Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Nat Immunol ; 23(7): 1076-1085, 2022 07.
Article in English | MEDLINE | ID: mdl-35761085

ABSTRACT

Memory B cells persist for a lifetime and rapidly differentiate into antibody-producing plasmablasts and plasma cells upon antigen re-encounter. The clonal relationship and evolution of memory B cells and circulating plasmablasts is not well understood. Using single-cell sequencing combined with isolation of specific antibodies, we found that in two healthy donors, the memory B cell repertoire was dominated by large IgM, IgA and IgG2 clonal families, whereas IgG1 families, including those specific for recall antigens, were of small size. Analysis of multiyear samples demonstrated stability of memory B cell clonal families and revealed that a large fraction of recently generated plasmablasts was derived from long-term memory B cell families and was found recurrently. Collectively, this study provides a systematic description of the structure, stability and dynamics of the human memory B cell pool and suggests that memory B cells may be active at any time point in the generation of plasmablasts.


Subject(s)
Memory B Cells , Plasma Cells , B-Lymphocytes , Cells, Cultured , Humans , Immunoglobulin G , Immunologic Memory
2.
Eur J Immunol ; 53(2): e2250190, 2023 02.
Article in English | MEDLINE | ID: mdl-36480793

ABSTRACT

T follicular helper (TFH ) cells play an essential role in promoting B cell responses and antibody affinity maturation in germinal centers (GC). A subset of memory CD4+ T cells expressing the chemokine receptor CXCR5 has been described in human blood as phenotypically and clonally related to GC TFH cells. However, the antigen specificity and relationship of these circulating TFH (cTFH ) cells with other memory CD4+ T cells remain poorly defined. Combining antigenic stimulation and T cell receptor (TCR) Vß sequencing, we found T cells specific to tetanus toxoid (TT), influenza vaccine (Flu), or Candida albicans (C.alb) in both cTFH and non-cTFH subsets, although with different frequencies and effector functions. Interestingly, cTFH and non-cTFH cells specific for C.alb or TT had a largely overlapping TCR Vß repertoire while the repertoire of Flu-specific cTFH and non-cTFH cells was distinct. Furthermore, Flu-specific but not C.alb-specific PD-1+ cTFH cells had a "GC TFH -like" phenotype, with overexpression of IL21, CXCL13, and BCL6. Longitudinal analysis of serial blood donations showed that Flu-specific cTFH and non-cTFH cells persisted as stable repertoires for years. Collectively, our study provides insights on the relationship of cTFH with non-cTFH cells and on the heterogeneity and persistence of antigen-specific human cTFH cells.


Subject(s)
T Follicular Helper Cells , T-Lymphocytes, Helper-Inducer , Humans , B-Lymphocytes , Germinal Center , Receptors, Antigen, T-Cell
3.
Nature ; 562(7725): 63-68, 2018 10.
Article in English | MEDLINE | ID: mdl-30232458

ABSTRACT

Narcolepsy is a chronic sleep disorder caused by the loss of neurons that produce hypocretin. The close association with HLA-DQB1*06:02, evidence for immune dysregulation and increased incidence upon influenza vaccination together suggest that this disorder has an autoimmune origin. However, there is little evidence of autoreactive lymphocytes in patients with narcolepsy. Here we used sensitive cellular screens and detected hypocretin-specific CD4+ T cells in all 19 patients that we tested; T cells specific for tribbles homologue 2-another self-antigen of hypocretin neurons-were found in 8 out of 13 patients. Autoreactive CD4+ T cells were polyclonal, targeted multiple epitopes, were restricted primarily by HLA-DR and did not cross-react with influenza antigens. Hypocretin-specific CD8+ T cells were also detected in the blood and cerebrospinal fluid of several patients with narcolepsy. Autoreactive clonotypes were serially detected in the blood of the same-and even of different-patients, but not in healthy control individuals. These findings solidify the autoimmune aetiology of narcolepsy and provide a basis for rapid diagnosis and treatment of this disease.


