Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 144
Filter
Add more filters

Publication year range
1.
Cell ; 180(2): 233-247.e21, 2020 01 23.
Article in English | MEDLINE | ID: mdl-31978343

ABSTRACT

Wnt dependency and Lgr5 expression define multiple mammalian epithelial stem cell types. Under defined growth factor conditions, such adult stem cells (ASCs) grow as 3D organoids that recapitulate essential features of the pertinent epithelium. Here, we establish long-term expanding venom gland organoids from several snake species. The newly assembled transcriptome of the Cape coral snake reveals that organoids express high levels of toxin transcripts. Single-cell RNA sequencing of both organoids and primary tissue identifies distinct venom-expressing cell types as well as proliferative cells expressing homologs of known mammalian stem cell markers. A hard-wired regional heterogeneity in the expression of individual venom components is maintained in organoid cultures. Harvested venom peptides reflect crude venom composition and display biological activity. This study extends organoid technology to reptilian tissues and describes an experimentally tractable model system representing the snake venom gland.


Subject(s)
Cell Culture Techniques/methods , Organoids/growth & development , Snake Venoms/metabolism , Adult Stem Cells/metabolism , Animals , Coral Snakes/metabolism , Gene Expression Profiling/methods , Organoids/metabolism , Salivary Glands/metabolism , Snake Venoms/genetics , Snakes/genetics , Snakes/growth & development , Stem Cells/metabolism , Toxins, Biological/genetics , Transcriptome/genetics
2.
Proc Natl Acad Sci U S A ; 121(19): e2315597121, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38687786

ABSTRACT

Snakebite envenoming is a neglected tropical disease that causes substantial mortality and morbidity globally. The venom of African spitting cobras often causes permanent injury via tissue-destructive dermonecrosis at the bite site, which is ineffectively treated by current antivenoms. To address this therapeutic gap, we identified the etiological venom toxins in Naja nigricollis venom responsible for causing local dermonecrosis. While cytotoxic three-finger toxins were primarily responsible for causing spitting cobra cytotoxicity in cultured keratinocytes, their potentiation by phospholipases A2 toxins was essential to cause dermonecrosis in vivo. This evidence of probable toxin synergism suggests that a single toxin-family inhibiting drug could prevent local envenoming. We show that local injection with the repurposed phospholipase A2-inhibiting drug varespladib significantly prevents local tissue damage caused by several spitting cobra venoms in murine models of envenoming. Our findings therefore provide a therapeutic strategy that may effectively prevent life-changing morbidity caused by snakebite in rural Africa.


Subject(s)
Acetates , Elapid Venoms , Indoles , Keto Acids , Necrosis , Snake Bites , Animals , Snake Bites/drug therapy , Mice , Humans , Acrylamides/pharmacology , Phospholipases A2/metabolism , Naja , Elapidae , Keratinocytes/drug effects , Skin/drug effects , Skin/pathology , Drug Repositioning
3.
Trends Biochem Sci ; 44(4): 365-379, 2019 04.
Article in English | MEDLINE | ID: mdl-30651181

ABSTRACT

Toxins are substances produced from biological sources (e.g., animal, plants, microorganisms) that have deleterious effects on a living organism. Despite the obvious health concerns of being exposed to toxins, they are having substantial positive impacts in a number of industrial sectors. Several toxin-derived products are approved for clinical, veterinary, or agrochemical uses. This review sets out the case for toxins as 'friends' that are providing the basis of novel medicines, insecticides, and even nucleic acid sequencing technologies. We also discuss emerging toxins ('foes') that are becoming increasingly prevalent in a range of contexts through climate change and the globalisation of food supply chains and that ultimately pose a risk to health.


Subject(s)
Toxins, Biological/adverse effects , Toxins, Biological/therapeutic use , Animals , Humans , Toxins, Biological/chemistry
4.
J Proteome Res ; 22(6): 1734-1746, 2023 06 02.
Article in English | MEDLINE | ID: mdl-37010854

ABSTRACT

In this study, we present high-throughput (HT) venomics, a novel analytical strategy capable of performing a full proteomic analysis of a snake venom within 3 days. This methodology comprises a combination of RP-HPLC-nanofractionation analytics, mass spectrometry analysis, automated in-solution tryptic digestion, and high-throughput proteomics. In-house written scripts were developed to process all the obtained proteomics data by first compiling all Mascot search results for a single venom into a single Excel sheet. Then, a second script plots each of the identified toxins in so-called Protein Score Chromatograms (PSCs). For this, for each toxin, identified protein scores are plotted on the y-axis versus retention times of adjacent series of wells in which a toxin was fractionated on the x-axis. These PSCs allow correlation with parallel acquired intact toxin MS data. This same script integrates the PSC peaks from these chromatograms for semiquantitation purposes. This new HT venomics strategy was performed on venoms from diverse medically important biting species; Calloselasma rhodostoma, Echis ocellatus, Naja pallida, Bothrops asper, Bungarus multicinctus, Crotalus atrox, Daboia russelii, Naja naja, Naja nigricollis, Naja mossambica, and Ophiophagus hannah. Our data suggest that high-throughput venomics represents a valuable new analytical tool for increasing the throughput by which we can define venom variation and should greatly aid in the future development of new snakebite treatments by defining toxin composition.


Subject(s)
Snake Bites , Viperidae , Animals , Proteomics/methods , Snake Venoms/chemistry , Bungarus/metabolism , Viperidae/metabolism , Elapid Venoms/chemistry
5.
J Proteome Res ; 22(1): 26-35, 2023 01 06.
Article in English | MEDLINE | ID: mdl-36521429

ABSTRACT

Among venomous animals, toxic secretions have evolved as biochemical weapons associated with various highly specialized delivery systems on many occasions. Despite extensive research, there is still limited knowledge of the functional biology of most animal toxins, including their venom production and storage, as well as the morphological structures within sophisticated venom producing tissues that might underpin venom modulation. Here, we report on the spatial exploration of a snake venom gland system by matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI), in combination with standard proteotranscriptomic approaches, to enable in situ toxin mapping in spatial intensity maps across a venom gland sourced from the Egyptian cobra (Naja haje). MALDI-MSI toxin visualization on the elapid venom gland reveals a high spatial heterogeneity of different toxin classes at the proteoform level, which may be the result of physiological constraints on venom production and/or storage that reflects the potential for venom modulation under diverse stimuli.


Subject(s)
Elapid Venoms , Toxins, Biological , Animals , Elapid Venoms/chemistry , Snake Venoms/chemistry , Elapidae , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
6.
BMC Biol ; 20(1): 148, 2022 06 27.
Article in English | MEDLINE | ID: mdl-35761243

ABSTRACT

BACKGROUND: Venoms are ecological innovations that have evolved numerous times, on each occasion accompanied by the co-evolution of specialised morphological and behavioural characters for venom production and delivery. The close evolutionary interdependence between these characters is exemplified by animals that control the composition of their secreted venom. This ability depends in part on the production of different toxins in different locations of the venom gland, which was recently documented in venomous snakes. Here, we test the hypothesis that the distinct spatial distributions of toxins in snake venom glands are an adaptation that enables the secretion of venoms with distinct ecological functions. RESULTS: We show that the main defensive and predatory peptide toxins are produced in distinct regions of the venom glands of the black-necked spitting cobra (Naja nigricollis), but these distributions likely reflect developmental effects. Indeed, we detected no significant differences in venom collected via defensive 'spitting' or predatory 'biting' events from the same specimens representing multiple lineages of spitting cobra. We also found the same spatial distribution of toxins in a non-spitting cobra and show that heterogeneous toxin distribution is a feature shared with a viper with primarily predatory venom. CONCLUSIONS: Our findings suggest that heterogeneous distributions of toxins are not an adaptation to controlling venom composition in snakes. Instead, it likely reflects physiological constraints on toxin production by the venom glands, opening avenues for future research on the mechanisms of functional differentiation of populations of protein-secreting cells within adaptive contexts.


Subject(s)
Snake Venoms , Snakes , Animals , Snake Venoms/chemistry
7.
Proc Natl Acad Sci U S A ; 116(51): 25745-25755, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31772017

ABSTRACT

Venom systems are key adaptations that have evolved throughout the tree of life and typically facilitate predation or defense. Despite venoms being model systems for studying a variety of evolutionary and physiological processes, many taxonomic groups remain understudied, including venomous mammals. Within the order Eulipotyphla, multiple shrew species and solenodons have oral venom systems. Despite morphological variation of their delivery systems, it remains unclear whether venom represents the ancestral state in this group or is the result of multiple independent origins. We investigated the origin and evolution of venom in eulipotyphlans by characterizing the venom system of the endangered Hispaniolan solenodon (Solenodon paradoxus). We constructed a genome to underpin proteomic identifications of solenodon venom toxins, before undertaking evolutionary analyses of those constituents, and functional assessments of the secreted venom. Our findings show that solenodon venom consists of multiple paralogous kallikrein 1 (KLK1) serine proteases, which cause hypotensive effects in vivo, and seem likely to have evolved to facilitate vertebrate prey capture. Comparative analyses provide convincing evidence that the oral venom systems of solenodons and shrews have evolved convergently, with the 4 independent origins of venom in eulipotyphlans outnumbering all other venom origins in mammals. We find that KLK1s have been independently coopted into the venom of shrews and solenodons following their divergence during the late Cretaceous, suggesting that evolutionary constraints may be acting on these genes. Consequently, our findings represent a striking example of convergent molecular evolution and demonstrate that distinct structural backgrounds can yield equivalent functions.


Subject(s)
Eutheria , Evolution, Molecular , Genome/genetics , Shrews , Venoms/genetics , Animals , Eutheria/classification , Eutheria/genetics , Eutheria/physiology , Gene Duplication , Male , Phylogeny , Proteomics , Shrews/classification , Shrews/genetics , Shrews/physiology , Tissue Kallikreins/genetics
8.
J Proteome Res ; 20(1): 895-908, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33225711

ABSTRACT

Saw-scaled or carpet vipers (genus Echis) are considered to cause a higher global snakebite mortality than any other snake. Echis carinatus sochureki (ECS) is a widely distributed snake species, also found across the thirteen provinces of Iran, where it is assumed to be responsible for the most snakebite envenomings. Here, we collected the Iranian specimens of ECS from three different geographically distinct populations, investigated food habits, and performed toxicity assessment and venom proteome profiling to better understand saw-scaled viper life. Our results show that the prey items most commonly found in all populations were arthropods, with scorpions from the family Buthidae particularly well represented. LD50 (median lethal dose) values of the crude venom demonstrate highly comparable venom toxicities in mammals. Consistent with this finding, venom characterization via top-down and bottom-up proteomics, applied to both crude venoms and size-exclusion chromatographic fractions, revealed highly comparable venom compositions among the different populations. By combining all proteomics data, we identified 22 protein families from 102 liquid chromatography and tandem mass spectrometry (LC-MS/MS) raw files, including the most abundant snake venom metalloproteinases (SVMPs, 29-34%); phospholipase A2 (PLA2s, 26-31%); snake venom serine proteinases (SVSPs, 11-12%); l-amino acid oxidases (LAOs, 8-11%), C-type lectins/lectin-like (CTLs, 7-9%) protein families, and many newly detected ones, e.g., renin-like aspartic proteases (RLAPs), fibroblast growth factors (FGFs), peptidyl-prolyl cis-trans isomerases (PPIs), and venom vasodilator peptides (VVPs). Furthermore, we identified and characterized methylated, acetylated, and oxidized proteoforms relating to the PLA2 and disintegrin toxin families and the site of their modifications. It thus seems that post-translational modifications (PTMs) of toxins, particularly target lysine residues, may play an essential role in the structural and functional properties of venom proteins and might be able to influence the therapeutic response of antivenoms, to be investigated in future studies.


