ABSTRACT
Elevated concentrations of As, Cr, Cu, Ni, Pb, V and Zn in topsoils in Belfast, Northern Ireland have been found to exceed assessment criteria in the city and therefore may pose a risk to human health. Most generic assessment criteria (GAC) for potentially toxic elements (PTEs) in soils assume PTEs are 100% bioavailable to humans. Here we use in-vitro oral bioaccessibility testing using the Unified BARGE method (UBM) to measure what proportion of soil contamination dissolves in the digestive tract and therefore is available for absorption by the body. This study considers how PTE bioaccessibility in soils varies spatially across urban areas and refines human health risk assessment for these PTEs using site specific oral bioaccessibility results to present the first regional assessment of risk that incorporates bioaccessibility testing. A total of 103 urban soil samples were selected for UBM testing. Results showed low bioaccessible fraction (BAF) for the PTEs from geogenic sources: Cr (0.45-5.9%), Ni (1.1-46.3%) and V (2.2-23.9%). Higher BAF values were registered for PTEs from anthropogenic sources: As (8.0-86.9%), Cu (3.4-67.8%), Pb (9.1-106.2%) and Zn (2.4-77.5%). Graphs of bioaccessibility adjusted assessment criteria (BAAC) were derived for each urban land use type and PTE. These provide a visual representation of the significance of oral bioaccessibility when deriving BAAC and how this is affected by 1) dominant exposure pathways for each land use and 2) relative harm posed from exposure to PTEs via each pathway, allowing oral bioaccessibility research to be targeted to contaminants and pathways that most significantly impact risk assessment. Pb was the most widespread contaminant with 16.5% of sites exceeding the Pb GAC. Applying BAAC did not significantly change risk evaluation for these samples as many had Pb BAF>50%. In contrast, all samples that exceeded the As GAC were found to no longer exceed a minimal level of risk when oral bioaccessibility was considered. Oral bioaccessibility testing resulted in a 45% reduction in the number of sites identified as posing a potential risk to human health.
Subject(s)
Biological Availability , Environmental Monitoring , Metals, Heavy , Soil Pollutants , Risk Assessment , Soil Pollutants/analysis , Northern Ireland , Humans , Environmental Monitoring/methods , Metals, Heavy/analysis , Cities , Soil/chemistryABSTRACT
Makueni County, located in south-eastern Kenya, faces challenges such as limited potable water and restricted food supplies as the result of semi-aridity. High fluoride (F) concentrations have been reported in drinking water with resultant dental fluorosis affecting the local population. To determine the potential F exposure through the consumption of food crops grown in the area, F concentration was assessed in the main five locally grown and consumed crops. Additionally, the water-soluble F fraction was determined from 30 soil samples with mineralogical determination of 20 samples. Mean F concentration in the food crops was in the order; 700, 288, 71.2, 36.6, and 29 mg/kg in kale, cowpeas leaves, green grams, cowpeas (legume portion), and maize, respectively. The F concentration in farm soils ranged from 0 to 3.47 mg/kg (mean of 0.87 mg/kg) and showed a significant strong positive correlation (p = 0.03, r = 0.89) with F values in the crops. Apatite, muscovite, and biotite were identified as the F-rich minerals present. While considering two hypothetical F absorption fractions (75 and 100%), the estimated average daily dose (EADD) of F from consuming the crops ranged between 0.004 and 65.17 mg/kg/day where the highest values were from the vegetables. Most of these values were higher than the F reference dose (RfD) of 0.06 mg/kg. The estimated EADD values of several hypothetical meals prepared from the analyzed crops revealed that steamed kale and maize porridge pose the highest health risk of F associated diseases to the local population, whereas boiled cowpeas pose no health risk. Children, due to their higher daily energy requirement and low body weight, were the most vulnerable group at risk of high daily F intake relative to the RfD. These results suggest that consumption of the analyzed food crops in Makueni County may significantly contribute to F related diseases in the local population. This creates a food security issue for the area because of the potential health risks associated with these crops which are highly relied upon in the semi-arid area with a limited selection of food crops available and viable to grow.
