Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 89
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Int J Cancer ; 153(6): 1300-1312, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37260183

ABSTRACT

Mammalian target of rapamycin (mTOR) is a central regulator of mammalian metabolism and physiology. Aberrant hyperactivation of the mTOR pathway promotes tumor growth and metastasis, and can also promote tumor resistance to chemotherapy and cancer drugs; this makes mTOR an attractive cancer therapeutic target. mTOR inhibitors have been approved to treat cancer; however, the mechanisms underlying drug sensitivity remain poorly understood. Here, whole exome sequencing of three chromophobe renal cell carcinoma (chRCC) patients with exceptional mTOR inhibitor sensitivity revealed that all three patients shared somatic mutations in the deubiquitinase gene USP9X. The clonal characteristics of the mutations, which were amassed by studying multiple patients' primary and metastatic samples from various years, together with the low USP9X mutation rate in unselected chRCC series, reinforced a causal link between USP9X and mTOR inhibitor sensitivity. Rapamycin treatment of USP9X-depleted HeLa and renal cancer 786-O cells, along with the pharmacological inhibition of USP9X, confirmed that this protein plays a role in patients' sensitivity to mTOR inhibitors. USP9X was not found to exert a direct effect on mTORC1, but subsequent ubiquitylome analyses identified p62 as a direct USP9X target. Increased p62 ubiquitination and the augmented rapamycin effect upon bortezomib treatment, together with the results of p62 and LC3 immunofluorescence assays, suggested that dysregulated autophagy in USP9X-depleted cells can have a synergistic effect with mTOR inhibitors. In summary, we show that USP9X constitutes a potential novel marker of sensitivity to mTOR inhibitors in chRCC patients, and represents a clinical strategy for increasing the sensitivity to these drugs.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Cell Line, Tumor , Deubiquitinating Enzymes , Kidney Neoplasms/drug therapy , Kidney Neoplasms/genetics , MTOR Inhibitors , Sirolimus/pharmacology , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Ubiquitin Thiolesterase/genetics
2.
J Med Genet ; 59(8): 785-792, 2022 08.
Article in English | MEDLINE | ID: mdl-34452955

ABSTRACT

BACKGROUND: SDHB is one of the major genes predisposing to paraganglioma/pheochromocytoma (PPGL). Identifying pathogenic SDHB variants in patients with PPGL is essential to the management of patients and relatives due to the increased risk of recurrences, metastases and the emergence of non-PPGL tumours. In this context, the 'NGS and PPGL (NGSnPPGL) Study Group' initiated an international effort to collect, annotate and classify SDHB variants and to provide an accurate, expert-curated and freely available SDHB variant database. METHODS: A total of 223 distinct SDHB variants from 737 patients were collected worldwide. Using multiple criteria, each variant was first classified according to a 5-tier grouping based on American College of Medical Genetics and NGSnPPGL standardised recommendations and was then manually reviewed by a panel of experts in the field. RESULTS: This multistep process resulted in 23 benign/likely benign, 149 pathogenic/likely pathogenic variants and 51 variants of unknown significance (VUS). Expert curation reduced by half the number of variants initially classified as VUS. Variant classifications are publicly accessible via the Leiden Open Variation Database system (https://databases.lovd.nl/shared/genes/SDHB). CONCLUSION: This international initiative by a panel of experts allowed us to establish a consensus classification for 223 SDHB variants that should be used as a routine tool by geneticists in charge of PPGL laboratory diagnosis. This accurate classification of SDHB genetic variants will help to clarify the diagnosis of hereditary PPGL and to improve the clinical care of patients and relatives with PPGL.


Subject(s)
Adrenal Gland Neoplasms , Paraganglioma , Pheochromocytoma , Adrenal Gland Neoplasms/genetics , Genetic Testing , Germ-Line Mutation/genetics , Humans , Paraganglioma/diagnosis , Paraganglioma/genetics , Paraganglioma/pathology , Pheochromocytoma/diagnosis , Pheochromocytoma/genetics , Pheochromocytoma/pathology , Succinate Dehydrogenase/genetics
3.
Am J Hum Genet ; 104(4): 651-664, 2019 04 04.
Article in English | MEDLINE | ID: mdl-30929736

ABSTRACT

Pheochromocytomas and paragangliomas (PPGLs) provide some of the clearest genetic evidence for the critical role of metabolism in the tumorigenesis process. Approximately 40% of PPGLs are caused by driver germline mutations in 16 known susceptibility genes, and approximately half of these genes encode members of the tricarboxylic acid (TCA) cycle. Taking as a starting point the involvement of the TCA cycle in PPGL development, we aimed to identify unreported mutations that occurred in genes involved in this key metabolic pathway and that could explain the phenotypes of additional individuals who lack mutations in known susceptibility genes. To accomplish this, we applied a targeted sequencing of 37 TCA-cycle-related genes to DNA from 104 PPGL-affected individuals with no mutations in the major known predisposing genes. We also performed omics-based analyses, TCA-related metabolite determination, and 13C5-glutamate labeling assays. We identified five germline variants affecting DLST in eight unrelated individuals (∼7%); all except one were diagnosed with multiple PPGLs. A recurrent variant, c.1121G>A (p.Gly374Glu), found in four of the eight individuals triggered accumulation of 2-hydroxyglutarate, both in tumors and in a heterologous cell-based assay designed to functionally evaluate DLST variants. p.Gly374Glu-DLST tumors exhibited loss of heterozygosity, and their methylation and expression profiles are similar to those of EPAS1-mutated PPGLs; this similarity suggests a link between DLST disruption and pseudohypoxia. Moreover, we found positive DLST immunostaining exclusively in tumors carrying TCA-cycle or EPAS1 mutations. In summary, this study reveals DLST as a PPGL-susceptibility gene and further strengthens the relevance of the TCA cycle in PPGL development.


