Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Inflamm Res ; 72(2): 203-215, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36401631

ABSTRACT

OBJECTIVE: This study aimed to investigate the effects of FK506 on experimental sepsis immunopathology. It investigated the effect of FK506 on leukocyte recruitment to the site of infection, systemic cytokine production, and organ injury in mice with sepsis. METHODS: Using a murine cecal ligation and puncture (CLP) peritonitis model, the experiments were performed with wild-type (WT) mice and mice deficient in the gene Nfat1 (Nfat1-/-) in the C57BL/6 background. Animals were treated with 2.0 mg/kg of FK506, subcutaneously, 1 h before the sepsis model, twice a day (12 h/12 h). The number of bacteria colony forming units (CFU) was manually counted. The number of neutrophils in the lungs was estimated by the myeloperoxidase (MPO) assay. The expression of CXCR2 in neutrophils was determined using flow cytometry analysis. The expression of inflammatory cytokines in macrophage was determined using ELISA. The direct effect of FK506 on CXCR2 internalization was evaluated using HEK-293T cells after CXCL2 stimulation by the BRET method. RESULTS: FK506 treatment potentiated the failure of neutrophil migration into the peritoneal cavity, resulting in bacteremia and an exacerbated systemic inflammatory response, which led to higher organ damage and mortality rates. Failed neutrophil migration was associated with elevated CXCL2 chemokine plasma levels and lower expression of the CXCR2 receptor on circulating neutrophils compared with non-treated CLP-induced septic mice. FK506 did not directly affect CXCL2-induced CXCR2 internalization by transfected HEK-293 cells or mice neutrophils, despite increasing CXCL2 release by LPS-treated macrophages. Finally, the CLP-induced response of Nfat1-/- mice was similar to those observed in the Nfat1+/+ genotype, suggesting that the FK506 effect is not dependent on the NFAT1 pathway. CONCLUSION: Our data indicate that the increased susceptibility to infection of FK506-treated mice is associated with failed neutrophil migration due to the reduced membrane availability of CXCR2 receptors in response to exacerbated levels of circulating CXCL2.


Subject(s)
Neutrophils , Sepsis , Humans , Mice , Animals , Tacrolimus/pharmacology , Tacrolimus/therapeutic use , HEK293 Cells , Mice, Inbred C57BL , Sepsis/metabolism , Neutrophil Infiltration
2.
J Exp Med ; 217(4)2020 04 06.
Article in English | MEDLINE | ID: mdl-31978220

ABSTRACT

Every day, megakaryocytes produce billions of platelets that circulate for several days and eventually are cleared by the liver. The exact removal mechanism, however, remains unclear. Loss of sialic acid residues is thought to feature in the aging and clearance of platelets. Using state-of-the-art spinning disk intravital microscopy to delineate the different compartments and cells of the mouse liver, we observed rapid accumulation of desialylated platelets predominantly on Kupffer cells, with only a few on endothelial cells and none on hepatocytes. Kupffer cell depletion prevented the removal of aged platelets from circulation. Ashwell-Morell receptor (AMR) deficiency alone had little effect on platelet uptake. Macrophage galactose lectin (MGL) together with AMR mediated clearance of desialylated or cold-stored platelets by Kupffer cells. Effective clearance is critical, as mice with an aged platelet population displayed a bleeding phenotype. Our data provide evidence that the MGL of Kupffer cells plays a significant role in the removal of desialylated platelets through a collaboration with the AMR, thereby maintaining a healthy and functional platelet compartment.


Subject(s)
Asialoglycoproteins/metabolism , Blood Platelets/metabolism , Galactose/metabolism , Kupffer Cells/metabolism , Lectins, C-Type/metabolism , Membrane Proteins/metabolism , Phagocytosis , Animals , Antibodies/immunology , Asialoglycoproteins/immunology , Cells, Cultured , Healthy Volunteers , Humans , Lectins, C-Type/immunology , Membrane Proteins/immunology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Staphylococcal Infections/metabolism , Staphylococcal Infections/microbiology , Staphylococcus aureus/metabolism
3.
Shock ; 52(5): e100-e106, 2019 11.
Article in English | MEDLINE | ID: mdl-30724784