Subject(s)
Drinking Water , Fluorosis, Dental , Child , Humans , Fluorides/analysis , Soil , Kenya , Vegetables , Crops, Agricultural , Fluorosis, Dental/epidemiology , Fluorosis, Dental/etiologyABSTRACT
Dust emitted from mining, ore processing, and tailing dumps have direct effects on miners who work close to these operations. The Gol-E-Gohar (GEG) mining and industrial company is one of the most important iron concentrate producers in the Middle East. The objective of the present study was to estimate the distribution, fractionation, and oral bioaccessibility of potentially toxic elements (PTEs) in dust generated by the GEG mining and industrial company. Total PTE content including Al, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, V, and Zn was quantified for suspended particulate matter (PM) in PM2.5, PM10, and total suspended particulate matter (TSP). As, Cd, Co, Cu, Fe, Ni, and Pb were quantified in fallout dust samples for oral bioaccessibility using in vitro Unified BARGE (UBM) Method and modified BCR fractionation analysis. Enrichment factors (EF) were calculated for the studied elements in PM; Cu, Fe, and As were found to be extremely enriched. Oral bioaccessibility of selected PTEs in fallout dust samples ranged from 0.35% to 41.55% and 0.06-37.58% in the gastric and intestinal phases, respectively. Regression modeling revealed that the bioaccessibilities of the PTEs could mostly be explained by total concentrations in dust particles. Average daily intake (ADI) calculations revealed that the intake of PTEs did not exceed the tolerable daily intake (TDI) values and as such was not considered a significant risk to workers. Additionally, the hazard quotients (HQ) and carcinogenic risk (CR) values were lower than the acceptable level. This study can provide further risk assessment and management of PTE pollution in occupational environments.
Subject(s)
Dust/analysis , Environmental Monitoring , Environmental Pollutants/analysis , Environmental Pollution/analysis , Humans , Iron/analysis , Metals, Heavy/analysis , Mining , Particulate Matter/analysis , Risk AssessmentABSTRACT
BACKGROUND: Long-term, low-level exposure to toxic elements in soil may be harmful to human health but large longitudinal cohort studies with sufficient follow-up time to study these effects are cost-prohibitive and impractical. Linkage of routinely collected medical outcome data to systematic surveys of soil quality may offer a viable alternative. METHODS: We used the Geochemical Baseline Survey of the Environment (G-BASE), a systematic X-ray fluorescence survey of soil inorganic chemistry throughout England and Wales to obtain estimates of the concentrations of 15 elements in the soil contained within each English and Welsh postcode area. We linked these data to the residential postcodes of individuals enrolled in The Health Improvement Network (THIN), a large database of UK primary care medical records, to provide estimates of exposure. Observed exposure levels among the THIN population were compared with expectations based on UK population estimates to assess representativeness. RESULTS: Three hundred seventy-seven of three hundred ninety-five English and Welsh THIN practices agreed to participate in the linkage, providing complete residential soil metal estimates for 6,243,363 individuals (92% of all current and former patients) with a mean period of prospective computerised medical data collection (follow-up) of 6.75 years. Overall agreement between the THIN population and expectations was excellent; however, the number of participating practices in the Yorkshire & Humber strategic health authority was low, leading to restricted ranges of measurements for some elements relative to the known variations in geochemical concentrations in this area. CONCLUSIONS: The linked database provides unprecedented population size and statistical power to study the effects of elements in soil on human health. With appropriate adjustment, results should be generalizable to and representative of the wider English and Welsh population.
