Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Int J Mol Sci ; 23(22)2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36430627

ABSTRACT

The SQUAMOSA promoter binding proteins (SBPs) gene family plays important roles in plant growth and development. The SBP gene family has been identified and reported in many species, but it has not been well studied in passion fruit. In this study, a total of 14 SBP genes were identified in passion fruit and named from PeSBP1 to PeSBP14 based on their chromosomal distribution. The phylogenetic tree, gene structure, conserved motifs, collinearity analysis, and expression patterns of the identified SBP members were analyzed. We classified the PeSBP genes into eight groups (I to VIII) according to the phylogenetic tree, gene structure, and conserved motifs. Synteny analysis found that 5 homologous gene pairs existed in PeSBP genes and 11 orthologous gene pairs existed between passion fruit and Arabidopsis. Synonymous nucleotide substitution analysis showed that the PeSBP genes were under strong negative selection. The expression pattern of PeSBP genes in seed, root, leaf, and flower showed that nine of the PeSBP genes displayed high expression in the leaf and the flower. The expression patterns of PeSBP3/6/8/9/10 were further detected by qRT-PCR. In addition, differences in the expression levels occurred for each gene in the different flower organs and at the different developmental stages. There were large differences among SBPs based on transcriptional levels under cold, heat, salt, and osmotic stress conditions. Altogether, this study provides an overview of SBP genes in passion fruit and lays the foundation for further functional analysis.


Subject(s)
Arabidopsis , Passiflora , Passiflora/genetics , Phylogeny , Plant Proteins/metabolism , Fruit/genetics , Fruit/metabolism , Genes, Plant , Arabidopsis/genetics
2.
Plant Physiol Biochem ; 200: 107800, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37253279

ABSTRACT

Heat stress transcription factors (HSFs) are the major regulators of plant response to environmental stress, especially heat and drought stress. To gain a deeper understanding of the mechanisms underlying HSFs in the abiotic stress response of passion fruit, we conducted an in silico analysis of the HSF gene family. Through bioinformatics and phylogenetic analyses, we identified 18 PeHSF members and classified them into A, B, and C groups. Collinearity analysis results revealed that the expansion of the PeHSF gene family was due to the presence of segmental duplication. Furthermore, gene structure and protein domain analysis illustrated that PeHSFs in the same subgroup are relatively conserved. Conserved motif and function domain analysis suggested that PeHSF proteins possess typical conserved functional domains of the HSF family. A protein interaction network and 3D structure prediction were used to study the potential regulatory relationship of PeHSFs. Additionally, the subcellular localization results of PeHSF-A6a, PeHSF-B4b, and PeHSF-C1a were consistent with the predictions. RNA-seq and RT-qPCR analysis revealed the expression patterns of PeHSFs in different tissues of passion fruit floral organs. Promoter analysis and the expression patterns of the PeHSFs under different treatments demonstrated their involvement in various abiotic stress processes. Notably, overexpression of PeHSF-C1a consistently enhanced tolerance to drought and heat stress in Arabidopsis. Overall, our findings provide a scientific basis for further functional studies of PeHSFs that could contribute to improvement of passion fruit breeding.


Subject(s)
Passiflora , Transcription Factors , Transcription Factors/metabolism , Osmotic Pressure , Phylogeny , Passiflora/metabolism , Fruit/genetics , Fruit/metabolism , Amino Acid Sequence , Plant Breeding , Heat Shock Transcription Factors/genetics , Heat Shock Transcription Factors/metabolism , Plant Proteins/metabolism , Stress, Physiological/genetics , Gene Expression Regulation, Plant
3.
Front Plant Sci ; 14: 1279001, 2023.
Article in English | MEDLINE | ID: mdl-38312363

ABSTRACT

Passion fruit, an economically valuable fruit crop, is highly vulnerable to adverse climate conditions. The HVA22 genes, recognized as abscisic acid (ABA) and stress-inducible, play vital roles in stress response and growth regulation in diverse eukaryotic organisms. Here, six HVA22 genes were firstly identified in passion fruit genome and all predicted to be localized within the endoplasmic reticulum. Phylogenetic analyses showed that all PeHVA22s were divided into four subgroups. The gene structural features of PeHVA22 genes clustered in the same subgroup were relatively conserved, while the gene structure characteristics of PeHVA22s from different subgroups varied significantly. PeHVA22A and PeHVA22C closely clustered with barley HVA22 in Group II, were also induced by ABA and drought stress treatment, suggesting conserved roles similar to barley HVA22. Meanwhile, most PeHVA22s exhibited induced expression post-drought treatment but were suppressed under salt, low and high-temperature conditions, indicating a unique role in drought response. Additionally, PeHVA22s displayed tissue-specific expression patterns across diverse tissues, except for PeHVA22B which maybe a pseudogene. Notably, PeHVA22C, PeHVA22E, and PeHVA22F predominantly expressed in fruit, indicating their involvement in fruit development. Almost all PeHVA22s showed variable expression at different developmental stages of stamens or ovules, implying their roles in passion fruit's sexual reproduction. The intricate roles of PeHVA22s may result from diverse regulatory factors including transcription factors and CREs related to plant growth and development, hormone and stress responsiveness. These observations highlighted that PeHVA22s might play conserved roles in ABA response and drought stress tolerance, and also be participated in the regulation of passion fruit growth and floral development.

SELECTION OF CITATIONS
SEARCH DETAIL