ABSTRACT

Neutrophils and inflammatory monocytes control sepsis by migration to the site of infection via their chemokine receptors. CCR5 is a chemokine receptor that is not expressed on neutrophils and inflammatory monocytes under homeostatic conditions. However, it has been demonstrated that CCR5 can become expressed on these cells during different models of inflammation. In the present study, we investigated if CCR5 is also expressed on neutrophil and inflammatory monocytes during sepsis, exerting an important role in the migration of these cells to the infectious focus. Using cecal ligation and puncture model to induce polymicrobial sepsis, we demonstrated that the expression of CCR5 is induced on CD11bLy6GLy6C inflammatory monocytes, but not on neutrophils (CD11bLy6GLy6C). Furthermore, CCR5 plays an important role for the migration of the inflammatory monocytes to infection focus during sepsis. CCR5-expressing inflammatory monocytes migrate from the bone marrow to the circulation and then into the site of infection, where they phagocytize and kill the bacteria. Consequently, CCR5 mice showed increased systemic inflammatory response and mortality compared to wild-type mice. These data therefore demonstrate a hitherto unrecognized protective role of CCR5 in sepsis.


Subject(s)
Bone Marrow Cells/immunology , Cell Movement/immunology , Monocytes/immunology , Receptors, CCR5/immunology , Sepsis/immunology , Animals , Bone Marrow Cells/pathology , Cell Movement/genetics , Mice , Mice, Knockout , Monocytes/pathology , Receptors, CCR5/genetics , Sepsis/genetics , Sepsis/pathology
4.
Front Immunol ; 7: 155, 2016.
Article in English | MEDLINE | ID: mdl-27199981

ABSTRACT

Sepsis, an overwhelming inflammatory response syndrome secondary to infection, is one of the costliest and deadliest medical conditions worldwide. Neutrophils are classically considered to be essential players in the host defense against invading pathogens. However, several investigations have shown that impairment of neutrophil migration to the site of infection, also referred to as neutrophil paralysis, occurs during severe sepsis, resulting in an inability of the host to contain and eliminate the infection. On the other hand, the neutrophil antibacterial arsenal contributes to tissue damage and the development of organ dysfunction during sepsis. In this review, we provide an overview of the main events in which neutrophils play a beneficial or deleterious role in the outcome of sepsis.

5.
PLoS One ; 11(2): e0148142, 2016.
Article in English | MEDLINE | ID: mdl-26849138

ABSTRACT

Organ dysfunction is a major concern in sepsis pathophysiology and contributes to its high mortality rate. Neutrophil extracellular traps (NETs) have been implicated in endothelial damage and take part in the pathogenesis of organ dysfunction in several conditions. NETs also have an important role in counteracting invading microorganisms during infection. The aim of this study was to evaluate systemic NETs formation, their participation in host bacterial clearance and their contribution to organ dysfunction in sepsis. C57Bl/6 mice were subjected to endotoxic shock or a polymicrobial sepsis model induced by cecal ligation and puncture (CLP). The involvement of cf-DNA/NETs in the physiopathology of sepsis was evaluated through NETs degradation by rhDNase. This treatment was also associated with a broad-spectrum antibiotic treatment (ertapenem) in mice after CLP. CLP or endotoxin administration induced a significant increase in the serum concentrations of NETs. The increase in CLP-induced NETs was sustained over a period of 3 to 24 h after surgery in mice and was not inhibited by the antibiotic treatment. Systemic rhDNase treatment reduced serum NETs and increased the bacterial load in non-antibiotic-treated septic mice. rhDNase plus antibiotics attenuated sepsis-induced organ damage and improved the survival rate. The correlation between the presence of NETs in peripheral blood and organ dysfunction was evaluated in 31 septic patients. Higher cf-DNA concentrations were detected in septic patients in comparison with healthy controls, and levels were correlated with sepsis severity and organ dysfunction. In conclusion, cf-DNA/NETs are formed during sepsis and are associated with sepsis severity. In the experimental setting, the degradation of NETs by rhDNase attenuates organ damage only when combined with antibiotics, confirming that NETs take part in sepsis pathogenesis. Altogether, our results suggest that NETs are important for host bacterial control and are relevant actors in the pathogenesis of sepsis.


Subject(s)
Extracellular Traps/metabolism , Multiple Organ Failure/complications , Shock, Septic/pathology , Animals , Bacterial Load/drug effects , DNA/genetics , DNA/metabolism , Humans , Lipopolysaccharides/pharmacology , Mice , Mice, Inbred C57BL , Shock, Septic/chemically induced , Shock, Septic/genetics , Shock, Septic/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL