Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Cell ; 184(13): 3394-3409.e20, 2021 06 24.
Article in English | MEDLINE | ID: mdl-34077752

ABSTRACT

The human fetal immune system begins to develop early during gestation; however, factors responsible for fetal immune-priming remain elusive. We explored potential exposure to microbial agents in utero and their contribution toward activation of memory T cells in fetal tissues. We profiled microbes across fetal organs using 16S rRNA gene sequencing and detected low but consistent microbial signal in fetal gut, skin, placenta, and lungs in the 2nd trimester of gestation. We identified several live bacterial strains including Staphylococcus and Lactobacillus in fetal tissues, which induced in vitro activation of memory T cells in fetal mesenteric lymph node, supporting the role of microbial exposure in fetal immune-priming. Finally, using SEM and RNA-ISH, we visualized discrete localization of bacteria-like structures and eubacterial-RNA within 14th weeks fetal gut lumen. These findings indicate selective presence of live microbes in fetal organs during the 2nd trimester of gestation and have broader implications toward the establishment of immune competency and priming before birth.


Subject(s)
Bacteria/metabolism , Embryonic Development , Fetus/cytology , Fetus/microbiology , Leukocytes/cytology , Adult , Bacteria/genetics , Bacteria/ultrastructure , Cell Proliferation , Dendritic Cells/metabolism , Female , Fetus/ultrastructure , Gastrointestinal Tract/embryology , Gastrointestinal Tract/ultrastructure , Humans , Immunologic Memory , Lymphocyte Activation/immunology , Microbial Viability , Pregnancy , Pregnancy Trimester, Second , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Reproducibility of Results , T-Lymphocytes/cytology
2.
Cell ; 183(2): 377-394.e21, 2020 10 15.
Article in English | MEDLINE | ID: mdl-32976798

ABSTRACT

We employed scRNA sequencing to extensively characterize the cellular landscape of human liver from development to disease. Analysis of ∼212,000 cells representing human fetal, hepatocellular carcinoma (HCC), and mouse liver revealed remarkable fetal-like reprogramming of the tumor microenvironment. Specifically, the HCC ecosystem displayed features reminiscent of fetal development, including re-emergence of fetal-associated endothelial cells (PLVAP/VEGFR2) and fetal-like (FOLR2) tumor-associated macrophages. In a cross-species comparative analysis, we discovered remarkable similarity between mouse embryonic, fetal-liver, and tumor macrophages. Spatial transcriptomics further revealed a shared onco-fetal ecosystem between fetal liver and HCC. Furthermore, gene regulatory analysis, spatial transcriptomics, and in vitro functional assays implicated VEGF and NOTCH signaling in maintaining onco-fetal ecosystem. Taken together, we report a shared immunosuppressive onco-fetal ecosystem in fetal liver and HCC. Our results unravel a previously unexplored onco-fetal reprogramming of the tumor ecosystem, provide novel targets for therapeutic interventions in HCC, and open avenues for identifying similar paradigms in other cancers and disease.


Subject(s)
Carcinoma, Hepatocellular/pathology , Endothelial Cells/metabolism , Tumor Microenvironment/genetics , Adult , Animals , Carcinoma, Hepatocellular/genetics , Cell Line , Disease Models, Animal , Endothelial Cells/pathology , Female , Folate Receptor 2/metabolism , Gene Expression Profiling/methods , Humans , Liver/pathology , Liver Neoplasms/genetics , Macrophages/metabolism , Male , Membrane Proteins/metabolism , Mice , Receptors, Notch/genetics , Receptors, Notch/metabolism , Signal Transduction/genetics , Transcriptome/genetics , Vascular Endothelial Growth Factor Receptor-2/metabolism
3.
Cell ; 178(6): 1509-1525.e19, 2019 09 05.
Article in English | MEDLINE | ID: mdl-31491389

ABSTRACT

Most tissue-resident macrophage (RTM) populations are seeded by waves of embryonic hematopoiesis and are self-maintained independently of a bone marrow contribution during adulthood. A proportion of RTMs, however, is constantly replaced by blood monocytes, and their functions compared to embryonic RTMs remain unclear. The kinetics and extent of the contribution of circulating monocytes to RTM replacement during homeostasis, inflammation, and disease are highly debated. Here, we identified Ms4a3 as a specific gene expressed by granulocyte-monocyte progenitors (GMPs) and subsequently generated Ms4a3TdT reporter, Ms4a3Cre, and Ms4a3CreERT2 fate-mapping models. These models traced efficiently monocytes and granulocytes, but no lymphocytes or tissue dendritic cells. Using these models, we precisely quantified the contribution of monocytes to the RTM pool during homeostasis and inflammation. The unambiguous identification of monocyte-derived cells will permit future studies of their function under any condition.