Subject(s)
Acyltransferases/genetics , Adrenal Gland Neoplasms/genetics , Germ-Line Mutation , Paraganglioma/genetics , Pheochromocytoma/genetics , Adult , Basic Helix-Loop-Helix Transcription Factors/genetics , Carcinogenesis , Catalytic Domain , Citric Acid Cycle , DNA Methylation , Female , Gene Expression Profiling , Gene Expression Regulation , Genetic Predisposition to Disease , High-Throughput Nucleotide Sequencing , Humans , Loss of Heterozygosity , Male , Middle Aged
4.
Genet Med ; 23(4): 698-704, 2021 04.
Article in English | MEDLINE | ID: mdl-33442023

ABSTRACT

PURPOSE: Germline pathogenic variants are estimated to affect 3-5% of renal cell carcinoma (RCC) patients. However, higher mutational prevalence in non-clear cell RCC (non-ccRCC) and advanced disease has been suggested. METHODS: To clarify the prevalence of pathogenic germline variants in metastatic RCC, we sequenced 29 cancer susceptibility genes in 294 unselected metastatic RCC cases plus 21 patients with clinical hereditary features. In 145 tumors, genes frequently mutated in RCC were sequenced and methylation was assessed in selected cases. RESULTS: Germline variants in RCC predisposition genes (FH, VHL) were detected in 1.4% of the unselected metastatic patients, with higher frequency in non-ccRCC versus ccRCC (6.4% and 0.4%; P = 0.0025) and in younger patients (P = 0.036). Among the 315 studied patients, 14% of non-type 1 papillary cases (4 of 28), all metastatic <1 year after diagnosis, carried a FH germline variant with loss of heterozygosity and tumor genome hypermethylation. Variants in other cancer-associated genes (e.g., MUTYH, BRCA2, CHEK2) occurred in 5.1% of the unselected series, with unclear significance for RCC. CONCLUSION: Our findings confirm a high prevalence of pathogenic germline variants in RCC predisposition genes in metastatic non-ccRCC, and highlight that metastatic patients with papillary type 2 or unconventional histologies compatible with FH would benefit from genetic screening.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Carcinoma, Renal Cell/epidemiology , Carcinoma, Renal Cell/genetics , Germ Cells , Germ-Line Mutation , Humans , Kidney Neoplasms/epidemiology , Kidney Neoplasms/genetics , Mutation , Prevalence
5.
Int J Cancer ; 146(5): 1435-1444, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31335987

ABSTRACT

The mammalian target of rapamycin (mTOR) pathway inhibitors are key drugs for the treatment of many tumor types, however, there are no predictive biomarkers in clinical use. Here, we performed a molecular and immunohistochemical characterization of key mTOR pathway components in a series of 105 renal cell carcinoma patients treated with rapalogs, aimed at identifying markers of treatment response. Mutational analysis in MTOR, TSC1 and TSC2 was performed through targeted next-generation sequencing (NGS), and immunohistochemistry (IHC) was performed for PTEN, pAKT, pS6K1, pS6 and p21. Among patients with NGS data, 11 of 87 (13%) had mTOR pathway mutations (8 in MTOR, 1 in TSC1 and 2 in TSC2). When comparing the molecular data to the response of the patients, we found that partial response was more frequent in cases with mTOR pathway mutations than in those without mutations (odds ratio [OR] = 0.08, 95% confidence interval [CI] = 0.008-0.79, p = 0.030 univariate; p = 0.038 multivariable). Regarding IHC, negative PTEN staining was detected in 58% of the tumors, and it was more frequent in rapalog responder patients (OR = 0.24, 95% CI = 0.065-0.86, p = 0.029 univariate; p = 0.029 multivariable). Mutations and PTEN IHC were not mutually exclusive events and its combination improved response prediction (OR = 0.16, 95% CI = 0.04-0.62, p = 0.008 univariate; p = 0.013 multivariable). The staining of other proteins did not show and association with response and no association with PFS was observed in unselected patients. In conclusion, our findings suggest that mTOR pathway mutations, negative PTEN IHC and their combination are potential markers of rapalog response.


Subject(s)
Antineoplastic Agents/pharmacology , Biomarkers, Tumor/genetics , Carcinoma, Renal Cell/drug therapy , Drug Resistance, Neoplasm/genetics , Kidney Neoplasms/drug therapy , Adult , Aged , Aged, 80 and over , Antineoplastic Agents/therapeutic use , Biomarkers, Tumor/antagonists & inhibitors , Biomarkers, Tumor/metabolism , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/mortality , DNA Mutational Analysis , Everolimus/pharmacology , Everolimus/therapeutic use , Female , Follow-Up Studies , Humans , Kidney/pathology , Kidney Neoplasms/genetics , Kidney Neoplasms/mortality , Male , Middle Aged , Mutation , PTEN Phosphohydrolase/metabolism , Prognosis , Progression-Free Survival , Prospective Studies , Signal Transduction/drug effects , Signal Transduction/genetics , Sirolimus/analogs & derivatives , Sirolimus/pharmacology , Sirolimus/therapeutic use , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Tuberous Sclerosis Complex 1 Protein/genetics , Tuberous Sclerosis Complex 2 Protein/genetics
6.
Int J Cancer ; 146(2): 521-530, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31403184