Subject(s)
Autoantigens/immunology , Autoantigens/metabolism , CD4-Positive T-Lymphocytes/immunology , Narcolepsy/immunology , Neurons/immunology , Neurons/metabolism , Orexins/immunology , Orexins/metabolism , Antigens, Viral , Autoimmune Diseases/diagnosis , Autoimmune Diseases/immunology , Autoimmune Diseases/pathology , Autoimmunity/immunology , CD4-Positive T-Lymphocytes/pathology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/pathology , Calcium-Calmodulin-Dependent Protein Kinases/immunology , Calcium-Calmodulin-Dependent Protein Kinases/metabolism , Case-Control Studies , Cell Separation , Cross Reactions , Humans , Immunologic Memory , Intracellular Signaling Peptides and Proteins/immunology , Intracellular Signaling Peptides and Proteins/metabolism , Narcolepsy/blood , Narcolepsy/cerebrospinal fluid , Narcolepsy/diagnosis , Orthomyxoviridae/immunology
4.
Eur J Immunol ; 51(3): 648-661, 2021 03.
Article in English | MEDLINE | ID: mdl-33226131

ABSTRACT

Enterobacteriaceae are a large family of Gram-negative bacteria that includes both commensals and opportunistic pathogens. The latter can cause severe nosocomial infections, with outbreaks of multi-antibiotics resistant strains, thus being a major public health threat. In this study, we report that Enterobacteriaceae-reactive memory Th cells were highly enriched in a CCR6+ CXCR3+ Th1*/17 cell subset and produced IFN-γ, IL-17A, and IL-22. This T cell subset was severely reduced in septic patients with K. pneumoniae bloodstream infection who also selectively lacked circulating K. pneumonie-reactive T cells. By combining heterologous antigenic stimulation, single cell cloning and TCR Vß sequencing, we demonstrate that a large fraction of memory Th cell clones was broadly cross-reactive to several Enterobacteriaceae species. These cross-reactive Th cell clones were expanded in vivo and a large fraction of them recognized the conserved outer membrane protein A antigen. Interestingly, Enterobacteriaceae broadly cross-reactive T cells were also prominent among in vitro primed naïve T cells. Collectively, these data point to the existence of immunodominant T cell epitopes shared among different Enterobacteriaceae species and targeted by cross-reactive T cells that are readily found in the pre-immune repertoire and are clonally expanded in the memory repertoire.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Enterobacteriaceae/immunology , Immunologic Memory/immunology , Cells, Cultured , Cross Reactions/immunology , Epitopes, T-Lymphocyte/immunology , Humans , Interferon-gamma/immunology , Interleukin-17/immunology , Interleukins/immunology , Receptors, Antigen, T-Cell, alpha-beta/immunology , T-Lymphocyte Subsets/immunology , Th1 Cells/immunology , Th17 Cells/immunology , Interleukin-22
5.
Eur J Immunol ; 51(12): 2708-3145, 2021 12.
Article in English | MEDLINE | ID: mdl-34910301

ABSTRACT

The third edition of Flow Cytometry Guidelines provides the key aspects to consider when performing flow cytometry experiments and includes comprehensive sections describing phenotypes and functional assays of all major human and murine immune cell subsets. Notably, the Guidelines contain helpful tables highlighting phenotypes and key differences between human and murine cells. Another useful feature of this edition is the flow cytometry analysis of clinical samples with examples of flow cytometry applications in the context of autoimmune diseases, cancers as well as acute and chronic infectious diseases. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid. All sections are written and peer-reviewed by leading flow cytometry experts and immunologists, making this edition an essential and state-of-the-art handbook for basic and clinical researchers.


Subject(s)
Autoimmune Diseases/immunology , Flow Cytometry , Infections/immunology , Neoplasms/immunology , Animals , Chronic Disease , Humans , Mice , Practice Guidelines as Topic
6.
J Immunol ; 203(12): 3179-3189, 2019 12 15.
Article in English | MEDLINE | ID: mdl-31740485

ABSTRACT

In mice, the ability of naive T (TN) cells to mount an effector response correlates with TCR sensitivity for self-derived Ags, which can be quantified indirectly by measuring surface expression levels of CD5. Equivalent findings have not been reported previously in humans. We identified two discrete subsets of human CD8+ TN cells, defined by the absence or presence of the chemokine receptor CXCR3. The more abundant CXCR3+ TN cell subset displayed an effector-like transcriptional profile and expressed TCRs with physicochemical characteristics indicative of enhanced interactions with peptide-HLA class I Ags. Moreover, CXCR3+ TN cells frequently produced IL-2 and TNF in response to nonspecific activation directly ex vivo and differentiated readily into Ag-specific effector cells in vitro. Comparative analyses further revealed that human CXCR3+ TN cells were transcriptionally equivalent to murine CXCR3+ TN cells, which expressed high levels of CD5. These findings provide support for the notion that effector differentiation is shaped by heterogeneity in the preimmune repertoire of human CD8+ T cells.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Differentiation/immunology , Receptors, CXCR3/metabolism , Adult , Age Factors , Aged , Animals , Biomarkers , Cells, Cultured , Female , Humans , Immunologic Memory , Immunophenotyping , Lymphocyte Activation/immunology , Male , Mice , Middle Aged , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Young Adult
7.
Sci Immunol ; 8(87): eadf7579, 2023 09 29.
Article in English | MEDLINE | ID: mdl-37738363