Subject(s)
Cell Cycle Proteins/genetics , Gene Expression , Granulocyte-Macrophage Progenitor Cells/metabolism , Granulocytes/metabolism , Macrophages/metabolism , Membrane Proteins/genetics , Monocytes/metabolism , Animals , Granulocyte-Macrophage Progenitor Cells/cytology , Granulocytes/cytology , Hematopoiesis/physiology , Homeostasis/physiology , Inflammation/metabolism , Macrophages/cytology , Mice , Monocytes/cytology
4.
Immunity ; 57(1): 141-152.e5, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38091996

ABSTRACT

Adipose tissues (ATs) are innervated by sympathetic nerves, which drive reduction of fat mass via lipolysis and thermogenesis. Here, we report a population of immunomodulatory leptin receptor-positive (LepR+) sympathetic perineurial barrier cells (SPCs) present in mice and humans, which uniquely co-express Lepr and interleukin-33 (Il33) and ensheath AT sympathetic axon bundles. Brown ATs (BATs) of mice lacking IL-33 in SPCs (SPCΔIl33) had fewer regulatory T (Treg) cells and eosinophils, resulting in increased BAT inflammation. SPCΔIl33 mice were more susceptible to diet-induced obesity, independently of food intake. Furthermore, SPCΔIl33 mice had impaired adaptive thermogenesis and were unresponsive to leptin-induced rescue of metabolic adaptation. We therefore identify LepR+ SPCs as a source of IL-33, which orchestrate an anti-inflammatory BAT environment, preserving sympathetic-mediated thermogenesis and body weight homeostasis. LepR+IL-33+ SPCs provide a cellular link between leptin and immune regulation of body weight, unifying neuroendocrinology and immunometabolism as previously disconnected fields of obesity research.


Subject(s)
Adipose Tissue, Brown , Leptin , Animals , Humans , Mice , Adipose Tissue, Brown/innervation , Adipose Tissue, Brown/metabolism , Body Weight , Energy Metabolism/physiology , Interleukin-33/genetics , Interleukin-33/metabolism , Obesity/metabolism , Receptors, Leptin/genetics , Receptors, Leptin/metabolism , Thermogenesis/physiology
5.
Immunity ; 56(8): 1761-1777.e6, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37506694

ABSTRACT

Conventional dendritic cells (cDCs) are professional antigen-presenting cells that control the adaptive immune response. Their subsets and developmental origins have been intensively investigated but are still not fully understood as their phenotypes, especially in the DC2 lineage and the recently described human DC3s, overlap with monocytes. Here, using LEGENDScreen to profile DC vs. monocyte lineages, we found sustained expression of FLT3 and CD45RB through the whole DC lineage, allowing DCs and their precursors to be distinguished from monocytes. Using fate mapping models, single-cell RNA sequencing and adoptive transfer, we identified a lineage of murine CD16/32+CD172a+ DC3, distinct from DC2, arising from Ly6C+ monocyte-DC progenitors (MDPs) through Lyz2+Ly6C+CD11c- pro-DC3s, whereas DC2s develop from common DC progenitors (CDPs) through CD7+Ly6C+CD11c+ pre-DC2s. Corresponding DC subsets, developmental stages, and lineages exist in humans. These findings reveal DC3 as a DC lineage phenotypically related to but developmentally different from monocytes and DC2s.