ABSTRACT

It is critical to identify biomarkers and functional networks associated with aggressive thyroid cancer to anticipate disease progression and facilitate personalized patient management. We performed miRNome sequencing of 46 thyroid tumors enriched with advanced disease patients with a median follow-up of 96 months. MiRNome profiles correlated with tumor-specific histopathological and molecular features, such as stromal cell infiltration and tumor driver mutation. Differential expression analysis revealed a consistent hsa-miR-139-5p downexpression in primary carcinomas from patients with recurrent/metastatic disease compared to disease-free patients, sustained in paired local metastases and validated in publicly available thyroid cancer series. Exogenous expression of hsa-miR-139-5p significantly reduced migration and proliferation of anaplastic thyroid cancer cells. Proteomic analysis indicated RICTOR, SMAD2/3 and HNRNPF as putative hsa-miR-139-5p targets in our cell system. Abundance of HNRNPF mRNA, encoding an alternative splicing factor involved in cryptic exon inclusion/exclusion, inversely correlated with hsa-miR-139-5p expression in human tumors. RNA sequencing analysis revealed 174 splicing events differentially regulated upon HNRNPF repression in our cell system, affecting genes involved in RTK/RAS/MAPK and PI3K/AKT/MTOR signaling cascades among others. These results point at the hsa-miR-139-5p/HNRNPF axis as a novel regulatory mechanism associated with the modulation of major thyroid cancer signaling pathways and tumor virulence.


Subject(s)
Biomarkers, Tumor/metabolism , Gene Expression Regulation, Neoplastic , Heterogeneous-Nuclear Ribonucleoprotein Group F-H/genetics , MicroRNAs/metabolism , Thyroid Neoplasms/genetics , Adult , Aged , Aged, 80 and over , Alternative Splicing/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Disease-Free Survival , Female , Follow-Up Studies , Gene Expression Profiling , Heterogeneous-Nuclear Ribonucleoprotein Group F-H/metabolism , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Prognosis , Signal Transduction/genetics , Survival Rate , Thyroid Gland/pathology , Thyroid Neoplasms/mortality , Thyroid Neoplasms/pathology
7.
Mod Pathol ; 33(12): 2580-2590, 2020 12.
Article in English | MEDLINE | ID: mdl-32616874

ABSTRACT

Chromophobe renal cell carcinoma (chRCC) is a histologically and molecularly distinct class of rare renal tumor. TCGA studies revealed low mutational burden, with only TP53 and PTEN recurrently mutated, and discovered alterations in TERT promoter and in the electron transport chain Complex I genes. However, knowledge on drug targetable genes is limited and treatments at metastatic stage do not follow a molecular rationale. In a large series of 92 chRCC enriched with metastatic cases, we performed an in-depth characterization of mTOR pathway alterations through targeted NGS and immunohistochemistry (IHC) of phospho-S6, tuberin, and PTEN. Mutations in mitochondria, telomere maintenance and other renal cancer related genes and p53 IHC, were also assessed. The impact on metastasis development and disease specific survival was determined, using TCGA-KICH series (n = 65) for validation. mTOR pathway mutations (MTOR, TSC1, TSC2) were present in 17% of primary tumors, most of them being classified as pathogenic. Mutations were associated with positive IHC staining of phospho-S6 and PTEN (P = 0.009 and P = 0.001, respectively) and with chRCC eosinophilic variant (P = 0.039), supporting a biological relevance of the pathway. mTOR pathway mutations were associated with worse clinical outcomes. Survival analysis gave a hazard ratio of 5.5 (P = 0.027), and this association was confirmed in TCGA-KICH (HR = 10.3, P = 0.006). TP53 mutations were enriched in metastatic cases (P = 0.018), and mutations in telomere maintenance genes showed a trend in the same direction. p53 IHC staining pattern was associated with the underlying TP53 defect, and negative PTEN IHC staining (82% of cases) suggested PTEN loss as a chRCC hallmark. In conclusion, our study provides with novel genomic knowledge in chRCC and identifies novel markers of poor survival. Furthermore, this is the first study showing that mTOR pathway mutations correlate with poor prognosis, and may help to identify patients with increased sensitivity to mTOR inhibitors.


Subject(s)
Biomarkers, Tumor/genetics , Carcinoma, Renal Cell/genetics , Kidney Neoplasms/genetics , Mutation , TOR Serine-Threonine Kinases/genetics , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor/analysis , Carcinoma, Renal Cell/chemistry , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/therapy , DNA Mutational Analysis , Female , Genetic Predisposition to Disease , High-Throughput Nucleotide Sequencing , Humans , Immunohistochemistry , Kidney Neoplasms/chemistry , Kidney Neoplasms/pathology , Kidney Neoplasms/therapy , Male , Middle Aged , PTEN Phosphohydrolase/analysis , Phenotype , Phosphorylation , Ribosomal Protein S6 Kinases/analysis , Tuberous Sclerosis Complex 1 Protein/genetics , Tuberous Sclerosis Complex 2 Protein/analysis , Tuberous Sclerosis Complex 2 Protein/genetics , Tumor Suppressor Protein p53/genetics
8.
Oncologist ; 24(8): e784-e792, 2019 08.
Article in English | MEDLINE | ID: mdl-30470691