Subject(s)
Environmental Exposure/adverse effects , Medical Records , Metals, Heavy/adverse effects , Primary Health Care , Soil Pollutants/adverse effects , Soil/chemistry , Cohort Studies , England , Environment , Environmental Exposure/analysis , Fluorescence , Humans , Metals, Heavy/analysis , Prospective Studies , Soil Pollutants/analysis , Spatial Analysis , Trace Elements/adverse effects , Trace Elements/analysis , WalesABSTRACT
Dynamic flow-through extraction is attracting a great deal of attention for real-time monitoring of the bioaccessible fraction of metal species in environmental solid substrates compared to its batchwise manual counterparts. There is however a lack of studies on the harmonization and validation of in vitro dynamic methods for physiologically based extraction tests against in vivo bioavailability methods. This work is aimed at evaluating the reliability of dynamic flow-through extraction methods for estimation of oral bioaccessible fractions of Cu, Zn, Pb, Ni, Cr, and As under worst-case extraction conditions in the gastric compartment based on the BGS102 guidance soil using the in vivo validated Unified BARGE (UBM) test, commonly performed under batchwise mode. Good overall agreement between batch and dynamic UBM results was obtained for the tested elements, except for Pb, as a consequence of the slow leaching kinetics identified with the dynamic method and the contribution of readsorption phenomena in the course of the gastric digestion. Metal-soil phase associations and their relationship with gastric bioaccessible fractions were elucidated using the so-called Chemometric Identification of Substrates and Element Distributions method based on sequential extraction with a variety of chemicals of increasing acidity as applied to both static and dynamic bioaccessibility data.
Subject(s)
Soil Pollutants , Soil , Environmental Exposure , Environmental Monitoring , Reproducibility of ResultsABSTRACT
Soil and dust ingestion is one of the major human exposure pathways to contaminated soil; however, pollutant transfer from ingested substances to humans cannot currently be confidently predicted. Soil polycyclic aromatic hydrocarbon (PAH) bioavailability is likely dependent upon properties linked to chemical potential and partitioning such as fugacity, fugacity capacity, soil organic carbon, and partitioning to simulated intestinal fluids. We estimated the oral PAH bioavailability of 19 historically contaminated soils fed to juvenile swine. Between soils, PAH blood content, with the exception of benzo(a)pyrene, was not linked to fugacity. In contrast, between individual PAHs, using partitioning explained PAH blood content (area under the curve = 0.47 log fugacity + 0.34, r(2) = 0.68, p < 0.005, n = 14). Soil fugacity capacity predicts PAH soil concentration with an average slope of 0.30 (µg PAH g(-1) soil) Pa(-1) and r(2)'s of 0.61-0.73. Because PAH blood content was independent of soil concentration, soil fugacity correlated to PAH bioavailability via soil fugacity's link to soil concentration. In conclusion, we can use fugacity to explain PAH uptake from a soil into blood. However, something other than partitioning is critical to explain the differences in PAH uptake into blood between soils.
Subject(s)
Environmental Exposure/analysis , Mammals/metabolism , Polycyclic Aromatic Hydrocarbons/chemistry , Polycyclic Aromatic Hydrocarbons/pharmacokinetics , Soil Pollutants/analysis , Soil/chemistry , Animals , Biological Availability , HumansABSTRACT
The study used 276 urban soils and 447 rural soils collected from in and around the UK town of Northampton and focussed on the fractionation of Pb. The Pb fractionation obtained from total element data was compared to the fractionation of Pb in a subset of 10 urban soils obtained using a sequential extraction method. The fractionation of the Pb from the total element data and from the sequential extractions was estimated using a self-modelling mixture resolution statistical model. The bioaccessibility of Pb in a subset of 50 of the urban soils, as measured using the unified BARGE method, was shown to be quantitatively linked with Pb fractionation from both the total element and the sequential extraction data. Three intrinsic soil components from the regional total element data model and one physico-chemical component from the sequential extraction data model were identified as the sources of bioaccessible Pb. The source of bioaccessible Pb in both rural and urban soils was tentatively identified as a fine-grained pyromorphite mineral.