Subject(s)
Monocytes , Stem Cells , Mice , Humans , Animals , Phenotype , Cells, Cultured , Dendritic Cells , Cell Differentiation
6.
Immunity ; 55(8): 1448-1465.e6, 2022 08 09.
Article in English | MEDLINE | ID: mdl-35931085

ABSTRACT

Brain macrophage populations include parenchymal microglia, border-associated macrophages, and recruited monocyte-derived cells; together, they control brain development and homeostasis but are also implicated in aging pathogenesis and neurodegeneration. The phenotypes, localization, and functions of each population in different contexts have yet to be resolved. We generated a murine brain myeloid scRNA-seq integration to systematically delineate brain macrophage populations. We show that the previously identified disease-associated microglia (DAM) population detected in murine Alzheimer's disease models actually comprises two ontogenetically and functionally distinct cell lineages: embryonically derived triggering receptor expressed on myeloid cells 2 (TREM2)-dependent DAM expressing a neuroprotective signature and monocyte-derived TREM2-expressing disease inflammatory macrophages (DIMs) accumulating in the brain during aging. These two distinct populations appear to also be conserved in the human brain. Herein, we generate an ontogeny-resolved model of brain myeloid cell heterogeneity in development, homeostasis, and disease and identify cellular targets for the treatment of neurodegeneration.


Subject(s)
Alzheimer Disease , Microglia , Aging , Alzheimer Disease/genetics , Animals , Brain/pathology , Humans , Macrophages/pathology , Membrane Glycoproteins , Mice , Microglia/pathology , Receptors, Immunologic
7.
Immunity ; 54(9): 2089-2100.e8, 2021 09 14.
Article in English | MEDLINE | ID: mdl-34469774

ABSTRACT

Kupffer cells (KCs) are highly abundant, intravascular, liver-resident macrophages known for their scavenger and phagocytic functions. KCs can also present antigens to CD8+ T cells and promote either tolerance or effector differentiation, but the mechanisms underlying these discrepant outcomes are poorly understood. Here, we used a mouse model of hepatitis B virus (HBV) infection, in which HBV-specific naive CD8+ T cells recognizing hepatocellular antigens are driven into a state of immune dysfunction, to identify a subset of KCs (referred to as KC2) that cross-presents hepatocellular antigens upon interleukin-2 (IL-2) administration, thus improving the antiviral function of T cells. Removing MHC-I from all KCs, including KC2, or selectively depleting KC2 impaired the capacity of IL-2 to revert the T cell dysfunction induced by intrahepatic priming. In summary, by sensing IL-2 and cross-presenting hepatocellular antigens, KC2 overcome the tolerogenic potential of the hepatic microenvironment, suggesting new strategies for boosting hepatic T cell immunity.


Subject(s)
Antigen Presentation/immunology , CD8-Positive T-Lymphocytes/immunology , Cross-Priming/immunology , Interleukin-2/immunology , Kupffer Cells/immunology , Animals , Hepatitis B/immunology , Immune Tolerance/immunology , Mice , Mice, Transgenic
8.
Immunity ; 54(9): 2101-2116.e6, 2021 09 14.
Article in English | MEDLINE | ID: mdl-34469775

ABSTRACT

Tissue macrophages are immune cells whose phenotypes and functions are dictated by origin and niches. However, tissues are complex environments, and macrophage heterogeneity within the same organ has been overlooked so far. Here, we used high-dimensional approaches to characterize macrophage populations in the murine liver. We identified two distinct populations among embryonically derived Kupffer cells (KCs) sharing a core signature while differentially expressing numerous genes and proteins: a major CD206loESAM- population (KC1) and a minor CD206hiESAM+ population (KC2). KC2 expressed genes involved in metabolic processes, including fatty acid metabolism both in steady-state and in diet-induced obesity and hepatic steatosis. Functional characterization by depletion of KC2 or targeted silencing of the fatty acid transporter Cd36 highlighted a crucial contribution of KC2 in the liver oxidative stress associated with obesity. In summary, our study reveals that KCs are more heterogeneous than anticipated, notably describing a subpopulation wired with metabolic functions.