Subject(s)
Proteomics , Viper Venoms , Animals , Chromatography, Liquid , Iran , Tandem Mass Spectrometry , Viper Venoms/toxicity
9.
Mol Biol Evol ; 37(10): 2777-2790, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32462210

ABSTRACT

A central goal in biology is to determine the ways in which evolution repeats itself. One of the most remarkable examples in nature of convergent evolutionary novelty is animal venom. Across diverse animal phyla, various specialized organs and anatomical structures have evolved from disparate developmental tissues to perform the same function, that is, produce and deliver a cocktail of potent molecules to subdue prey or predators. Venomous organisms therefore offer unique opportunities to investigate the evolutionary processes of convergence of key adaptive traits, and the molecular mechanisms underlying the emergence of novel genes, cells, and tissues. Indeed, some venomous species have already proven to be highly amenable as models for developmental studies, and recent work with venom gland organoids provides manipulatable systems for directly testing important evolutionary questions. Here, we provide a synthesis of the current knowledge that could serve as a starting point for the establishment of venom systems as new models for evolutionary and molecular biology. In particular, we highlight the potential of various venomous species for the study of cell differentiation and cell identity, and the regulatory dynamics of rapidly evolving, highly expressed, tissue-specific, gene paralogs. We hope that this review will encourage researchers to look beyond traditional study organisms and consider venom systems as useful tools to explore evolutionary novelties.


Subject(s)
Biological Evolution , Exocrine Glands/cytology , Gene Expression Regulation , Venoms , Animals
10.
J Exp Biol ; 224(Pt 7)2021 04 07.
Article in English | MEDLINE | ID: mdl-33827968

ABSTRACT

Venom spitting is a defence mechanism based on airborne venom delivery used by a number of different African and Asian elapid snake species ('spitting cobras'; Naja spp. and Hemachatus spp.). Adaptations underpinning venom spitting have been studied extensively at both behavioural and morphological level in cobras, but the role of the physical properties of venom itself in its effective projection remains largely unstudied. We hereby provide the first comparative study of the physical properties of venom in spitting and non-spitting cobras. We measured the viscosity, protein concentration and pH of the venom of 13 cobra species of the genus Naja from Africa and Asia, alongside the spitting elapid Hemachatus haemachatus and the non-spitting viper Bitis arietans By using published microCT scans, we calculated the pressure required to eject venom through the fangs of a spitting and a non-spitting cobra. Despite the differences in the modes of venom delivery, we found no significant differences between spitters and non-spitters in the rheological and physical properties of the studied venoms. Furthermore, all analysed venoms showed a Newtonian flow behaviour, in contrast to previous reports. Although our results imply that the evolution of venom spitting did not significantly affect venom viscosity, our models of fang pressure suggests that the pressure requirements to eject venom are lower in spitting cobras than in non-spitting cobras.


Subject(s)
Elapid Venoms , Tooth , Africa , Animals , Elapidae
11.
J Exp Biol ; 224(7)2021 04 01.
Article in English | MEDLINE | ID: mdl-34424974

ABSTRACT

Venom spitting is a defence mechanism based on airborne venom delivery used by a number of different African and Asian elapid snake species ('spitting cobras'; Naja spp. and Hemachatus spp.). Adaptations underpinning venom spitting have been studied extensively at both behavioural and morphological level in cobras, but the role of the physical properties of venom itself in its effective projection remains largely unstudied. We hereby provide the first comparative study of the physical properties of venom in spitting and non-spitting cobras. We measured the viscosity, protein concentration and pH of the venom of 13 cobra species of the genus Naja from Africa and Asia, alongside the spitting elapid Hemachatus haemachatus and the non-spitting viper Bitis arietans. By using published microCT scans, we calculated the pressure required to eject venom through the fangs of a spitting and a non-spitting cobra. Despite the differences in the modes of venom delivery, we found no significant differences between spitters and non-spitters in the rheological and physical properties of the studied venoms. Furthermore, all analysed venoms showed a Newtonian flow behaviour, in contrast to previous reports. Although our results imply that the evolution of venom spitting did not significantly affect venom viscosity, our models of fang pressure suggests that the pressure requirements to eject venom are lower in spitting cobras than in non-spitting cobras.