Subject(s)
Lead/chemistry , Soil Pollutants/chemistry , Chemical Fractionation , Cities , Minerals/chemistry , Models, Theoretical , Phosphates/chemistry , Soil/chemistry , United KingdomABSTRACT
The human ingestion bioaccessibility of As was measured on 50 representative samples of soils selected from a 281-soil-sample geochemical survey of Northampton. The major and trace element content, pH and near infrared (NIR) spectra of the 281 soils were determined. A multiple linear regression (MLR) model using total As, major element composition and pH identified total As, pH and P to be the significant predictor variables for bioaccessible As (R2 = 0.72, median standard error of prediction = 1.5 mg kg(-1) bioaccessible As). When spectral components (SC) derived from chemometric analysis of the NIR spectra were also included in the MLR, total As, pH, Mg and two NIR spectral components were found to be significant predictor variables (R2 = 0.84, median standard error of prediction = 1.2 mg kg(-1) bioaccessible As). Correlation analysis of the SC with major element data suggested that the two NIR SC in the second model were related to different forms of Fe oxides in the soil. When plotted over a geological map of Northampton interpolated predictions of bioaccessible As showed clear geological control. The median total As concentration of the soils in Northampton was 30.2 mg kg(-1) and the median bioaccessible As was 3.0 mg kg(-1).
Subject(s)
Arsenic/analysis , Arsenic/pharmacokinetics , Models, Biological , Soil Pollutants/analysis , Soil Pollutants/pharmacokinetics , Biological Availability , Cluster Analysis , Computer Simulation , Environmental Monitoring , Gastrointestinal Tract/metabolism , Humans , Linear Models , Predictive Value of Tests , Spectroscopy, Near-Infrared , United Kingdom , UrbanizationABSTRACT
Potentially toxic elements (PTEs) including nickel and chromium are often present in soils overlying basalt at concentrations above regulatory guidance values due to the presence of these elements in underlying geology. Oral bioaccessibility testing allows the risk posed by PTEs to human health to be assessed; however, bioaccessibility is controlled by factors including mineralogy, particle size, solid-phase speciation and encapsulation. X-ray diffraction was used to characterise the mineralogy of 12 soil samples overlying Palaeogene basalt lavas in Northern Ireland, and non-specific sequential extraction coupled with chemometric analysis was used to determine the distribution of elements amongst soil components in 3 of these samples. The data obtained were related to total concentration and oral bioaccessible concentration to determine whether a relationship exists between the overall concentrations of PTEs, their bioaccessibility and the soils mineralogy and geochemistry. Gastric phase bioaccessible fraction (BAF %) ranged from 0.4 to 5.4 % for chromium in soils overlying basalt and bioaccessible and total chromium concentrations are positively correlated. In contrast, the range of gastric phase BAF for nickel was greater (1.4-43.8 %), while no significant correlation was observed between bioaccessible and total nickel concentrations. However, nickel BAF was inversely correlated with total concentration. Solid-phase fractionation information showed that bioaccessible nickel was associated with calcium carbonate, aluminium oxide, iron oxide and clay-related components, while bioaccessible chromium was associated with clay-related components. This suggests that weathering significantly affects nickel bioaccessibility, but does not have the same effect on the bioaccessibility of chromium.
Subject(s)
Chromium/pharmacokinetics , Environmental Exposure , Nickel/pharmacokinetics , Soil Pollutants/pharmacokinetics , Soil/chemistry , Trace Elements/analysis , Biological Availability , Chemical Fractionation , Chromium/analysis , Environmental Monitoring , Humans , Nickel/analysis , Northern Ireland , Particle Size , Risk Assessment , Soil Pollutants/analysis , X-Ray DiffractionABSTRACT
Bioaccessibility is a measurement of a substance's solubility in the human gastro-intestinal system, and is often used in the risk assessment of soils. The present study was designed to determine the variability among laboratories using different methods to measure the bioaccessibility of 24 inorganic contaminants in one standardized soil sample, the standard reference material NIST 2710. Fourteen laboratories used a total of 17 bioaccessibility extraction methods. The variability between methods was assessed by calculating the reproducibility relative standard deviations (RSDs), where reproducibility is the sum of within-laboratory and between-laboratory variability. Whereas within-laboratory repeatability was usually better than (<) 15% for most elements, reproducibility RSDs were much higher, indicating more variability, although for many elements they were comparable to typical uncertainties (e.g., 30% in commercial laboratories). For five trace elements of interest, reproducibility RSDs were: arsenic (As), 22-44%; cadmium (Cd), 11-41%; Cu, 15-30%; lead (Pb), 45-83%; and Zn, 18-56%. Only one method variable, pH, was found to correlate significantly with bioaccessibility for aluminum (Al), Cd, copper (Cu), manganese (Mn), Pb and zinc (Zn) but other method variables could not be examined systematically because of the study design. When bioaccessibility results were directly compared with bioavailability results for As (swine and mouse) and Pb (swine), four methods returned results within uncertainty ranges for both elements: two that were defined as simpler (gastric phase only, limited chemicals) and two were more complex (gastric + intestinal phases, with a mixture of chemicals).
