Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
J Med Genet ; 60(5): 450-459, 2023 05.
Article in English | MEDLINE | ID: mdl-36113988

ABSTRACT

BACKGROUND: Spliceogenic variants in disease-causing genes are often presumed pathogenic since most induce frameshifts resulting in loss of function. However, it was recently shown in cancer predisposition genes that some may trigger in-frame anomalies that preserve function. Here, we addressed this question by using MSH2, a DNA mismatch repair gene implicated in Lynch syndrome, as a model system. METHODS: Eighteen MSH2 variants, mostly localised within canonical splice sites, were analysed by using minigene splicing assays. The impact of the resulting protein alterations was assessed in a methylation tolerance-based assay. Clinicopathological characteristics of variant carriers were collected. RESULTS: Three in-frame RNA biotypes were identified based on variant-induced spliceogenic outcomes: exon skipping (E3, E4, E5 and E12), segmental exonic deletions (E7 and E15) and intronic retentions (I3, I6, I12 and I13). The 10 corresponding protein isoforms exhibit either large deletions (49-93 amino acids (aa)), small deletions (12 or 16 aa) or insertions (3-10 aa) within different functional domains. We showed that all these modifications abrogate MSH2 function, in agreement with the clinicopathological features of variant carriers. CONCLUSION: Altogether, these data demonstrate that MSH2 function is intolerant to in-frame indels caused by the spliceogenic variants analysed in this study, supporting their pathogenic nature. This work stresses the importance of combining complementary RNA and protein approaches to ensure accurate clinical interpretation of in-frame spliceogenic variants.


Subject(s)
Colorectal Neoplasms, Hereditary Nonpolyposis , RNA Splice Sites , RNA Splicing , Humans , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/pathology , MutL Protein Homolog 1/genetics , MutS Homolog 2 Protein/genetics , RNA Splice Sites/genetics , RNA Splicing/genetics
2.
BMC Genomics ; 21(1): 86, 2020 Jan 28.
Article in English | MEDLINE | ID: mdl-31992191

ABSTRACT

BACKGROUND: Branch points (BPs) map within short motifs upstream of acceptor splice sites (3'ss) and are essential for splicing of pre-mature mRNA. Several BP-dedicated bioinformatics tools, including HSF, SVM-BPfinder, BPP, Branchpointer, LaBranchoR and RNABPS were developed during the last decade. Here, we evaluated their capability to detect the position of BPs, and also to predict the impact on splicing of variants occurring upstream of 3'ss. RESULTS: We used a large set of constitutive and alternative human 3'ss collected from Ensembl (n = 264,787 3'ss) and from in-house RNAseq experiments (n = 51,986 3'ss). We also gathered an unprecedented collection of functional splicing data for 120 variants (62 unpublished) occurring in BP areas of disease-causing genes. Branchpointer showed the best performance to detect the relevant BPs upstream of constitutive and alternative 3'ss (99.48 and 65.84% accuracies, respectively). For variants occurring in a BP area, BPP emerged as having the best performance to predict effects on mRNA splicing, with an accuracy of 89.17%. CONCLUSIONS: Our investigations revealed that Branchpointer was optimal to detect BPs upstream of 3'ss, and that BPP was most relevant to predict splicing alteration due to variants in the BP area.


Subject(s)
Introns , RNA Precursors , RNA Splice Sites , RNA Splicing , Alternative Splicing , Computational Biology/methods , Humans , Nucleotide Motifs , Position-Specific Scoring Matrices , RNA Processing, Post-Transcriptional , ROC Curve , Reproducibility of Results
3.
Nucleic Acids Res ; 46(15): 7913-7923, 2018 09 06.
Article in English | MEDLINE | ID: mdl-29750258

ABSTRACT

Variant interpretation is the key issue in molecular diagnosis. Spliceogenic variants exemplify this issue as each nucleotide variant can be deleterious via disruption or creation of splice site consensus sequences. Consequently, reliable in silico prediction of variant spliceogenicity would be a major improvement. Thanks to an international effort, a set of 395 variants studied at the mRNA level and occurring in 5' and 3' consensus regions (defined as the 11 and 14 bases surrounding the exon/intron junction, respectively) was collected for 11 different genes, including BRCA1, BRCA2, CFTR and RHD, and used to train and validate a new prediction protocol named Splicing Prediction in Consensus Elements (SPiCE). SPiCE combines in silico predictions from SpliceSiteFinder-like and MaxEntScan and uses logistic regression to define optimal decision thresholds. It revealed an unprecedented sensitivity and specificity of 99.5 and 95.2%, respectively, and the impact on splicing was correctly predicted for 98.8% of variants. We therefore propose SPiCE as the new tool for predicting variant spliceogenicity. It could be easily implemented in any diagnostic laboratory as a routine decision making tool to help geneticists to face the deluge of variants in the next-generation sequencing era. SPiCE is accessible at (https://sourceforge.net/projects/spicev2-1/).