ABSTRACT

BACKGROUND: Peripheral neuropathy is the dose-limiting toxicity of many oncology drugs, including paclitaxel. There is large interindividual variability in the neuropathy, and several risk factors have been proposed; however, many have not been replicated. Here we present a comprehensive study aimed at identifying treatment and physiopathology-related paclitaxel-induced neuropathy risk factors in a large cohort of well-characterized patients. PATIENTS AND METHODS: Analyses included 503 patients with breast or ovarian cancer who received paclitaxel treatment. Paclitaxel dose modifications caused by the neuropathy were extracted from medical records and patients self-reported neuropathy symptoms were collected. Multivariate logistic regression analyses were performed to identify concomitant medications and comorbidities associated with paclitaxel-induced neuropathy. RESULTS: Older patients had higher neuropathy: for each increase of 1 year of age, the risk of dose modifications and grade 3 neuropathy increased 4% and 5%, respectively. Cardiovascular drugs increased the risk of paclitaxel dose reductions (odds ratio [OR], 2.51; p = .006), with a stronger association for beta-adrenergic antagonists. The total number of concomitant medications also showed an association with dose modifications (OR, 1.25; p = .012 for each concomitant drug increase). A dose modification predictive model that included the new identified factors gave an area under the curve of 0.74 (p = 1.07 × 10-10). Preexisting nerve compression syndromes seemed to increase neuropathy risk. CONCLUSION: Baseline characteristics of the patients, including age and concomitant medications, could be used to identify individuals at high risk of neuropathy, personalizing chemotherapy treatment and reducing the risk of severe neuropathy. IMPLICATIONS FOR PRACTICE: Peripheral neuropathy is a common adverse effect of many cancer drugs, including chemotherapeutics, targeted therapies, and immune checkpoint inhibitors. About 40% of survivors of cancer have functional deficits caused by this toxicity, some of them irreversible. Currently, there are no effective treatments to prevent or treat this neuropathy. This study, performed in a large cohort of well-characterized patients homogenously treated with paclitaxel, identified concomitant medications, comorbidities, and demographic factors associated with peripheral neuropathy. These factors could serve to identify patients at high risk of severe neuropathy for whom alternative non-neurotoxic alternatives may be considered.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Breast Neoplasms/drug therapy , Ovarian Neoplasms/drug therapy , Paclitaxel/administration & dosage , Paclitaxel/adverse effects , Peripheral Nervous System Diseases/chemically induced , Adult , Aged , Aged, 80 and over , Antineoplastic Agents, Phytogenic/adverse effects , Antineoplastic Agents, Phytogenic/therapeutic use , Breast Neoplasms/epidemiology , Drug Interactions , Female , Humans , Middle Aged , Ovarian Neoplasms/epidemiology , Peripheral Nervous System Diseases/epidemiology , Prognosis , Retrospective Studies , Spain/epidemiology
9.
Genet Med ; 21(3): 705-717, 2019 03.
Article in English | MEDLINE | ID: mdl-30050099

ABSTRACT

PURPOSE: Metabolic aberrations have been described in neoplasms with pathogenic variants (PV) in the Krebs cycle genes encoding succinate dehydrogenase (SDH), fumarate hydratase (FH) and isocitrate dehydrogenase (IDH). In turn, accumulation of oncometabolites succinate, fumarate, and 2-hydroxyglutarate can be employed to identify tumors with those PV . Additionally, such metabolic readouts may aid in genetic variant interpretation and improve diagnostics. METHODS: Using liquid chromatography-mass spectrometry, 395 pheochromocytomas and paragangliomas (PPGLs) from 391 patients were screened for metabolites to indicate Krebs cycle aberrations. Multigene panel sequencing was applied to detect driver PV in cases with indicative metabolite profiles but undetermined genetic drivers. RESULTS: Aberrant Krebs cycle metabolomes identified rare cases of PPGLs with germline PV in FH and somatic PV in IDHx and SDHx, including the first case of a somatic IDH2 PV in PPGL. Metabolomics also reliably identified PPGLs with SDHx loss-of-function (LOF) PV. Therefore we utilized tumor metabolite profiles to further classify variants of unknown significance in SDHx, thereby enabling missense variants associated with SDHx LOF to be distinguished from benign variants. CONCLUSION: We propose incorporation of metabolome data into the diagnostics algorithm in PPGLs to guide genetic testing and variant interpretation and to help identify rare cases with PV in FH and IDHx.