Subject(s)
Environmental Monitoring/methods , Environmental Monitoring/standards , Laboratories , Models, Biological , Soil Pollutants , Gastrointestinal Tract/metabolism , Humans , Laboratories/standards , Reference Standards , Reproducibility of Results , Soil Pollutants/analysis , Soil Pollutants/pharmacokinetics , United States , United States Government AgenciesABSTRACT
The relative bioavailability of arsenic, antimony, cadmium, and lead for the ingestion pathway was measured in 16 soils contaminated by either smelting or mining activities using a juvenile swine model. The soils contained 18 to 25,000 mg kg(-1) As, 18 to 60,000 mg kg(-1) Sb, 20 to 184 mg kg(-1) Cd, and 1460 to 40,214 mg kg(-1) Pb. The bioavailability in the soils was measured in kidney, liver, bone, and urine relative to soluble salts of the four elements. The variety of soil types, the total concentrations of the elements, and the range of bioavailabilities found were considered to be suitable for calibrating the in vitro Unified BARGE bioaccessibility method. The bioaccessibility test has been developed by the BioAccessibility Research Group of Europe (BARGE) and is known as the Unified BARGE Method (UBM). The study looked at four end points from the in vivo measurements and two compartments in the in vitro study ("stomach" and "stomach and intestine"). Using benchmark criteria for assessing the "fitness for purpose" of the UBM bioaccessibility data to act as an analogue for bioavailability in risk assessment, the study shows that the UBM met criteria on repeatability (median relative standard deviation value <10%) and the regression statistics (slope 0.8 to 1.2 and r-square > 0.6) for As, Cd, and Pb. The data suggest a small bias in the UBM relative bioaccessibility of As and Pb compared to the relative bioavailability measurements of 3% and 5% respectively. Sb did not meet the criteria due to the small range of bioaccessibility values found in the samples.
Subject(s)
Arsenic/metabolism , Environmental Monitoring/methods , Metals, Heavy/metabolism , Soil/chemistry , Swine/metabolism , Animals , Antimony/metabolism , Antimony/urine , Arsenic/urine , Biological Availability , Cadmium/metabolism , Europe , Health , Lead/metabolism , Linear Models , Nonlinear Dynamics , Reference Standards , Reproducibility of Results , Soil Pollutants/metabolism , Swine/urine , Time FactorsABSTRACT
OBJECTIVE: This paper outlines the process of implementation of a dialectical behavioral therapy (DBT) informed treatment for Australian Deaf mental health consumers. METHOD: The pilot project team members adapted DBT materials for the Australian Deaf population. Feedback was obtained from the pilot participants and modifications made during the pilot. Participant progress and therapeutic alliance were monitored using culturally valid tools. RESULTS: The DBT informed therapy approach was well received by this target group, with the observation and self report of improved interpersonal skills and emotional regulation. CONCLUSIONS: While labor intensive, the process of developing a DBT informed treatment program for Australian Deaf mental health consumers appears to be beneficial for this group. Culturally valid, objective measures of skill attainment need to be developed and further studies comparing different adapted therapeutic approaches would be useful.