Subject(s)
Elapid Venoms , Tooth , Africa , Animals , Elapidae
12.
Int J Mol Sci ; 22(24)2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34948283

ABSTRACT

The snake genus Daboia (Viperidae: Viperinae; Oppel, 1811) contains five species: D. deserti, D. mauritanica, and D. palaestinae, found in Afro-Arabia, and the Russell's vipers D. russelii and D. siamensis, found in Asia. Russell's vipers are responsible for a major proportion of the medically important snakebites that occur in the regions they inhabit, and their venoms are notorious for their coagulopathic effects. While widely documented, the extent of venom variation within the Russell's vipers is poorly characterised, as is the venom activity of other species within the genus. In this study we investigated variation in the haemotoxic activity of Daboia using twelve venoms from all five species, including multiple variants of D. russelii, D. siamensis, and D. palaestinae. We tested the venoms on human plasma using thromboelastography, dose-response coagulometry analyses, and calibrated automated thrombography, and on human fibrinogen by thromboelastography and fibrinogen gels. We assessed activation of blood factors X and prothrombin by the venoms using fluorometry. Variation in venom activity was evident in all experiments. The Asian species D. russelii and D. siamensis and the African species D. mauritanica possessed procoagulant venom, while D. deserti and D. palaestinae were net-anticoagulant. Of the Russell's vipers, the venom of D. siamensis from Myanmar was most toxic and D. russelli of Sri Lanka the least. Activation of both factor X and prothrombin was evident by all venoms, though at differential levels. Fibrinogenolytic activity varied extensively throughout the genus and followed no phylogenetic trends. This venom variability underpins one of the many challenges facing treatment of Daboia snakebite envenoming. Comprehensive analyses of available antivenoms in neutralising these variable venom activities are therefore of utmost importance.


Subject(s)
Hemolytic Agents/chemistry , Viper Venoms/chemistry , Viper Venoms/toxicity , Animals , Antivenins , Asia , Factor X/analysis , Hemolytic Agents/analysis , Humans , Plasma/drug effects , Prothrombin/analysis , Daboia , Snake Bites , Viper Venoms/analysis , Viperidae
13.
Int J Mol Sci ; 22(13)2021 Jun 27.
Article in English | MEDLINE | ID: mdl-34199017

ABSTRACT

Venoms are a rich source of potential lead compounds for drug discovery, and descriptive studies of venom form the first phase of the biodiscovery process. In this study, we investigated the pharmacological potential of crude Pseudocerastes and Eristicophis snake venoms in haematological disorders and cancer treatment. We assessed their antithrombotic potential using fibrinogen thromboelastography, fibrinogen gels with and without protease inhibitors, and colourimetric fibrinolysis assays. These assays indicated that the anticoagulant properties of the venoms are likely induced by the hydrolysis of phospholipids and by selective fibrinogenolysis. Furthermore, while most fibrinogenolysis occurred by the direct activity of snake venom metalloproteases and serine proteases, modest evidence indicated that fibrinogenolytic activity may also be mediated by selective venom phospholipases and an inhibitory venom-derived serine protease. We also found that the Pseudocerastes venoms significantly reduced the viability of human melanoma (MM96L) cells by more than 80%, while it had almost no effect on the healthy neonatal foreskin fibroblasts (NFF) as determined by viability assays. The bioactive properties of these venoms suggest that they contain a number of toxins suitable for downstream pharmacological development as candidates for antithrombotic or anticancer agents.


Subject(s)
Antineoplastic Agents/pharmacology , Fibrinolytic Agents/pharmacology , Snake Venoms/pharmacology , Viper Venoms/pharmacology , Blood Coagulation/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Dose-Response Relationship, Drug , Fibrinolysis/drug effects , Humans , Serine Proteinase Inhibitors/pharmacology
14.
Angew Chem Int Ed Engl ; 59(10): 3855-3858, 2020 03 02.
Article in English | MEDLINE | ID: mdl-31854493

ABSTRACT

Enzymes are central components of most physiological processes, and are consequently implicated in various pathologies. High-resolution maps of enzyme activity within tissues therefore represent powerful tools for elucidating enzymatic functions in health and disease. Here, we present a novel mass spectrometry imaging (MSI) method for assaying the spatial distribution of enzymatic activity directly from tissue. MSI analysis of tissue sections exposed to phospholipid substrates produced high-resolution maps of phospholipase activity and specificity, which could subsequently be compared to histological images of the same section. Functional MSI thus represents a new and generalisable method for imaging biological activity in situ.