Subject(s)
Genomics/methods , Paraganglioma/genetics , Pheochromocytoma/genetics , Adrenal Gland Neoplasms/genetics , Chromatography, Liquid , Female , Fumarate Hydratase/genetics , Fumarate Hydratase/physiology , Humans , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/physiology , Male , Mass Spectrometry , Metabolome/genetics , Succinate Dehydrogenase/genetics , Succinate Dehydrogenase/physiology
10.
Genet Med ; 20(12): 1644-1651, 2018 12.
Article in English | MEDLINE | ID: mdl-29740169

ABSTRACT

PURPOSE: The high percentage of patients carrying germline mutations makes pheochromocytomas/paragangliomas the most heritable of all tumors. However, there are still cases unexplained by mutations in the known genes. We aimed to identify the genetic cause of disease in patients strongly suspected of having hereditary tumors. METHODS: Whole-exome sequencing was applied to the germlines of a parent-proband trio. Genome-wide methylome analysis, RNA-seq, CRISPR/Cas9 gene editing, and targeted sequencing were also performed. RESULTS: We identified a novel de novo germline mutation in DNMT3A, affecting a highly conserved residue located close to the aromatic cage that binds to trimethylated histone H3. DNMT3A-mutated tumors exhibited significant hypermethylation of homeobox-containing genes, suggesting an activating role of the mutation. CRISPR/Cas9-mediated knock-in in HeLa cells led to global changes in methylation, providing evidence of the DNMT3A-altered function. Targeted sequencing revealed subclonal somatic mutations in six additional paragangliomas. Finally, a second germline DNMT3A mutation, also causing global tumor DNA hypermethylation, was found in a patient with a family history of pheochromocytoma. CONCLUSION: Our findings suggest that DNMT3A may be a susceptibility gene for paragangliomas and, if confirmed in future studies, would represent the first example of gain-of-function mutations affecting a DNA methyltransferase gene involved in cancer predisposition.


Subject(s)
Adrenal Gland Neoplasms/genetics , DNA (Cytosine-5-)-Methyltransferases/genetics , Paraganglioma/genetics , Pheochromocytoma/genetics , Adrenal Gland Neoplasms/pathology , Adult , CRISPR-Cas Systems/genetics , DNA Methylation , DNA Methyltransferase 3A , Female , Gain of Function Mutation , Genetic Predisposition to Disease , Genotype , Germ-Line Mutation/genetics , Humans , Male , Paraganglioma/pathology , Pheochromocytoma/pathology , Exome Sequencing
11.
Genet Med ; 20(12): 1652-1662, 2018 12.
Article in English | MEDLINE | ID: mdl-30008476

ABSTRACT

PURPOSE: MDH2 (malate dehydrogenase 2) has recently been proposed as a novel potential pheochromocytoma/paraganglioma (PPGL) susceptibility gene, but its role in the disease has not been addressed. This study aimed to determine the prevalence of MDH2 pathogenic variants among PPGL patients and determine the associated phenotype. METHODS: Eight hundred thirty patients with PPGLs, negative for the main PPGL driver genes, were included in the study. Interpretation of variants of unknown significance (VUS) was performed using an algorithm based on 20 computational predictions, by implementing cell-based enzymatic and immunofluorescence assays, and/or by using a molecular dynamics simulation approach. RESULTS: Five variants with potential involvement in pathogenicity were identified: three missense (p.Arg104Gly, p.Val160Met and p.Ala256Thr), one in-frame deletion (p.Lys314del), and a splice-site variant (c.429+1G>T). All were germline and those with available biochemical data, corresponded to noradrenergic PPGL. CONCLUSION: This study suggests that MDH2 pathogenic variants may play a role in PPGL susceptibility and that they might be responsible for less than 1% of PPGLs in patients without pathogenic variants in other major PPGL driver genes, a prevalence similar to the one recently described for other PPGL genes. However, more epidemiological data are needed to recommend MDH2 testing in patients negative for other major PPGL genes.


Subject(s)
Adrenal Gland Neoplasms/genetics , Malate Dehydrogenase/genetics , Paraganglioma/genetics , Pheochromocytoma/genetics , Adrenal Gland Neoplasms/pathology , Adult , Female , Genetic Predisposition to Disease , Germ-Line Mutation , Humans , Male , Middle Aged , Mutation, Missense , Paraganglioma/pathology , Pheochromocytoma/pathology , Protein Isoforms
12.
BMC Cancer ; 18(1): 561, 2018 May 15.
Article in English | MEDLINE | ID: mdl-29764404

ABSTRACT

BACKGROUND: Renal epithelioid angiomyolipomas (EAML) are rare tumors with aggressive behavior. EAML can be sporadic or develop within the tuberous sclerosis complex syndrome, where mutations of TSC1 or TSC2 genes (critical negative regulators of mTOR Complex 1) result in an increased activation of mTOR pathway. Optimal EAML treatment, including mTOR inhibitors, remains undetermined. CASE PRESENTATION: Here we present the case of a young adult with a renal EAML that after radical nephrectomy developed metastases, first in liver and then in lumbar vertebrae. After complete surgical resection of these lesions, liver recurrence was detected, this time with incomplete surgical resection. After finding a new liver lesion, systemic treatment with sirolimus started. The patient exhibited a complete and durable response to this drug, being disease free at the time of publication, after 36 months of treatment. Targeted next generation sequencing (NGS) of MTOR, TSC1 and TSC2 genes in the primary tumor, metastasis and blood of the patient, revealed one inactivating TSC2 mutation (c.2739dup; p.K914*) in the tumor cells. Immunohistochemistry revealed decreased TSC2 protein content and increased phospho-S6 in the tumor cells, demonstrating mTOR pathway activation. CONCLUSION: NGS on an EAML patient with an extraordinary response to sirolimus uncovered TSC2 inactivation as the mechanism for the response. This study supports NGS as a useful tool to identify patients sensitive to mTOR inhibitors and supports the treatment of malignant EAML with these drugs.