Subject(s)
Behavior Therapy/methods , Deafness/complications , Mental Disorders , Persons With Hearing Impairments/psychology , Australia , Borderline Personality Disorder/complications , Borderline Personality Disorder/therapy , Depressive Disorder/complications , Depressive Disorder/therapy , Humans , Mental Disorders/complications , Mental Disorders/therapy , Panic Disorder/complications , Panic Disorder/therapy , Pilot Projects , Sign LanguageABSTRACT
Two non-specific sequential extraction methods utilising chemometric data processing (chemometric identification of substrates and element distribution, CISED) have been developed and used to determine the physico-chemical partitioning of potentially harmful elements (PHE) in certified reference material BCR CRM 701 (lake sediment). A miniaturized centrifugation method in which the sample was extracted on a filter insert in a polypropylene centrifuging tube, and a quasi-flow through method in which the sample was supported on a TX40 filter in a 47 mm in-line polycarbonate filter holder, gave similar results. The CISED data processing identified nine components. Seven of these were of geochemical origin - two carbonate components, an Al/Fe oxide/hydroxide component, three Fe-dominated components and one Si-dominated component - while the others represented the TX40 filter blank. The overall extraction capabilities of the methods were similar to that of the well-established BCR sequential extraction (Σsteps 1-3). However, whilst the BCR extraction is operationally defined, the CISED provides information on associations between PHE and the geochemical components identified. The flow through CISED procedure has potential applications in investigating the chemical speciation of PHE associated with urban airborne particular matter.
ABSTRACT
Studies regarding the role of geochemical processes in urban environmental matrices (UEM) and their influence on respiratory bioaccessibility in humans are scarce in humid tropical regions, especially in Brazil. Contaminated UEM are potentially hazardous to humans if particles <10 µm in diameter are inhaled and reach the tracheobronchial region. In this study, we evaluated samples collected in Brazilian UEMs with a large environmental liability left by former mining industries and in a city with strong industrial expansion. UEM samples were classified into soil, sediment and mine tailings according to the characteristics of the collection sites. The respiratory bioaccessibility of potentially harmful elements (PHE) was evaluated using artificial lysosomal fluid (ALF, pH 4.5), and the BCR-sequential extraction was performed to evaluate how the respiratory bioaccessibility of the PHE was related to the solid phase partitioning. The bioaccessible fraction (BAF) ranged from 54 to 98% for Cd; 21-89% for Cu; 46-140% for Pb, 35-88% for Mn and; 41-84% for Zn. The average BAF of the elements decreased in the following order: Soil: Cd > Pb > Mn > Zn > Cu; Tailing: Pb > Cd > Zn > Mn > Cu; and Sediments: Pb > Mn > Cd > Zn > Cu. BCR-fractions were useful to predict the PHE bioaccessibility (R2 = 0.79-0.98), thus suggesting that particle geochemistry and mineralogy can influence PHE behaviour in the pulmonary fluid. Therefore, this approach provides a combination of quantitative and qualitative data, which allows us to carry out a more realistic assessment of the current situation of the potentially contaminated site and possible alternatives for decision making by the stakeholders.
Subject(s)
Metals, Heavy , Soil Pollutants , Brazil , Cities , Environmental Monitoring , Humans , Metals, Heavy/analysis , Soil , Soil Pollutants/analysisABSTRACT
Polycyclic aromatic hydrocarbon (PAH) concentrations were determined in 16 topsoils (0-10 cm) collected across the site of a former tar works in NE England. The soils were prepared in the laboratory to two different particle size fractions: <250 µm (fraction A) and >250 µm to <2 mm (fraction B). Sixteen priority PAHs were analysed in the soils using in situ pressurised fluid extraction (PFE) followed by gas chromatography-mass spectrometry (GC-MS). The average total PAH concentration in the soils ranged from 9.0 to 1,404 mg/kg (soil fraction A) and from 6.6 to 872 mg/kg (soil fraction B). These concentrations are high compared with other industrially contaminated soils reported in the international literature, indicating that the tar works warrants further investigation/remediation. A predominance of higher-molecular-weight compounds was determined in the samples, suggesting that the PAHs were of pyrogenic (anthropogenic) origin. Statistical comparison (t-test) of the mean total PAH concentrations in soil fractions A and B indicated that there was a significant difference (95% confidence interval) between the fractions in all but two of the soil samples. Additionally, comparisons of the distributions of individual PAHs (i.e. 16 PAHs × 16 soil samples) in soil fractions A and B demonstrated generally higher PAH concentrations in fraction A (i.e. 65.8% of all individual PAH concentrations were higher in soil fraction A). This is important because fraction A corresponds to the particle size thought to be most important in terms of human contact with soils and potential threats to human health.