Subject(s)
Molecular Imaging , Phospholipases A2/metabolism , Animals , Mass Spectrometry , Naja naja , Phospholipases A2/chemistry , Snake Venoms/enzymology , Species Specificity
15.
Anal Chem ; 91(16): 10458-10466, 2019 08 20.
Article in English | MEDLINE | ID: mdl-31373797

ABSTRACT

High-throughput screening platforms for the identification of bioactive compounds in mixtures have become important tools in the drug discovery process. Miniaturization of such screening systems may overcome problems associated with small sample volumes and enhance throughput and sensitivity. Here we present a new screening platform, coined picofractionation analytics, which encompasses microarray bioassays and mass spectrometry (MS) of components from minute amounts of samples after their nano liquid chromatographic (nanoLC) separation. Herein, nanoLC was coupled to a low-volume liquid dispenser equipped with pressure-fed solenoid valves, enabling 50-nL volumes of column effluent (300 nL/min) to be discretely deposited on a glass slide. The resulting fractions were dried and subsequently bioassayed by sequential printing of nL-volumes of reagents on top of the spots. Unwanted evaporation of bioassay liquids was circumvented by employing mineral oil droplets. A fluorescence microscope was used for assay readout in kinetic mode. Bioassay data were correlated to MS data obtained using the same nanoLC conditions in order to assign bioactives. The platform provides the possibility of freely choosing a wide diversity of bioassay formats, including those requiring long incubation times. The new method was compared to a standard bioassay approach, and its applicability was demonstrated by screening plasmin inhibitors and fibrinolytic bioactives from mixtures of standards and snake venoms, revealing active peptides and coagulopathic proteases.


Subject(s)
Antifibrinolytic Agents/isolation & purification , Biological Assay , Chromatography, Liquid/methods , Fibrinolytic Agents/isolation & purification , Nanotechnology/methods , Peptide Hydrolases/isolation & purification , Animals , Chemical Fractionation/instrumentation , Chemical Fractionation/methods , Chromatography, Liquid/instrumentation , Humans , Mass Spectrometry/instrumentation , Mass Spectrometry/methods , Nanotechnology/instrumentation , Peptide Hydrolases/analysis , Snake Venoms/chemistry , Snakes/metabolism
16.
Anal Bioanal Chem ; 410(23): 5751-5763, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30090989

ABSTRACT

To better understand envenoming and to facilitate the development of new therapies for snakebite victims, rapid, sensitive, and robust methods for assessing the toxicity of individual venom proteins are required. Metalloproteinases comprise a major protein family responsible for many aspects of venom-induced haemotoxicity including coagulopathy, one of the most devastating effects of snake envenomation, and is characterized by fibrinogen depletion. Snake venoms are also known to contain anti-fibrinolytic agents with therapeutic potential, which makes them a good source of new plasmin inhibitors. The protease plasmin degrades fibrin clots, and changes in its activity can lead to life-threatening levels of fibrinolysis. Here, we present a methodology for the screening of plasmin inhibitors in snake venoms and the simultaneous assessment of general venom protease activity. Venom is first chromatographically separated followed by column effluent collection onto a 384-well plate using nanofractionation. Via a post-column split, mass spectrometry (MS) analysis of the effluent is performed in parallel. The nanofractionated venoms are exposed to a plasmin bioassay, and the resulting bioassay activity chromatograms are correlated to the MS data. To study observed proteolytic activity of venoms in more detail, venom fractions were exposed to variants of the plasmin bioassay in which the assay mixture was enriched with zinc or calcium ions, or the chelating agents EDTA or 1,10-phenanthroline were added. The plasmin activity screening system was applied to snake venoms and successfully detected compounds exhibiting antiplasmin (anti-fibrinolytic) activities in the venom of Daboia russelii, and metal-dependent proteases in the venom of Crotalus basiliscus. Graphical abstract ᅟ.