Subject(s)
CD36 Antigens/metabolism , Kupffer Cells/metabolism , Liver/metabolism , Obesity/metabolism , Oxidative Stress/physiology , Animals , Mice
9.
Immunity ; 52(6): 957-970, 2020 06 16.
Article in English | MEDLINE | ID: mdl-32553181

ABSTRACT

Resident tissue macrophages (RTMs) have a broad spectrum of immune- and non-immune-related tissue-supporting activities. The roots of this heterogeneity and versatility are only beginning to be understood. Here, we propose a conceptual framework for considering the RTM heterogeneity that organizes the factors shaping RTM identity within four cardinal points: (1) ontogeny and the view that adult RTM populations comprise a defined mixture of cells that arise from either embryonic precursors or adult monocytes; (2) local factors unique to the niche of residence, evolving during development and aging; (3) inflammation status; and (4) the cumulative effect of time spent in a specific tissue that contributes to the resilient adaptation of macrophages to their dynamic environment. We review recent findings within this context and discuss the technological advances that are revolutionizing the study of macrophage biology.


Subject(s)
Biomarkers , Cell Plasticity , Macrophages/immunology , Macrophages/metabolism , Animals , Cell Plasticity/genetics , Cell Plasticity/immunology , Cellular Microenvironment , Disease Susceptibility , Humans , Inflammation/etiology , Inflammation/metabolism , Inflammation/pathology , Macrophage Activation , Macrophages/classification , Monocytes/immunology , Monocytes/metabolism , Organ Specificity/genetics , Organ Specificity/immunology , Phenotype
10.
Immunity ; 49(2): 326-341.e7, 2018 08 21.
Article in English | MEDLINE | ID: mdl-30054204

ABSTRACT

The maintenance of appropriate arterial tone is critically important for normal physiological arterial function. However, the cellular and molecular mechanisms remain poorly defined. Here, we have shown that in the mouse aorta, resident macrophages prevented arterial stiffness and collagen deposition in the steady state. Using phenotyping, transcriptional profiling, and targeted deletion of Csf1r, we have demonstrated that these macrophages-which are a feature of blood vessels invested with smooth muscle cells (SMCs) in both mouse and human tissues-expressed the hyaluronan (HA) receptor LYVE-l. Furthermore, we have shown they possessed the unique ability to modulate collagen expression in SMCs by matrix metalloproteinase MMP-9-dependent proteolysis through engagement of LYVE-1 with the HA pericellular matrix of SMCs. Our study has unveiled a hitherto unknown homeostatic contribution of arterial LYVE-1+ macrophages through the control of collagen production by SMCs and has identified a function of LYVE-1 in leukocytes.


Subject(s)
Collagen/metabolism , Glycoproteins/metabolism , Hyaluronan Receptors/metabolism , Macrophages/metabolism , Muscle, Smooth, Vascular/cytology , Myocytes, Smooth Muscle/metabolism , Vascular Stiffness/physiology , Animals , Aorta/physiology , Female , Glycoproteins/genetics , Humans , Hyaluronic Acid/metabolism , Male , Matrix Metalloproteinase 9/metabolism , Membrane Transport Proteins , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/genetics
11.
Immunity ; 46(3): 457-473, 2017 03 21.
Article in English | MEDLINE | ID: mdl-28329706

ABSTRACT

Living in a microbe-rich environment reduces the risk of developing asthma. Exposure of humans or mice to unmethylated CpG DNA (CpG) from bacteria reproduces these protective effects, suggesting a major contribution of CpG to microbe-induced asthma resistance. However, how CpG confers protection remains elusive. We found that exposure to CpG expanded regulatory lung interstitial macrophages (IMs) from monocytes infiltrating the lung or mobilized from the spleen. Trafficking of IM precursors to the lung was independent of CCR2, a chemokine receptor required for monocyte mobilization from the bone marrow. Using a mouse model of allergic airway inflammation, we found that adoptive transfer of IMs isolated from CpG-treated mice recapitulated the protective effects of CpG when administered before allergen sensitization or challenge. IM-mediated protection was dependent on IL-10, given that Il10-/- CpG-induced IMs lacked regulatory effects. Thus, the expansion of regulatory lung IMs upon exposure to CpG might underlie the reduced risk of asthma development associated with a microbe-rich environment.