Subject(s)
Environmental Monitoring , Polycyclic Aromatic Hydrocarbons/analysis , Soil Pollutants/analysis , Soil/chemistry , Chemical Fractionation , Chromatography , England , Gas Chromatography-Mass Spectrometry , Humans , Particle Size , Polycyclic Aromatic Hydrocarbons/chemistry , Risk Assessment , Soil Pollutants/chemistryABSTRACT
Quantifying variation of metals in urban soils is crucial for efficient environmental and public health management. Prior to the interferences of human activities, regional topsoil geochemical distributions were generally primarily controlled by the underlying parent materials (PMs). With the rapid urbanisation, urban topsoil geochemical distributions have been modified with different levels. Three metals, aluminium (Al), calcium (Ca) and lead (Pb), were chosen to investigate the different levels of geogenic and anthropogenic controls in urban topsoil of Greater London Authority (GLA) area. These three metal elements clearly demonstrated the different spatial distribution affected by human activities using analysis of variance (ANOVA) and GIS-based spatial analysis. The high values of Al were in the clay which is located in the north and south GLA area; Pb accumulated in built-up areas and near traffic roads, which was likely associated with leaded paints and leaded petrol, respectively; the high Ca concentrations were in the Chalk bedrock of the southern GLA area and historical deconstruction and reconstruction sites in the city centre. Based on spatial interpolation and hot spot analysis (local Moran's I), this study reveals the different levels of geogenic and anthropogenic controls on different chemicals in urban soils: while the spatial distribution of Pb, which is more easily affected by human activities, can be significantly changed, the inert element Al may still be able to maintain its natural spatial distribution even in the heavily urbanized GLA area, and Ca demonstrates the mixed spatial distribution affected by both natural factors and human activities.
Subject(s)
Aluminum/analysis , Calcium/analysis , Environmental Monitoring , Lead/analysis , Soil Pollutants/analysis , Soil/chemistry , Spatial Analysis , Cities , Humans , LondonABSTRACT
In this study, geographically weighted regression (GWR) was applied to reveal the spatially varying relationships between Pb and Al in urban soils of London based on 6467 samples collected by British Geological Survey. Results showed that the relationships between Pb and Al were spatially varying in urban soils of London, with different relationships in different areas. The strong negative relationships between Pb and Al were found in the northeast and north areas and weak relationships were located in central areas, implying the links with the impact of anthropogenic activities on Pb concentration, while road traffic, industry activities and construction in centre of London may be linked to the weakened or changed direction of the relationship. However, positive relationships between Pb and Al were found in large parklands and greenspaces in the southeast and southwest as well as a small area in central London, due to less influences from human activities where the natural geochemical signatures were preserved. This study suggests that GWR is an effective tool to reveal spatially varying relationships in environmental variables, providing improved understanding of the complicated relationships in environmental parameters from the spatial aspect, which could be hardly achieved using conventional statistical analysis.
ABSTRACT
In vitro high molecular weight polycyclic aromatic hydrocarbons (HMW-PAH) soil-sebum partition coefficients (KSS) were measured for twelve soils collected from former UK gasworks. Concentrations of ∑16 USEPA PAH in the soils ranged from 51 to 1440 mg/kg. Time series extractions (0.5, 1, 2, 4, 8 and 24 h) at skin temperature (32 °C) of HMW-PAH from sebum to soil for two samples were conducted to determine the maximum release time-step. The maximum HMW-PAH release time-step was determined as 4 h, which was subsequently used as the extraction time for the remaining samples. The 4 h extraction for all samples showed HMW-PAH KSS ranging from 0.06 to 1.4 (median = 0.59; mean = 0.59; standard deviation = 0.27; median absolute deviation = 0.29). Evaluation of KSS data for the 4 h extractions showed that soil type and selected HMW-PAH properties (literature based molecular weight and octanol-carbon partition coefficients) affect the amount of HMW-PAH released from soil into sebum.