Subject(s)
Antifibrinolytic Agents/analysis , Fibrinolysin/antagonists & inhibitors , Mass Spectrometry/instrumentation , Peptide Hydrolases/analysis , Reptilian Proteins/analysis , Viper Venoms/chemistry , Viper Venoms/enzymology , Viperidae , Animals , Antifibrinolytic Agents/pharmacology , Chemical Fractionation/instrumentation , Chromatography, Liquid/instrumentation , Drug Evaluation, Preclinical/instrumentation , Equipment Design , Fibrinolysin/metabolism , Humans , Nanotechnology/instrumentation , Peptide Hydrolases/pharmacology , Proteomics/methods , Reptilian Proteins/pharmacology , Viperidae/metabolism
17.
Proc Natl Acad Sci U S A ; 112(38): 11911-6, 2015 Sep 22.
Article in English | MEDLINE | ID: mdl-26372961

ABSTRACT

The question about whether evolution is unpredictable and stochastic or intermittently constrained along predictable pathways is the subject of a fundamental debate in biology, in which understanding convergent evolution plays a central role. At the molecular level, documented examples of convergence are rare and limited to occurring within specific taxonomic groups. Here we provide evidence of constrained convergent molecular evolution across the metazoan tree of life. We show that resistance to toxic cardiac glycosides produced by plants and bufonid toads is mediated by similar molecular changes to the sodium-potassium-pump (Na(+)/K(+)-ATPase) in insects, amphibians, reptiles, and mammals. In toad-feeding reptiles, resistance is conferred by two point mutations that have evolved convergently on four occasions, whereas evidence of a molecular reversal back to the susceptible state in varanid lizards migrating to toad-free areas suggests that toxin resistance is maladaptive in the absence of selection. Importantly, resistance in all taxa is mediated by replacements of 2 of the 12 amino acids comprising the Na(+)/K(+)-ATPase H1-H2 extracellular domain that constitutes a core part of the cardiac glycoside binding site. We provide mechanistic insight into the basis of resistance by showing that these alterations perturb the interaction between the cardiac glycoside bufalin and the Na(+)/K(+)-ATPase. Thus, similar selection pressures have resulted in convergent evolution of the same molecular solution across the breadth of the animal kingdom, demonstrating how a scarcity of possible solutions to a selective challenge can lead to highly predictable evolutionary responses.


Subject(s)
Cardiac Glycosides/toxicity , Evolution, Molecular , Bufanolides/chemistry , Bufanolides/toxicity , Isoelectric Point , Molecular Sequence Data , Phylogeny , Protein Structure, Secondary , Protein Structure, Tertiary , Sodium-Potassium-Exchanging ATPase/chemistry , Sodium-Potassium-Exchanging ATPase/metabolism
18.
Mol Biol Evol ; 33(10): 2483-95, 2016 10.
Article in English | MEDLINE | ID: mdl-27535583

ABSTRACT

Much of what is known about the molecular evolution of vertebrate vision comes from studies of mammals, birds and fish. Reptiles (especially snakes) have barely been sampled in previous studies despite their exceptional diversity of retinal photoreceptor complements. Here, we analyze opsin gene sequences and ocular media transmission for up to 69 species to investigate snake visual evolution. Most snakes express three visual opsin genes (rh1, sws1, and lws). These opsin genes (especially rh1 and sws1) have undergone much evolutionary change, including modifications of amino acid residues at sites of known importance for spectral tuning, with several tuning site combinations unknown elsewhere among vertebrates. These changes are particularly common among dipsadine and colubrine "higher" snakes. All three opsin genes are inferred to be under purifying selection, though dN/dS varies with respect to some lineages, ecologies, and retinal anatomy. Positive selection was inferred at multiple sites in all three opsins, these being concentrated in transmembrane domains and thus likely to have a substantial effect on spectral tuning and other aspects of opsin function. Snake lenses vary substantially in their spectral transmission. Snakes active at night and some of those active by day have very transmissive lenses, whereas some primarily diurnal species cut out shorter wavelengths (including UVA). In terms of retinal anatomy, lens transmission, visual pigment spectral tuning and opsin gene evolution the visual system of snakes is exceptionally diverse compared with all other extant tetrapod orders.