ABSTRACT

Mitophagy, a central process guarding mitochondrial quality, is commonly impaired in human diseases such as Parkinson's disease, but its impact in adaptive immunity remains unclear. The differentiation and survival of memory CD8+ T cells rely on oxidative metabolism, a process that requires robust mitochondrial quality control. Here, we found that Parkinson's disease patients have a reduced frequency of CD8+ memory T cells compared with healthy donors and failed to form memory T cells upon vaccination against COVID-19, highlighting the importance of mitochondrial quality control for memory CD8+ T cell formation. We further uncovered that regulators of mitophagy, including Parkin and NIX, were up-regulated in response to interleukin-15 (IL-15) for supporting memory T cell formation. Mechanistically, Parkin suppressed VDAC1-dependent apoptosis in memory T cells. In contrast, NIX expression in T cells counteracted ferroptosis by preventing metabolic dysfunction resulting from impaired mitophagy. Together, our results indicate that the mitophagy machinery orchestrates survival and metabolic dynamics required for memory T cell formation, as well as highlight a deficit in T cell-mediated antiviral responses in Parkinson's disease patients.


Subject(s)
COVID-19 , Parkinson Disease , Humans , CD8-Positive T-Lymphocytes , Memory T Cells , Mitophagy , Cell Death
8.
iScience ; 26(1): 105726, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36507220

ABSTRACT

Memory B cells (MBCs) generate rapid antibody responses upon secondary encounter with a pathogen. Here, we investigated the kinetics, avidity, and cross-reactivity of serum antibodies and MBCs in 155 SARS-CoV-2 infected and vaccinated individuals over a 16-month time frame. SARS-CoV-2-specific MBCs and serum antibodies reached steady-state titers with comparable kinetics in infected and vaccinated individuals. Whereas MBCs of infected individuals targeted both prefusion and postfusion Spike (S), most vaccine-elicited MBCs were specific for prefusion S, consistent with the use of prefusion-stabilized S in mRNA vaccines. Furthermore, a large fraction of MBCs recognizing postfusion S cross-reacted with human betacoronaviruses. The avidity of MBC-derived and serum antibodies increased over time resulting in enhanced resilience to viral escape by SARS-CoV-2 variants, including Omicron BA.1 and BA.2 sublineages, albeit only partially for BA.4 and BA.5 sublineages. Overall, the maturation of high-affinity and broadly reactive MBCs provides the basis for effective recall responses to future SARS-CoV-2 variants.

9.
Science ; 377(6607): 735-742, 2022 08 12.
Article in English | MEDLINE | ID: mdl-35857703

ABSTRACT

The coronavirus spike glycoprotein attaches to host receptors and mediates viral fusion. Using a broad screening approach, we isolated seven monoclonal antibodies (mAbs) that bind to all human-infecting coronavirus spike proteins from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immune donors. These mAbs recognize the fusion peptide and acquire affinity and breadth through somatic mutations. Despite targeting a conserved motif, only some mAbs show broad neutralizing activity in vitro against alpha- and betacoronaviruses, including animal coronaviruses WIV-1 and PDF-2180. Two selected mAbs also neutralize Omicron BA.1 and BA.2 authentic viruses and reduce viral burden and pathology in vivo. Structural and functional analyses showed that the fusion peptide-specific mAbs bound with different modalities to a cryptic epitope hidden in prefusion stabilized spike, which became exposed upon binding of angiotensin-converting enzyme 2 (ACE2) or ACE2-mimicking mAbs.