Subject(s)
Angiomyolipoma/therapy , Antibiotics, Antineoplastic/therapeutic use , Kidney Neoplasms/surgery , Liver Neoplasms/therapy , Sirolimus/therapeutic use , Spinal Neoplasms/therapy , Adult , Angiomyolipoma/genetics , Angiomyolipoma/pathology , Chemotherapy, Adjuvant/methods , Hepatectomy , Humans , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Liver Neoplasms/secondary , Male , Mutation , Nephrectomy , Signal Transduction/genetics , Spinal Neoplasms/genetics , Spinal Neoplasms/pathology , Spinal Neoplasms/secondary , TOR Serine-Threonine Kinases/metabolism , Treatment Outcome , Tuberous Sclerosis Complex 2 Protein/genetics
13.
J Natl Compr Canc Netw ; 16(4): 352-358, 2018 04.
Article in English | MEDLINE | ID: mdl-29632054

ABSTRACT

mTOR inhibitors are used to treat renal cell carcinoma (RCC). Treatment response is variable and appears to correlate with genetic alterations that activate mTOR signaling. Recently, everolimus was suggested to be more effective than sunitinib in chromophobe RCC (chRCC), a tumor with frequent mTOR pathway defects. This report presents the genomic and functional characterization of a metastatic chRCC that showed complete response at metastatic sites and 80% reduction in primary tumor size upon temsirolimus treatment. After surgery, the patient remained disease-free for 8 years after temsirolimus therapy. Whole-exome sequencing (WES) revealed 2 somatic variants in TSC2, a critical negative regulator of mTOR: a splicing defect (c.5069-1G>C) and a novel missense variant [c.3200_3201delinsAA; p.(V1067E)]. In vitro functional assessment demonstrated that the V1067E substitution disrupted TSC2 function. Immunohistochemistry in the tumor tissues revealed increased phosphorylated S6 ribosomal protein, indicating mTOR pathway activation. In conclusion, WES revealed TSC2 inactivation as the likely mechanism for this extraordinary response to temsirolimus. These findings support high efficacy of mTOR inhibitors in a subset of patients with chRCC and propose sequencing of mTOR pathway genes to help guide therapy.


Subject(s)
Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/genetics , Kidney Neoplasms/drug therapy , Kidney Neoplasms/genetics , Mutation , Sirolimus/analogs & derivatives , Tuberous Sclerosis Complex 2 Protein/genetics , Adult , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/adverse effects , Antineoplastic Agents/therapeutic use , Biopsy , DNA Mutational Analysis , Female , Humans , Immunohistochemistry , Molecular Targeted Therapy , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/adverse effects , Protein Kinase Inhibitors/therapeutic use , Sirolimus/administration & dosage , Sirolimus/adverse effects , Sirolimus/therapeutic use , Tomography, X-Ray Computed , Treatment Outcome
15.
J Natl Compr Canc Netw ; 15(11): 1310-1315, 2017 11.
Article in English | MEDLINE | ID: mdl-29118224

ABSTRACT

mTOR pathway inhibitors are important drugs for the treatment of advanced renal cell carcinoma (RCC). However, no valid predictive markers have been identified to guide treatment selection and identify patients who are sensitive to these drugs. Mutations activating the mTOR pathway have been suggested to predict response; however, their predictive value is still unclear. Here, we present the genomic and functional characterization of a patient with metastatic clear cell RCC (ccRCC) who experienced a partial response to temsirolimus after a poor response to 2 previous lines of treatment. At the time of publication, the patient was disease-free 8 years after temsirolimus treatment. Multiregion whole-exome sequencing (WES) on 3 regions of the primary tumor, 1 metastasis, and blood revealed tumor mutations in driver genes in ccRCC: a missense mutation in VHL (p.W88L), a loss-of-function mutation in BAP1 (p.E454Rfs*15), and a novel missense mutation in MTOR (p.Y1974H). The MTOR mutation was present in all tumor regions, with similar allele frequency as the VHL mutation, and in vitro functional assessment of the MTOR variant demonstrated that it increased mTORC1 activity. Consistently, immunohistochemistry in the tumor samples demonstrated increased levels of phospho-S6. In conclusion, multiregion WES identified a novel MTOR mutation acquired early during tumor development as the event leading to a high sensitivity to temsirolimus treatment. This study supports tumor multiregion sequencing to detect truncal mutations in the mTOR pathway to identify patients sensitive to mTOR inhibitors.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Bone Neoplasms/therapy , Carcinoma, Renal Cell/therapy , Kidney Neoplasms/therapy , Liver Neoplasms/therapy , Mechanistic Target of Rapamycin Complex 1/genetics , Protein Kinase Inhibitors/therapeutic use , TOR Serine-Threonine Kinases/genetics , Biomarkers, Tumor/genetics , Bone Neoplasms/diagnostic imaging , Bone Neoplasms/genetics , Bone Neoplasms/secondary , Carcinoma, Renal Cell/diagnostic imaging , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Denosumab/therapeutic use , Female , Gain of Function Mutation , Humans , Kidney Neoplasms/diagnostic imaging , Kidney Neoplasms/genetics , Kidney Neoplasms/secondary , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/genetics , Liver Neoplasms/secondary , Magnetic Resonance Imaging , Mechanistic Target of Rapamycin Complex 1/metabolism , Metastasectomy , Middle Aged , Mutation, Missense , Positron Emission Tomography Computed Tomography , Response Evaluation Criteria in Solid Tumors , Signal Transduction/genetics , Sirolimus/analogs & derivatives , Sirolimus/therapeutic use , Treatment Outcome , Tumor Suppressor Proteins/genetics , Ubiquitin Thiolesterase/genetics , Exome Sequencing
16.
Hum Mol Genet ; 23(9): 2440-6, 2014 May 01.
Article in English | MEDLINE | ID: mdl-24334767