Subject(s)
Biological Evolution , Opsins/genetics , Retinal Pigments/genetics , Snakes/genetics , Animals , Evolution, Molecular , Photoreceptor Cells , Phylogeny , Retina/metabolism , Rod Opsins/genetics , Vision, Ocular/genetics
19.
Br J Haematol ; 177(6): 947-959, 2017 06.
Article in English | MEDLINE | ID: mdl-28233897

ABSTRACT

Snake venoms are mixtures of numerous proteinacious components that exert diverse functional activities on a variety of physiological targets. Because the toxic constituents found in venom vary from species to species, snakebite victims can present with a variety of life-threatening pathologies related to the neurotoxic, cytotoxic and haemotoxic effects of venom. Of the 1·8 million people envenomed by snakes every year, up to 125 000 die, while hundreds of thousands survive only to suffer with life-changing long-term morbidity. Consequently, snakebite is one of the world's most severe neglected tropical diseases. Many snake venoms exhibit strong haemotoxic properties by interfering with blood pressure, clotting factors and platelets, and by directly causing haemorrhage. In this review we provide an overview of the functional activities of haemotoxic venom proteins, the pathologies they cause in snakebite victims and how their exquisite selectivity and potency make them amenable for use as therapeutic and diagnostic tools relevant for human medicine.


Subject(s)
Snake Bites/complications , Snake Venoms/toxicity , Animals , Blood Coagulation Disorders/etiology , Hemorrhage/etiology , Humans , Neglected Diseases , Snake Venoms/therapeutic use
20.
Biochim Biophys Acta Gen Subj ; 1861(4): 814-823, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28130154

ABSTRACT

BACKGROUND: Non-front-fanged colubroid snakes comprise about two-thirds of extant ophidian species. The medical significance of the majority of these snakes is unknown, but at least five species have caused life-threatening or fatal human envenomings. However, the venoms of only a small number of species have been explored. METHODS: A combined venomic and venom gland transcriptomic approach was employed to characterise of venom of Dispholidus typus (boomslang), the snake that caused the tragic death of Professor Karl Patterson Schmidt. The ability of CroFab™ antivenom to immunocapture boomslang venom proteins was investigated using antivenomics. RESULTS: Transcriptomic-assisted proteomic analysis identified venom proteins belonging to seven protein families: three-finger toxin (3FTx); phospholipase A2 (PLA2); cysteine-rich secretory proteins (CRISP); snake venom (SV) serine proteinase (SP); C-type lectin-like (CTL); SV metalloproteinases (SVMPs); and disintegrin-like/cysteine-rich (DC) proteolytic fragments. CroFab™ antivenom efficiently immunodepleted some boomslang SVMPs. CONCLUSIONS: The present work is the first to address the overall proteomic profile of D. typus venom. This study allowed us to correlate the toxin composition with the toxic activities of the venom. The antivenomic analysis suggested that the antivenom available at the time of the unfortunate accident could have exhibited at least some immunoreactivity against the boomslang SVMPs responsible for the disseminated intravascular coagulation syndrome that caused K.P. Schmidt's fatal outcome. GENERAL SIGNIFICANCE: This study may stimulate further research on other non-front-fanged colubroid snake venoms capable of causing life-threatening envenomings to humans, which in turn should contribute to prevent fatal human accidents, such as that unfortunately suffered by K.P. Schmidt.


Subject(s)
Antivenins/immunology , Salivary Glands/metabolism , Snake Venoms/genetics , Snakes/genetics , Transcriptome/genetics , Animals , Humans , Lectins, C-Type/genetics , Metalloproteases/genetics , Phospholipases A2/genetics , Proteome/genetics , Proteomics/methods , Snake Venoms/immunology , Snakes/immunology , Trees
SELECTION OF CITATIONS
SEARCH DETAIL