Subject(s)
Computational Biology/methods , Computer Simulation , Genetic Variation , RNA Splice Sites/genetics , RNA Splicing , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , Female , Humans , International Cooperation , Internet , Ovarian Neoplasms/diagnosis , Ovarian Neoplasms/genetics , Reproducibility of Results , Sensitivity and Specificity
6.
Cancer Res ; 80(17): 3593-3605, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32641407

ABSTRACT

BRCA2 is a clinically actionable gene implicated in breast and ovarian cancer predisposition that has become a high priority target for improving the classification of variants of unknown significance (VUS). Among all BRCA2 VUS, those causing partial/leaky splicing defects are the most challenging to classify because the minimal level of full-length (FL) transcripts required for normal function remains to be established. Here, we explored BRCA2 exon 3 (BRCA2e3) as a model for calibrating variant-induced spliceogenicity and estimating thresholds for BRCA2 haploinsufficiency. In silico predictions, minigene splicing assays, patients' RNA analyses, a mouse embryonic stem cell (mESC) complementation assay and retrieval of patient-related information were combined to determine the minimal requirement of FL BRCA2 transcripts. Of 100 BRCA2e3 variants tested in the minigene assay, 64 were found to be spliceogenic, causing mild to severe RNA defects. Splicing defects were also confirmed in patients' RNA when available. Analysis of a neutral leaky variant (c.231T>G) showed that a reduction of approximately 60% of FL BRCA2 transcripts from a mutant allele does not cause any increase in cancer risk. Moreover, data obtained from mESCs suggest that variants causing a decline in FL BRCA2 with approximately 30% of wild-type are not pathogenic, given that mESCs are fully viable and resistant to DNA-damaging agents in those conditions. In contrast, mESCs producing lower relative amounts of FL BRCA2 exhibited either null or hypomorphic phenotypes. Overall, our findings are likely to have broader implications on the interpretation of BRCA2 variants affecting the splicing pattern of other essential exons. SIGNIFICANCE: These findings demonstrate that BRCA2 tumor suppressor function tolerates substantial reduction in full-length transcripts, helping to determine the pathogenicity of BRCA2 leaky splicing variants, some of which may not increase cancer risk.


Subject(s)
Breast Neoplasms/genetics , Genes, BRCA2 , Genetic Predisposition to Disease/genetics , Ovarian Neoplasms/genetics , Alternative Splicing , Animals , Exons , Female , Humans , Mice , Protein Isoforms
7.
Oncotarget ; 9(25): 17334-17348, 2018 Apr 03.
Article in English | MEDLINE | ID: mdl-29707112

ABSTRACT

Germline pathogenic variants in the BRCA2 gene are associated with a cumulative high risk of breast/ovarian cancer. Several BRCA2 variants result in complete loss of the exon-3 at the transcript level. The pathogenicity of these variants and the functional impact of loss of exon 3 have yet to be established. As a collaboration of the COVAR clinical trial group (France), and the ENIGMA consortium for investigating breast cancer gene variants, this study evaluated 8 BRCA2 variants resulting in complete deletion of exon 3. Clinical information for 39 families was gathered from Portugal, France, Denmark and Sweden. Multifactorial likelihood analyses were conducted using information from 293 patients, for 7 out of the 8 variants (including 6 intronic). For all variants combined the likelihood ratio in favor of causality was 4.39*1025. These results provide convincing evidence for the pathogenicity of all examined variants that lead to a total exon 3 skipping, and suggest that other variants that result in complete loss of exon 3 at the molecular level could be associated with a high risk of cancer comparable to that associated with classical pathogenic variants in BRCA1 or BRCA2 gene. In addition, our functional study shows, for the first time, that deletion of exon 3 impairs the ability of cells to survive upon Mitomycin-C treatment, supporting lack of function for the altered BRCA2 protein in these cells. Finally, this study demonstrates that any variant leading to expression of only BRCA2 delta-exon 3 will be associated with an increased risk of breast and ovarian cancer.

SELECTION OF CITATIONS
SEARCH DETAIL