ABSTRACT

Malignant pheochromocytoma (PCC) and paraganglioma (PGL) are mostly caused by germline mutations of SDHB, encoding a subunit of succinate dehydrogenase. Using whole-exome sequencing, we recently identified a mutation in the FH gene encoding fumarate hydratase, in a PCC with an 'SDH-like' molecular phenotype. Here, we investigated the role of FH in PCC/PGL predisposition, by screening for germline FH mutations in a large international cohort of patients. We screened 598 patients with PCC/PGL without mutations in known PCC/PGL susceptibility genes. We searched for FH germline mutations and large deletions, by direct sequencing and multiplex ligation-dependent probe amplification methods. Global alterations in DNA methylation and protein succination were assessed by immunohistochemical staining for 5-hydroxymethylcytosine (5-hmC) and S-(2-succinyl) cysteine (2SC), respectively. We identified five pathogenic germline FH mutations (four missense and one splice mutation) in five patients. Somatic inactivation of the second allele, resulting in a loss of fumarate hydratase activity, was demonstrated in tumors with FH mutations. Low tumor levels of 5-hmC, resembling those in SDHB-deficient tumors, and positive 2SC staining were detected in tumors with FH mutations. Clinically, metastatic phenotype (P = 0.007) and multiple tumors (P = 0.02) were significantly more frequent in patients with FH mutations than those without such mutations. This study reveals a new role for FH in susceptibility to malignant and/or multiple PCC/PGL. Remarkably, FH-deficient PCC/PGLs display the same pattern of epigenetic deregulation as SDHB-mutated malignant PCC/PGL. Therefore, we propose that mutation screening for FH should be included in PCC/PGL genetic testing, at least for tumors with malignant behavior.


Subject(s)
Fumarate Hydratase/genetics , Germ-Line Mutation/genetics , Paraganglioma/genetics , Pheochromocytoma/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Child , Exons/genetics , Female , Genetic Predisposition to Disease/genetics , Humans , Male , Middle Aged , Young Adult
17.
J Med Genet ; 52(10): 647-56, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26269449

ABSTRACT

BACKGROUND: Nowadays, 65-80% of pheochromocytoma and paraganglioma (PPGL) cases are explained by germline or somatic mutations in one of 22 genes. Several genetic testing algorithms have been proposed, but they usually exclude sporadic-PPGLs (S-PPGLs) and none include somatic testing. We aimed to genetically characterise S-PPGL cases and propose an evidence-based algorithm for genetic testing, prioritising DNA source. METHODS: The study included 329 probands fitting three criteria: single PPGL, no syndromic and no PPGL family history. Germline DNA was tested for point mutations in RET and for both point mutation and gross deletions in VHL, the SDH genes, TMEM127, MAX and FH. 99 tumours from patients negative for germline screening were available and tested for RET, VHL, HRAS, EPAS1, MAX and SDHB. RESULTS: Germline mutations were found in 46 (14.0%) patients, being more prevalent in paragangliomas (PGLs) (28.7%) than in pheochromocytomas (PCCs) (4.5%) (p=6.62×10(-10)). Somatic mutations were found in 43% of those tested, being more prevalent in PCCs (48.5%) than in PGLs (32.3%) (p=0.13). A quarter of S-PPGLs had a somatic mutation, regardless of age at presentation. Head and neck PGLs (HN-PGLs) and thoracic-PGLs (T-PGLs) more commonly had germline mutations (p=2.0×10(-4) and p=0.027, respectively). Five of the 29 metastatic cases harboured a somatic mutation, one in HRAS. CONCLUSIONS: We recommend prioritising testing for germline mutations in patients with HN-PGLs and T-PGLs, and for somatic mutations in those with PCC. Biochemical secretion and SDHB-immunohistochemistry should guide genetic screening in abdominal-PGLs. Paediatric and metastatic cases should not be excluded from somatic screening.


Subject(s)
Adrenal Gland Neoplasms/genetics , Genetic Testing , Germ-Line Mutation , Head and Neck Neoplasms/genetics , Paraganglioma/genetics , Pheochromocytoma/genetics , Thoracic Neoplasms/genetics , Adrenal Gland Neoplasms/diagnosis , Child , Evidence-Based Practice , Female , Genetic Predisposition to Disease , Head and Neck Neoplasms/diagnosis , Humans , Male , Mutation , Paraganglioma/diagnosis , Pheochromocytoma/diagnosis , Thoracic Neoplasms/diagnosis
18.
Hum Mol Genet ; 22(11): 2169-76, 2013 Jun 01.
Article in English | MEDLINE | ID: mdl-23418310