ABSTRACT
The waste rock, tailings and soil around an abandoned mine site in Gorno (northwest Italy) contain elevated concentrations of potentially toxic elements (PTE) exceeding the permissible limits for residential uses. Specifically, the maximum concentrations of As, Cd, Pb, and Zn were 107 mg/kg, 340 mg/kg, 1064 mg/kg, and 148 433 mg/kg, respectively. A site-specific human health risk assessment (HHRA) was conducted for residential and recreational exposure scenarios, using an approach based on Risk Based Corrective Action (RBCA) method, refined by incorporating oral bioaccessibility data. Oral bioaccessibility analyses were performed by simulating the human digestion process in vitro (Unified BARGE Method). Detailed analysis of oral bioaccessible fraction (BAF i.e. ratio of bioaccessible concentrations to total concentrations on <250 µm fraction) indicated BAF of As (5-33%), Cd (72-98%), Co (24-42%), Cr (3-11%), Cu (25-90%), Ni (17-60%), Pb (16-88%) and Zn (73-94%). The solid phase distribution and mineralogical analyses showed that the variation of BAF is attributed to presence of alkaline calcareous rocks and association of PTE with a variety of minerals. The HHRA for ingestion pathway, suggested that bioaccessibility-corrected cancer risk reached up to 2.7 × 10-5 and 0.55 × 10-5 for residential and recreational senarios respectively (acceptable level is 1 × 10-5). The hazard index (HI) recalculated after incorporation of oral bioaccessible concentrations for a residential scenario ranged from 0.02 to 17.9. This was above the acceptable level (>1) for 50% of the samples, indicating potential human health risks. This study provides information for site-specific risk assessments and planning future research.
Subject(s)
Environmental Monitoring/methods , Metals, Heavy/analysis , Soil Pollutants/analysis , Environmental Pollution/analysis , Environmental Pollution/statistics & numerical data , Humans , Italy , Minerals/analysis , Risk Assessment/methods , SoilABSTRACT
River islands (Ait or Eyot) within the inner tidal Thames serve as unique recorders of current and historical estuarine chemical pollution. Sediment cores from Chiswick Ait were assessed for contamination using Microtox® solid phase bioassay, stable isotopes (δ13C, δ15N), heavy metals and polychlorinated biphenyls (PCBs). Microtox® classified these sediments as non-toxic to moderately toxic and bulk isotopes identified a change in organic input. Metals Cu, Zn, Cr, Ni, Cd, Hg and Ag showed parallel rise, peak and fall profiles which when allied to a 207/208Pb and 137Cs based chronology supported major changes in trace metal contributions corresponding to approximate input times of 1940 (rise), 1963 (peak) and 1985 (fall). Metals ranged from Cu 15 to 373 mg kg-1 (mean 141 mg kg-1), Zn 137 to 1331 mg kg-1 (mean 576 mg kg-1), Cr 14-351 mg kg-1 (mean 156 mg kg-1), Pb 10 to 1506 mg kg-1 (mean 402 mg kg-1), As 1 to 107 (mean 38 mg kg-1), Ni 11 to 113 mg kg-1 (mean 63 mg kg-1), Cd 0.2 to 53 mg kg-1 (mean 9 mg kg-1), Hg 1 to 8 mg kg-1 (mean 4.6 mg kg-1) and Ag from 0.7 to 50 mg kg-1 (mean 7.5 mg kg-1). Down core total PCBs ranged from 10.5 to 121 µg kg-1 and mean of 39 µg kg-1. The rise, peak and fall of Cu, Zn, Cr, Ni, Cd and Ag pollution matched local sewage works' treatment discharge records. Whereas the Hg, Pb and As profiles were disconnected, reflecting alternative historic sources and or partitioning behaviour. Comparison to marine sediment quality guidelines indicate that Zn, Pb, Ni, Cd and Hg exceed action level 2, whereas sedimentary Cu, Cr and As concentrations were above action level 1 (no action) but below action level 2 (further investigation required). The river islands of the tidal Thames capture a unique contaminant chemistry record due in part to their location in the tidal frame (salinity minimum) and close proximity to west London.