Subject(s)
Angiotensin-Converting Enzyme 2 , Antibodies, Monoclonal , Antibodies, Viral , Broadly Neutralizing Antibodies , COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Angiotensin-Converting Enzyme 2/chemistry , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/isolation & purification , Antibodies, Viral/immunology , Antibodies, Viral/isolation & purification , Broadly Neutralizing Antibodies/immunology , COVID-19/immunology , Humans , Peptides/immunology , Protein Binding , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology
10.
bioRxiv ; 2022 Sep 30.
Article in English | MEDLINE | ID: mdl-36203553

ABSTRACT

Memory B cells (MBCs) generate rapid antibody responses upon secondary encounter with a pathogen. Here, we investigated the kinetics, avidity and cross-reactivity of serum antibodies and MBCs in 155 SARS-CoV-2 infected and vaccinated individuals over a 16-month timeframe. SARS-CoV-2-specific MBCs and serum antibodies reached steady-state titers with comparable kinetics in infected and vaccinated individuals. Whereas MBCs of infected individuals targeted both pre- and postfusion Spike (S), most vaccine-elicited MBCs were specific for prefusion S, consistent with the use of prefusion-stabilized S in mRNA vaccines. Furthermore, a large fraction of MBCs recognizing postfusion S cross-reacted with human betacoronaviruses. The avidity of MBC-derived and serum antibodies increased over time resulting in enhanced resilience to viral escape by SARS-CoV-2 variants, including Omicron BA.1 and BA.2 sub-lineages, albeit only partially for BA.4 and BA.5 sublineages. Overall, the maturation of high-affinity and broadly-reactive MBCs provides the basis for effective recall responses to future SARS-CoV-2 variants.

11.
Science ; 372(6548): 1336-1341, 2021 06 18.
Article in English | MEDLINE | ID: mdl-34006597

ABSTRACT

The identification of CD4+ T cell epitopes is instrumental for the design of subunit vaccines for broad protection against coronaviruses. Here, we demonstrate in COVID-19-recovered individuals a robust CD4+ T cell response to naturally processed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) protein and nucleoprotein (N), including effector, helper, and memory T cells. By characterizing 2943 S-reactive T cell clones from 34 individuals, we found that the receptor-binding domain (RBD) is highly immunogenic and that 33% of RBD-reactive clones and 94% of individuals recognized a conserved immunodominant S346-S365 region comprising nested human leukocyte antigen DR (HLA-DR)- and HLA-DP-restricted epitopes. Using pre- and post-COVID-19 samples and S proteins from endemic coronaviruses, we identified cross-reactive T cells targeting multiple S protein sites. The immunodominant and cross-reactive epitopes identified can inform vaccination strategies to counteract emerging SARS-CoV-2 variants.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , COVID-19/immunology , Immunodominant Epitopes , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Coronavirus/immunology , Cross Reactions , Epitopes, T-Lymphocyte/immunology , Genes, T-Cell Receptor beta , HLA-DP Antigens/immunology , HLA-DR Antigens/immunology , Humans , Immunologic Memory , Nucleocapsid Proteins/immunology , Protein Domains , Receptors, Antigen, T-Cell, alpha-beta/immunology , Spike Glycoprotein, Coronavirus/chemistry , T Follicular Helper Cells/immunology , T-Lymphocyte Subsets/immunology
12.
Science ; 373(6559): 1109-1116, 2021 Sep 03.
Article in English | MEDLINE | ID: mdl-34344823

ABSTRACT

The spillovers of betacoronaviruses in humans and the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants highlight the need for broad coronavirus countermeasures. We describe five monoclonal antibodies (mAbs) cross-reacting with the stem helix of multiple betacoronavirus spike glycoproteins isolated from COVID-19 convalescent individuals. Using structural and functional studies, we show that the mAb with the greatest breadth (S2P6) neutralizes pseudotyped viruses from three different subgenera through the inhibition of membrane fusion, and we delineate the molecular basis for its cross-reactivity. S2P6 reduces viral burden in hamsters challenged with SARS-CoV-2 through viral neutralization and Fc-mediated effector functions. Stem helix antibodies are rare, oftentimes of narrow specificity, and can acquire neutralization breadth through somatic mutations. These data provide a framework for structure-guided design of pan-betacoronavirus vaccines eliciting broad protection.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Betacoronavirus/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Viral Vaccines/immunology , Virus Internalization , Animals , Antibodies, Monoclonal/isolation & purification , Antibodies, Neutralizing/isolation & purification , Convalescence , Cricetinae , Cross Reactions , Humans , Immunoglobulin Fab Fragments/immunology , Immunoglobulin Fc Fragments/immunology , Jurkat Cells , Lung/immunology , Membrane Fusion/immunology , Neutralization Tests , Peptide Mapping , Protein Conformation, alpha-Helical , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Viral Load/immunology
13.
J Exp Med ; 217(10)2020 10 05.
Article in English | MEDLINE | ID: mdl-32644114