Subject(s)
Chemotaxis, Leukocyte/immunology , DNA, Bacterial/immunology , Hypersensitivity/immunology , Macrophages, Alveolar/immunology , Respiratory Hypersensitivity/immunology , Animals , Disease Models, Animal , Flow Cytometry , Macrophage Activation/immunology , Macrophages/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Oligodeoxyribonucleotides/immunology , Spleen/immunology
12.
Immunity ; 47(1): 183-198.e6, 2017 07 18.
Article in English | MEDLINE | ID: mdl-28723550

ABSTRACT

Tissue macrophages arise during embryogenesis from yolk-sac (YS) progenitors that give rise to primitive YS macrophages. Until recently, it has been impossible to isolate or derive sufficient numbers of YS-derived macrophages for further study, but data now suggest that induced pluripotent stem cells (iPSCs) can be driven to undergo a process reminiscent of YS-hematopoiesis in vitro. We asked whether iPSC-derived primitive macrophages (iMacs) can terminally differentiate into specialized macrophages with the help of growth factors and organ-specific cues. Co-culturing human or murine iMacs with iPSC-derived neurons promoted differentiation into microglia-like cells in vitro. Furthermore, murine iMacs differentiated in vivo into microglia after injection into the brain and into functional alveolar macrophages after engraftment in the lung. Finally, iPSCs from a patient with familial Mediterranean fever differentiated into iMacs with pro-inflammatory characteristics, mimicking the disease phenotype. Altogether, iMacs constitute a source of tissue-resident macrophage precursors that can be used for biological, pathophysiological, and therapeutic studies.


Subject(s)
Cell Culture Techniques/methods , Hematopoiesis , Macrophages/physiology , Neurons/physiology , Pluripotent Stem Cells/physiology , Animals , Cell Differentiation , Cells, Cultured , Embryo, Mammalian , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neurogenesis
13.
Immunity ; 44(4): 924-38, 2016 Apr 19.
Article in English | MEDLINE | ID: mdl-27096321

ABSTRACT

Large numbers of melanoma lesions develop resistance to targeted inhibition of mutant BRAF or fail to respond to checkpoint blockade. We explored whether modulation of intratumoral antigen-presenting cells (APCs) could increase responses to these therapies. Using mouse melanoma models, we found that CD103(+) dendritic cells (DCs) were the only APCs transporting intact antigens to the lymph nodes and priming tumor-specific CD8(+) T cells. CD103(+) DCs were required to promote anti-tumoral effects upon blockade of the checkpoint ligand PD-L1; however, PD-L1 inhibition only led to partial responses. Systemic administration of the growth factor FLT3L followed by intratumoral poly I:C injections expanded and activated CD103(+) DC progenitors in the tumor, enhancing responses to BRAF and PD-L1 blockade and protecting mice from tumor rechallenge. Thus, the paucity of activated CD103(+) DCs in tumors limits checkpoint-blockade efficacy and combined FLT3L and poly I:C therapy can enhance tumor responses to checkpoint and BRAF blockade.


Subject(s)
Antigens, CD/metabolism , B7-H1 Antigen/antagonists & inhibitors , CD8-Positive T-Lymphocytes/immunology , Dendritic Cells/immunology , Integrin alpha Chains/metabolism , Melanoma, Experimental/immunology , Poly I-C/pharmacology , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , fms-Like Tyrosine Kinase 3/pharmacology , Animals , Antigen Presentation/immunology , Cell Line, Tumor , Dendritic Cells/cytology , Mice, Inbred C57BL , Mice, Knockout
14.
Immunity ; 45(3): 669-684, 2016 09 20.
Article in English | MEDLINE | ID: mdl-27637149

ABSTRACT

Dendritic cells (DCs) are professional antigen-presenting cells that hold great therapeutic potential. Multiple DC subsets have been described, and it remains challenging to align them across tissues and species to analyze their function in the absence of macrophage contamination. Here, we provide and validate a universal toolbox for the automated identification of DCs through unsupervised analysis of conventional flow cytometry and mass cytometry data obtained from multiple mouse, macaque, and human tissues. The use of a minimal set of lineage-imprinted markers was sufficient to subdivide DCs into conventional type 1 (cDC1s), conventional type 2 (cDC2s), and plasmacytoid DCs (pDCs) across tissues and species. This way, a large number of additional markers can still be used to further characterize the heterogeneity of DCs across tissues and during inflammation. This framework represents the way forward to a universal, high-throughput, and standardized analysis of DC populations from mutant mice and human patients.


