD and myogenin) in rat skeletal muscle during the transition from cardiac hypertrophy to heart failure. We used the model of ascending aortic stenosis (AS) to induce heart failure in male Wistar rats. Sham-operated animals were used as age-matched controls. At 18 weeks after surgery, rats with ventricular dysfunction were randomized into the following four groups: sham-operated, untrained (Sham-U; n = 8); sham-operated, trained (Sham-T; n = 6); aortic stenosis, untrained (AS-U; n = 6); and aortic stenosis, trained (AS-T; n = 8). The AS-T and Sham-T groups were submitted to a 10 week aerobic PT programme, while the AS-U and Sham-U groups remained untrained for the same period of time. After the PT programme, the animals were killed and the soleus muscles collected for phenotypic and molecular analyses. Physical training promoted type IIa-to-I fibre conversion in the trained groups (Sham-T and AS-T) compared with the untrained groups (Sham-U and AS-U). No significant (P > 0.05) differences were found in type I or IIa fibre content in the AS-U group compared with the Sham-U group. Additionally, there were no significant (P > 0.05) differences in the myogenic regulatory factors MyoD and myogenin (gene and protein) expression between the groups. Therefore, our results indicate that PT may be a suitable strategy to improve the oxidative phenotype in skeletal muscle during the transition from cardiac hypertrophy to heart failure, without altering MyoD and myogenin.


Subject(s)
Cardiomegaly/metabolism , Cardiomegaly/pathology , Heart Failure/metabolism , Heart Failure/pathology , MyoD Protein/metabolism , Myogenin/metabolism , Physical Conditioning, Animal/physiology , Animals , Male , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Oxidation-Reduction , Rats , Rats, Wistar
16.
Cell Physiol Biochem ; 35(5): 1924-33, 2015.
Article in English | MEDLINE | ID: mdl-25871735

ABSTRACT

BACKGROUND: Doxorubicin can cause cardiotoxicity. Matrix metalloproteinases (MMP) are responsible for degrading extracellular matrix components which play a role in ventricular dilation. Increased MMP activity occurs after chronic doxorubicin treatment. In this study we evaluated in vivo and in vitro cardiac function in rats with acute doxorubicin treatment, and examined myocardial MMP and inflammatory activation, and gene expression of proteins involved in myocyte calcium transients. METHODS: Wistar rats were injected with doxorubicin (Doxo, 20 mg/kg) or saline (Control). Echocardiogram was performed 48 h after treatment. Myocardial function was assessed in vitro in Langendorff preparation. RESULTS: In left ventricle, doxorubicin impaired fractional shortening (Control 0.59 ± 0.07; Doxo 0.51 ± 0.05; p < 0.001), and increased isovolumetric relaxation time (Control 20.3 ± 4.3; Doxo 24.7 ± 4.2 ms; p = 0.007) and myocardial passive stiffness. MMP-2 activity, evaluated by zymography, was increased in Doxo (Control 141338 ± 8924; Doxo 188874 ± 7652 arbitrary units; p < 0.001). There were no changes in TNF-α, INF-γ, IL-10, and ICAM-1 myocardial levels. Expression of phospholamban, Serca-2a, and ryanodine receptor did not differ between groups. CONCLUSION: Acute doxorubicin administration induces in vivo left ventricular dysfunction and in vitro increased myocardial passive stiffness in rats. Cardiac dysfunction is related to myocardial MMP-2 activation. Increased inflammatory stimulation or changed expression of the proteins involved in intracellular calcium transients is not involved in acute cardiac dysfunction.


Subject(s)
Cardiotoxicity/etiology , Doxorubicin/toxicity , Matrix Metalloproteinase 2/metabolism , Animals , Blood Pressure/drug effects , Echocardiography , Heart/drug effects , Heart/physiology , Intercellular Adhesion Molecule-1/metabolism , Interferon-gamma/metabolism , Interleukin-10/metabolism , Ketamine/pharmacology , Male , Myocardium/metabolism , Myocardium/pathology , Rats , Rats, Wistar , Tumor Necrosis Factor-alpha/metabolism , Xylazine/pharmacology
17.
Biomedicines ; 11(5)2023 May 14.
Article in English | MEDLINE | ID: mdl-37239116

ABSTRACT

Aging causes alterations in body composition. Specifically, visceral fat mass increases with age and is associated with age-related diseases. The pathogenic potential of visceral fat accumulation has been associated with its anatomical location and metabolic activity. Visceral fat may control systemic metabolism by secreting molecules that act in distal tissues, mainly the liver, through the portal vein. Currently, little is known about age-related changes in visceral fat in humans. Aiming to identify molecular and cellular changes occurring with aging in the visceral fat of humans, we analyzed publicly available transcriptomic data of 355 omentum samples from the Genotype-Tissue Expression portal (GTEx) of 20-79-year-old males and females. We identified the functional enrichment of genes associated with aging, inferred age-related changes in visceral fat cellularity by deconvolution analysis, profiled the senescence-associated secretory phenotype of visceral adipose tissue, and predicted the connectivity of the age-induced visceral fat secretome with the liver. We demonstrate that age induces alterations in visceral fat cellularity, synchronous to changes in metabolic pathways and a shift toward a pro-inflammatory secretory phenotype. Furthermore, our approach identified candidates such as ADIPOQ-ADIPOR1/ADIPOR2, FCN2-LPR1, and TF-TFR2 to mediate visceral fat-liver crosstalk in the context of aging. These findings cast light on how alterations in visceral fat with aging contribute to liver dysfunction and age-related disease etiology.