ABSTRACT

The importance of CD4+ T helper (Th) cells is well appreciated in view of their essential role in the elicitation of antibody and cytotoxic T cell responses. However, the mechanisms that determine the selection of immunodominant epitopes within complex protein antigens remain elusive. Here, we used ex vivo stimulation of memory T cells and screening of naive and memory T cell libraries, combined with T cell cloning and TCR sequencing, to dissect the human naive and memory CD4+ T cell repertoire against the influenza pandemic H1 hemagglutinin (H1-HA). We found that naive CD4+ T cells have a broad repertoire, being able to recognize naturally processed as well as cryptic peptides spanning the whole H1-HA sequence. In contrast, memory Th cells were primarily directed against just a few immunodominant peptides that were readily detected by mass spectrometry-based MHC-II peptidomics and predicted by structural accessibility analysis. Collectively, these findings reveal the presence of a broad repertoire of naive T cells specific for cryptic H1-HA peptides and demonstrate that antigen processing represents a major constraint determining immunodominance.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Influenza, Human/immunology , Epitopes/immunology , High-Throughput Nucleotide Sequencing , Humans , Immunodominant Epitopes/immunology , Immunologic Memory/immunology , Influenza A virus/immunology , Receptors, Antigen, T-Cell, alpha-beta/genetics , T-Lymphocytes, Helper-Inducer/immunology
14.
Nat Med ; 25(9): 1402-1407, 2019 09.
Article in English | MEDLINE | ID: mdl-31501610

ABSTRACT

Natalizumab (NZM), a humanized monoclonal IgG4 antibody to α4 integrins, is used to treat patients with relapsing-remitting multiple sclerosis (MS)1,2, but in about 6% of the cases persistent neutralizing anti-drug antibodies (ADAs) are induced leading to therapy discontinuation3,4. To understand the basis of the ADA response and the mechanism of ADA-mediated neutralization, we performed an in-depth analysis of the B and T cell responses in two patients. By characterizing a large panel of NZM-specific monoclonal antibodies, we found that, in both patients, the response was polyclonal and targeted different epitopes of the NZM idiotype. The neutralizing activity was acquired through somatic mutations and correlated with a slow dissociation rate, a finding that was supported by structural data. Interestingly, in both patients, the analysis of the CD4+ T cell response, combined with mass spectrometry-based peptidomics, revealed a single immunodominant T cell epitope spanning the FR2-CDR2 region of the NZM light chain. Moreover, a CDR2-modified version of NZM was not recognized by T cells, while retaining binding to α4 integrins. Collectively, our integrated analysis identifies the basis of T-B collaboration that leads to ADA-mediated therapeutic resistance and delineates an approach to design novel deimmunized antibodies for autoimmune disease and cancer treatment.


Subject(s)
Antibodies, Neutralizing/administration & dosage , Epitopes, T-Lymphocyte/immunology , Multiple Sclerosis/drug therapy , Natalizumab/administration & dosage , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Neutralizing/chemistry , Antibody Formation/drug effects , Antibody Formation/immunology , B-Lymphocytes/drug effects , Humans , Immunoglobulin G/chemistry , Immunoglobulin G/immunology , Integrin alpha4/antagonists & inhibitors , Integrin alpha4/immunology , Multiple Sclerosis/immunology , Multiple Sclerosis/pathology , Protein Conformation/drug effects , T-Lymphocytes/chemistry , T-Lymphocytes/drug effects , T-Lymphocytes/immunology
15.
Article in English | MEDLINE | ID: mdl-28432133

ABSTRACT

The wide range of effector and memory T cells is instrumental for immune regulation and tailored mechanisms of protection against pathogens. Here, we will focus on human CD4 T cells and discuss T-cell plasticity and intraclonal diversification in the context of a progressive and selective model of CD4 T-cell differentiation.


Subject(s)
CD4-Positive T-Lymphocytes/physiology , Cell Plasticity , Immunologic Memory , CD4-Positive T-Lymphocytes/immunology , Cell Differentiation , Cellular Reprogramming , Humans
16.
J Leukoc Biol ; 99(1): 121-30, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26310830