Subject(s)
Dendritic Cells/physiology , Animals , Cell Differentiation/physiology , Flow Cytometry , Humans , Inflammation/pathology , Macaca , Mice , Mice, Inbred C57BL
15.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Article in English | MEDLINE | ID: mdl-35046017

ABSTRACT

Alveolar macrophages (AMs) are critical for lung immune defense and homeostasis. They are orchestrators of chronic obstructive pulmonary disease (COPD), with their number significantly increased and functions altered in COPD. However, it is unclear how AM number and function are controlled in a healthy lung and if changes in AMs without environmental assault are sufficient to trigger lung inflammation and COPD. We report here that absence of isthmin 1 (ISM1) in mice (Ism1-/- ) leads to increase in both AM number and functional heterogeneity, with enduring lung inflammation, progressive emphysema, and significant lung function decline, phenotypes similar to human COPD. We reveal that ISM1 is a lung resident anti-inflammatory protein that selectively triggers the apoptosis of AMs that harbor high levels of its receptor cell-surface GRP78 (csGRP78). csGRP78 is present at a heterogeneous level in the AMs of a healthy lung, but csGRP78high AMs are expanded in Ism1-/- mice, cigarette smoke (CS)-induced COPD mice, and human COPD lung, making these cells the prime targets of ISM1-mediated apoptosis. We show that csGRP78high AMs mostly express MMP-12, hence proinflammatory. Intratracheal delivery of recombinant ISM1 (rISM1) depleted csGRP78high AMs in both Ism1-/- and CS-induced COPD mice, blocked emphysema development, and preserved lung function. Consistently, ISM1 expression in human lungs positively correlates with AM apoptosis, suggesting similar function of ISM1-csGRP78 in human lungs. Our findings reveal that AM apoptosis regulation is an important physiological mechanism for maintaining lung homeostasis and demonstrate the potential of pulmonary-delivered rISM1 to target csGRP78 as a therapeutic strategy for COPD.


Subject(s)
Intercellular Signaling Peptides and Proteins/metabolism , Lung/pathology , Macrophages, Alveolar/metabolism , Alveolar Epithelial Cells/metabolism , Animals , Apoptosis/immunology , Bronchoalveolar Lavage Fluid/immunology , Disease Models, Animal , Endoplasmic Reticulum Chaperone BiP/metabolism , Endoplasmic Reticulum Chaperone BiP/physiology , Female , Homeostasis , Inflammation , Intercellular Signaling Peptides and Proteins/physiology , Lung/metabolism , Macrophages, Alveolar/immunology , Macrophages, Alveolar/physiology , Male , Mice , Mice, Inbred BALB C , Phagocytosis/physiology , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Emphysema/metabolism , Smoke/adverse effects , Smoking/adverse effects , Nicotiana/adverse effects
17.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Article in English | MEDLINE | ID: mdl-33372158

ABSTRACT

Macrophages are the principal immune cells of the epididymis and testis, but their origins, heterogeneity, development, and maintenance are not well understood. Here, we describe distinct populations of epididymal and testicular macrophages that display an organ-specific cellular identity. Combining in vivo fate-mapping, chimeric and parabiotic mouse models with in-depth cellular analyses, we found that CD64hiMHCIIlo and CD64loMHCIIhi macrophage populations of epididymis and testis arise sequentially from yolk sac erythro-myeloid progenitors, embryonic hematopoiesis, and nascent neonatal monocytes. While monocytes were the major developmental source of both epididymal and testicular macrophages, both populations self-maintain in the steady-state independent of bone marrow hematopoietic precursors. However, after radiation-induced macrophage ablation or during infection, bone marrow-derived circulating monocytes are recruited to the epididymis and testis, giving rise to inflammatory macrophages that promote tissue damage. These results define the layered ontogeny, maintenance and inflammatory response of macrophage populations in the male reproductive organs.