18.
Pathol Res Pract ; 248: 154637, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37356221

ABSTRACT

BACKGROUND: Ovarian cancer is a highly aggressive disease that is frequently diagnosed in advanced stages. Melatonin, with its numerous antitumor properties, holds great promise in cancer treatment. Herein, we investigated the effects of melatonin on apoptosis, cell migration, and kinase levels in human ovarian carcinoma SKOV-3 cells and determined whether these effects are mediated by the activation of the MT1 receptor. METHODS: SKOV-3 cells were exposed to different concentrations of melatonin based on the presence of MT1 receptor, and we also performed specific silencing of the melatonin receptor gene MTNR1A. RESULTS: Our findings revealed that melatonin reduced cell viability as shown by the MTT assay, and flow cytometry analysis showed increased rates of apoptosis and necrosis in all melatonin-treated cells. Melatonin significantly decreased the migratory and invasive capacities of the cells. Propidium iodide labeling indicated that melatonin induced cell cycle arrest by reducing DNA content in the S and G2/M phases in SKOV-3 cells. Additionally, the levels of AKT, ERK1/2, JNK, CREB, p70S6K, STAT3/5, and p38 MAP kinase involved in cell survival, proliferation, motility, and stress responses were depressed by melatonin and further reduced after MT1 knockdown. These molecules were found to be associated with lower overall survival in ovarian cancer patients. CONCLUSIONS: Melatonin had obvious oncostatic actions on ovarian cancer cells, and MT1 receptor knockdown intensified its antitumor effect. The inhibition of the MT1 receptor resulted in a substantial reduction in the migratory and invasive capacities of the cells, suggesting its potential as a therapeutic target for the treatment of ovarian cancer.

19.
Article in English | MEDLINE | ID: mdl-36442404

ABSTRACT

Interspecific hybrids are highly complex organisms, especially considering aspects related to the organization of genetic material. The diversity of possibilities created by the genetic combination between different species makes it difficult to establish a large-scale analysis methodology. An example of this complexity is Tambacu, an interspecific hybrid of Colossoma macropomum (Tambaqui) and Piaractus mesopotamicus (Pacu). Either genotype represents an essential role in South American aquaculture. However, despite this importance, the genetic information for these genotypes is still highly scarce in specialized databases. Using RNA-Seq analysis, we characterized the transcriptome of white muscle from Pacu, Tambaqui, and their interspecific hybrid (Tambacu). The sequencing process allowed us to obtain a significant number of reads (approximately 53 billion short reads). A total of annotated contigs were 37,285, 96,738, and 158,709 for Pacu, Tambaqui, and Tambacu. After that, we performed a comparative analysis of the transcriptome of the three genotypes, where we evaluated the differential expression (Tambacu vs Pacu = 11,156, and Tambacu vs Tambaqui = 876) profile of the transcript and the degree of similarity between the nucleotide sequences between the genotypes. We assessed the intensity and pattern of expression across genotypes using differential expression information. Clusterization analysis showed a closer relationship between Tambaqui and Tambacu. Furthermore, digital differential expression analysis selected some target genes related to essential cellular processes to evaluate and validate the expression through the RT-qPCR. The RT-qPCR analysis demonstrated significantly (p < 0.05) elevated expression of the mafbx, foxo1a, and rgcc genes in the hybrid compared to the parents. Likewise, we can observe genes significantly more expressed in Pacu (mtco1 and mylpfa) and mtco2 in Tambaqui. Our results showed that the phenotype presented by Tambacu might be associated with changes in the gene expression profile and not necessarily with an increase in gene variability. Thus, the molecular mechanisms underlying these "hybrid effects" may be related to additive and, in some cases, dominant regulatory interactions between parental alleles that act directly on gene regulation in the hybrid transcripts.


Subject(s)
Characiformes , Transcriptome , Animals , Characiformes/genetics , Gene Expression Profiling , Base Sequence , Muscles
20.
Genes (Basel) ; 13(12)2022 12 16.
Article in English | MEDLINE | ID: mdl-36553644

ABSTRACT

The regulation of the fish phenotype and muscle growth is influenced by fasting and refeeding periods, which occur in nature and are commonly applied in fish farming. However, the regulators associated with the muscle responses to these manipulations of food availability have not been fully characterized. We aimed to identify novel genes associated with fish skeletal muscle adaptation during fasting and refeeding based on a meta-analysis. Genes related to translational and proliferative machinery were investigated in pacus (Piaractus mesopotamicus) subjected to fasting (four and fifteen days) and refeeding (six hours, three and fifteen days). Our results showed that different fasting and refeeding periods modulate the expression of the genes mtor, rps27a, eef1a2, and cdkn1a. These alterations can indicate the possible protection of the muscle phenotype, in addition to adaptive responses that prioritize energy and substrate savings over cell division, a process regulated by ccnd1. Our study reveals the potential of meta-analysis for the identification of muscle growth regulators and provides new information on muscle responses to fasting and refeeding in fish that are of economic importance to aquaculture.


Subject(s)
Characiformes , Muscle, Skeletal , Animals , Muscle, Skeletal/metabolism , Fasting
SELECTION OF CITATIONS
SEARCH DETAIL