ABSTRACT

HLA-E is a nonclassical HLA-class I molecule whose best known role is to protect from the natural killer cells. More recently, an additional function more similar to that of classical HLA-class I molecules, i.e., antigen presentation to T cells, is emerging. However, much remains to be explored about the intracellular trafficking of the HLA-E molecules. With the use of 3 different cellular contexts, 2 monocytic cell lines, U937 and THP1, and peripheral blood monocytes, we show here a remarkable increase of HLA-E during monocyte-macrophage differentiation. This goes independently from the classical HLA-class I, the main source of HLA-E-specific peptides, which is found strongly up-regulated upon differentiation of peripheral blood monocytes but not at all in the case of U937 and THP1 cell lines. Although in all cases, there was a moderate increase of HLA-E expressed in the cell surface, lysis by natural killer cells is comparably restored by an anti-NKG2A antibody in untreated as well as in PMA-differentiated U937 cells. Instead, the great majority of the HLA-E is retained in the vesicles of the autophagy-lysosome network, where they colocalize with the microtubule-associated protein light chain 3, as well as with the lysosomal-associated membrane protein 1. We conclude that differently from the classical HLA-class I molecules, the primary destination of the newly synthesized HLA-E molecules in macrophages is, rather than the cell membrane, the intracellular autophagy-lysosomal vesicles where they are stored and where they can encounter the exogenous antigens.


Subject(s)
Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class I/metabolism , Immunomodulation , Macrophages/immunology , Macrophages/metabolism , Monocytes/immunology , Monocytes/metabolism , Cell Differentiation/immunology , Cell Line, Tumor , Cell Membrane/metabolism , Cells, Cultured , Cytotoxicity, Immunologic , Humans , Intracellular Space/metabolism , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Lysosomes/metabolism , Macrophages/cytology , Metalloproteases/metabolism , Monocytes/cytology , Phagosomes/metabolism , Protein Transport , Up-Regulation , HLA-E Antigens
17.
Science ; 353(6301): 823-6, 2016 Aug 19.
Article in English | MEDLINE | ID: mdl-27417494

ABSTRACT

Zika virus (ZIKV), a mosquito-borne flavivirus with homology to Dengue virus (DENV), has become a public health emergency. By characterizing memory lymphocytes from ZIKV-infected patients, we dissected ZIKV-specific and DENV-cross-reactive immune responses. Antibodies to nonstructural protein 1 (NS1) were largely ZIKV-specific and were used to develop a serological diagnostic tool. In contrast, antibodies against E protein domain I/II (EDI/II) were cross-reactive and, although poorly neutralizing, potently enhanced ZIKV and DENV infection in vitro and lethally enhanced DENV disease in mice. Memory T cells against NS1 or E proteins were poorly cross-reactive, even in donors preexposed to DENV. The most potent neutralizing antibodies were ZIKV-specific and targeted EDIII or quaternary epitopes on infectious virus. An EDIII-specific antibody protected mice from lethal ZIKV infection, illustrating the potential for antibody-based therapy.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Zika Virus Infection/immunology , Zika Virus/immunology , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/chemistry , Antibodies, Viral/therapeutic use , Antibody Specificity , Cross Reactions , Dengue Virus/immunology , Disease Models, Animal , Humans , Immunodominant Epitopes/immunology , Immunologic Memory , Protein Structure, Tertiary , T-Lymphocytes/immunology , Viral Envelope Proteins/immunology , Viral Nonstructural Proteins/immunology , Zika Virus Infection/prevention & control , Zika Virus Infection/therapy
18.
Science ; 347(6220): 400-6, 2015 Jan 23.
Article in English | MEDLINE | ID: mdl-25477212

ABSTRACT

Distinct types of CD4(+) T cells protect the host against different classes of pathogens. However, it is unclear whether a given pathogen induces a single type of polarized T cell. By combining antigenic stimulation and T cell receptor deep sequencing, we found that human pathogen- and vaccine-specific T helper 1 (T(H)1), T(H)2, and T(H)17 memory cells have different frequencies but comparable diversity and comprise not only clones polarized toward a single fate, but also clones whose progeny have acquired multiple fates. Single naïve T cells primed by a pathogen in vitro could also give rise to multiple fates. Our results unravel an unexpected degree of interclonal and intraclonal functional heterogeneity of the human T cell response and suggest that polarized responses result from preferential expansion rather than priming.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Candida albicans/immunology , Host-Pathogen Interactions/immunology , Immunologic Memory , Mycobacterium tuberculosis/immunology , T-Lymphocyte Subsets/immunology , Vaccines/immunology , Amino Acid Sequence , Cells, Cultured , Clone Cells , High-Throughput Nucleotide Sequencing , Humans , Lymphocyte Activation , Molecular Sequence Data , Receptors, Antigen, T-Cell/genetics , Th1 Cells/immunology , Th17 Cells/immunology , Th2 Cells/immunology
SELECTION OF CITATIONS
SEARCH DETAIL