Subject(s)
Infertility, Male/immunology , Macrophages/immunology , Macrophages/metabolism , Animals , Cell Differentiation , Cell Lineage , Epididymis/immunology , Epididymis/metabolism , Infertility, Male/metabolism , Infertility, Male/physiopathology , Male , Mice , Mice, Inbred C57BL , Monocytes/immunology , Testis/immunology , Testis/metabolism
19.
Proc Natl Acad Sci U S A ; 116(29): 14714-14723, 2019 07 16.
Article in English | MEDLINE | ID: mdl-31262819

ABSTRACT

Conventional dendritic cells (cDCs) derive from bone marrow (BM) precursors that undergo cascades of developmental programs to terminally differentiate in peripheral tissues. Pre-cDC1s and pre-cDC2s commit in the BM to each differentiate into CD8α+/CD103+ cDC1s and CD11b+ cDC2s, respectively. Although both cDCs rely on the cytokine FLT3L during development, mechanisms that ensure cDC accessibility to FLT3L have yet to be elucidated. Here, we generated mice that lacked a disintegrin and metalloproteinase (ADAM) 10 in DCs (Itgax-cre × Adam10-fl/fl; ADAM10∆DC) and found that ADAM10 deletion markedly impacted splenic cDC2 development. Pre-cDC2s accumulated in the spleen with transcriptomic alterations that reflected their inability to differentiate and exhibited abrupt failure to survive as terminally differentiated cDC2s. Induced ADAM10 ablation also led to the reduction of terminally differentiated cDC2s, and restoration of Notch signaling, a major pathway downstream of ADAM10, only modestly rescued them. ADAM10∆DC BM failed to generate cDC2s in BM chimeric mice with or without cotransferred ADAM10-sufficient BM, indicating that cDC2 development required cell-autonomous ADAM10. We determined cDC2s to be sources of soluble FLT3L, as supported by decreased serum FLT3L concentration and the retention of membrane-bound FLT3L on cDC2 surfaces in ADAM10∆DC mice, and by demonstrating the release of soluble FLT3L by cDC2 in ex vivo culture supernatants. Through in vitro studies utilizing murine embryonic fibroblasts, we determined FLT3L to be a substrate for ADAM10. These data collectively reveal cDC2s as FLT3L sources and highlight a cell-autonomous mechanism that may enhance FLT3L accessibility for cDC2 development and survival.


Subject(s)
ADAM10 Protein/metabolism , Amyloid Precursor Protein Secretases/metabolism , Cell Differentiation/immunology , Dendritic Cells/physiology , Membrane Proteins/metabolism , Spleen/cytology , ADAM10 Protein/genetics , ADAM10 Protein/immunology , Amyloid Precursor Protein Secretases/genetics , Amyloid Precursor Protein Secretases/immunology , Animals , Bone Marrow Transplantation , Cell Membrane/immunology , Cell Membrane/metabolism , Cell-Derived Microparticles/immunology , Cell-Derived Microparticles/metabolism , DNA-Binding Proteins/genetics , Female , Fibroblasts , Hematopoietic Stem Cells/physiology , Immunity, Cellular , Male , Membrane Proteins/genetics , Membrane Proteins/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Recombinant Proteins/immunology , Recombinant Proteins/metabolism , Spleen/immunology , Transplantation Chimera
20.
Sci Immunol ; 9(97): eadk3981, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39058763

ABSTRACT

Tumor-associated macrophages (TAMs) are a heterogeneous population of cells whose phenotypes and functions are shaped by factors that are incompletely understood. Herein, we asked when and where TAMs arise from blood monocytes and how they evolve during tumor development. We initiated pancreatic ductal adenocarcinoma (PDAC) in inducible monocyte fate-mapping mice and combined single-cell transcriptomics and high-dimensional flow cytometry to profile the monocyte-to-TAM transition. We revealed that monocytes differentiate first into a transient intermediate population of TAMs that generates two longer-lived lineages of terminally differentiated TAMs with distinct gene expression profiles, phenotypes, and intratumoral localization. Transcriptome datasets and tumor samples from patients with PDAC evidenced parallel TAM populations in humans and their prognostic associations. These insights will support the design of new therapeutic strategies targeting TAMs in PDAC.


Subject(s)
Carcinoma, Pancreatic Ductal , Monocytes , Pancreatic Neoplasms , Tumor-Associated Macrophages , Animals , Monocytes/immunology , Humans , Mice , Tumor-Associated Macrophages/immunology , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/pathology , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/pathology , Cell Differentiation/immunology , Mice, Inbred C57BL , Mice, Transgenic
SELECTION OF CITATIONS
SEARCH DETAIL