ABSTRACT

Pheochromocytomas (PCCs) and paragangliomas (PGLs) are chromaffin-cell tumors that arise from the adrenal medulla and extra-adrenal paraganglia, respectively. The dysfunction of genes involved in the cellular response to hypoxia, such as VHL, EGL nine homolog 1, and the succinate dehydrogenase (SDH) genes, leads to a direct abrogation of hypoxia inducible factor (HIF) degradation, resulting in a pseudo-hypoxic state implicated in PCC/PGL development. Recently, somatic post-zygotic mutations in EPAS1 (HIF2A) have been found in patients with multiple PGLs and congenital erythrocytosis. We assessed 41 PCCs/PGLs for mutations in EPAS1 and herein describe the clinical, molecular and genetic characteristics of the 7 patients found to carry somatic EPAS1 mutations; 4 presented with multiple PGLs (3 of them also had congenital erythrocytosis), whereas 3 were single sporadic PCC/PGL cases. Gene expression analysis of EPAS1-mutated tumors revealed similar mRNA EPAS1 levels to those found in SDH-gene- and VHL-mutated cases and a significant up-regulation of two hypoxia-induced genes (PCSK6 and GNA14). Interestingly, single nucleotide polymorphism array analysis revealed an exclusive gain of chromosome 2p in three EPAS1-mutated tumors. Furthermore, multiplex-PCR screening for small rearrangements detected a specific EPAS1 gain in another EPAS1-mutated tumor and in three non-EPAS1-mutated cases. The finding that EPAS1 is involved in the sporadic presentation of the disease not only increases the percentage of PCCs/PGLs with known driver mutations, but also highlights the relevance of studying other hypoxia-related genes in apparently sporadic tumors. Finally, the detection of a specific copy number alteration affecting chromosome 2p in EPAS1-mutated tumors may guide the genetic diagnosis of patients with this disease.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/genetics , Mutation , Paraganglioma, Extra-Adrenal/complications , Paraganglioma, Extra-Adrenal/genetics , Pheochromocytoma/genetics , Polycythemia/complications , Polycythemia/genetics , Adolescent , Adult , Aged , Amino Acid Sequence , Basic Helix-Loop-Helix Transcription Factors/chemistry , Chromosome Aberrations , Chromosomes, Human, Pair 2 , Female , Gene Expression Regulation, Neoplastic , Humans , Hypoxia/genetics , Male , Middle Aged , Polymorphism, Single Nucleotide , Protein Interaction Domains and Motifs/genetics , Young Adult
19.
Am J Pathol ; 182(2): 350-62, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23201134

ABSTRACT

Medullary thyroid carcinoma accounts for 2% to 5% of thyroid malignancies, of which 75% are sporadic and the remaining 25% are hereditary and related to multiple endocrine neoplasia type 2 syndrome. Despite a genotype-phenotype correlation with specific germline RET mutations, knowledge of pathways specifically associated with each mutation and with non-RET-mutated sporadic MTC remains lacking. Gene expression patterns have provided a tool for identifying molecular events related to specific tumor types and to different clinical features that could help identify novel therapeutic targets. Using transcriptional profiling of 49 frozen MTC specimens classified as RET mutation, we identified PROM1, LOXL2, GFRA1, and DKK4 as related to RET(M918T) and GAL as related to RET(634) mutation. An independent series of 19 frozen and 23 formalin-fixed, paraffin-embedded (FFPE) MTCs was used for validation by RT-qPCR. Two tissue microarrays containing 69 MTCs were available for IHC assays. According to pathway enrichment analysis and gene ontology biological processes, genes associated with the MTC(M918T) group were involved mainly in proliferative, cell adhesion, and general malignant metastatic effects and with Wnt, Notch, NFκB, JAK/Stat, and MAPK signaling pathways. Assays based on silencing of PROM1 by siRNAs performed in the MZ-CRC-1 cell line, harboring RET(M918T), caused an increase in apoptotic nuclei, suggesting that PROM1 is necessary for survival of these cells. This is the first report of PROM1 overexpression among primary tumors.


Subject(s)
Biomarkers, Tumor/genetics , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Genetic Predisposition to Disease , Thyroid Neoplasms/genetics , AC133 Antigen , Antigens, CD/metabolism , Apoptosis/genetics , Carcinoma, Neuroendocrine , Cell Line, Tumor , Cluster Analysis , Gene Knockdown Techniques , Gene Silencing , Glycoproteins/metabolism , Humans , Immunohistochemistry , Inheritance Patterns/genetics , Peptides/metabolism , RNA, Small Interfering/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Thyroid Neoplasms/pathology
20.
Biochim Biophys Acta Rev Cancer ; 1879(5): 189141, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38908536

ABSTRACT

Over the past two decades, research into the genetic susceptibility behind pheochromocytoma and paraganglioma (PPGL) has surged, ranking them among the most heritable tumors. Massive sequencing combined with careful patient selection has so far identified more than twenty susceptibility genes, leading to an over-detection of variants of unknown significance (VUS) that require precise molecular markers to determine their pathogenic role. Moreover, some PPGL patients remain undiagnosed, possibly due to mutations in regulatory regions of already known genes or mutations in undiscovered genes. Accurate classification of VUS and identification of new genes require well-defined clinical and molecular markers that allow effective genetic diagnosis of most PPGLs.


Subject(s)
Adrenal Gland Neoplasms , Biomarkers, Tumor , Genetic Predisposition to Disease , Paraganglioma , Pheochromocytoma , Humans , Pheochromocytoma/genetics , Pheochromocytoma/pathology , Pheochromocytoma/diagnosis , Paraganglioma/genetics , Paraganglioma/pathology , Paraganglioma/diagnosis , Adrenal Gland Neoplasms/genetics , Adrenal Gland Neoplasms/pathology , Biomarkers, Tumor/genetics , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL