Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 257
Filter
Add more filters

Publication year range
1.
Nat Methods ; 19(9): 1137-1146, 2022 09.
Article in English | MEDLINE | ID: mdl-36050489

ABSTRACT

Antibodies have diverse applications due to their high reaction specificities but are sensitive to denaturation when a higher working temperature is required. We have developed a simple, highly scalable and generalizable chemical approach for stabilizing off-the-shelf antibodies against thermal and chemical denaturation. We demonstrate that the stabilized antibodies (termed SPEARs) can withstand up to 4 weeks of continuous heating at 55 °C and harsh denaturants, and apply our method to 33 tested antibodies. SPEARs enable flexible applications of thermocycling and denaturants to dynamically modulate their binding kinetics, reaction equilibrium, macromolecular diffusivity and aggregation propensity. In particular, we show that SPEARs permit the use of a thermally facilitated three-dimensional immunolabeling strategy (termed ThICK staining), achieving whole mouse brain immunolabeling within 72 h, as well as nearly fourfold deeper penetration with threefold less antibodies in human brain tissue. With faster deep-tissue immunolabeling and broad compatibility with tissue processing and clearing methods without the need for any specialized equipment, we anticipate the wide applicability of ThICK staining with SPEARs for deep immunostaining.


Subject(s)
Antibodies , Brain , Animals , Antibodies/metabolism , Brain/metabolism , Humans , Mice
2.
Proc Natl Acad Sci U S A ; 118(16)2021 04 20.
Article in English | MEDLINE | ID: mdl-33859045

ABSTRACT

The extracellular matrix (ECM) provides a precise physical and molecular environment for cell maintenance, self-renewal, and differentiation in the stem cell niche. However, the nature and organization of the ECM niche is not well understood. The adult freshwater planarian Schmidtea mediterranea maintains a large population of multipotent stem cells (neoblasts), presenting an ideal model to study the role of the ECM niche in stem cell regulation. Here we tested the function of 165 planarian homologs of ECM and ECM-related genes in neoblast regulation. We identified the collagen gene family as one with differential effects in promoting or suppressing proliferation of neoblasts. col4-1, encoding a type IV collagen α-chain, had the strongest effect. RNA interference (RNAi) of col4-1 impaired tissue maintenance and regeneration, causing tissue regression. Finally, we provide evidence for an interaction between type IV collagen, the discoidin domain receptor, and neuregulin-7 (NRG-7), which constitutes a mechanism to regulate the balance of symmetric and asymmetric division of neoblasts via the NRG-7/EGFR pathway.


Subject(s)
Collagen Type IV/genetics , Planarians/genetics , Planarians/metabolism , Animals , Cell Differentiation/genetics , Cell Lineage/genetics , Collagen Type IV/metabolism , Extracellular Matrix/genetics , Extracellular Matrix/metabolism , Homeostasis , Non-Fibrillar Collagens/metabolism , Regeneration , Signal Transduction , Stem Cells/cytology , Stem Cells/metabolism
3.
Development ; 147(22)2020 11 18.
Article in English | MEDLINE | ID: mdl-33051257

ABSTRACT

The notochord drives longitudinal growth of the body axis by convergent extension, a highly conserved developmental process that depends on non-canonical Wnt/planar cell polarity (PCP) signaling. However, the role of cell-matrix interactions mediated by integrins in the development of the notochord is unclear. We developed transgenic Cre mice, in which the ß1 integrin gene (Itgb1) is ablated at E8.0 in the notochord only or in the notochord and tail bud. These Itgb1 conditional mutants display misaligned, malformed vertebral bodies, hemi-vertebrae and truncated tails. From early somite stages, the notochord was interrupted and displaced in these mutants. Convergent extension of the notochord was impaired with defective cell movement. Treatment of E7.25 wild-type embryos with anti-ß1 integrin blocking antibodies, to target node pit cells, disrupted asymmetric localization of VANGL2. Our study implicates pivotal roles of ß1 integrin for the establishment of PCP and convergent extension of the developing notochord, its structural integrity and positioning, thereby ensuring development of the nucleus pulposus and the proper alignment of vertebral bodies and intervertebral discs. Failure of this control may contribute to human congenital spine malformations.


Subject(s)
Cell Movement , Integrin beta1/metabolism , Intervertebral Disc/embryology , Notochord/embryology , Spine/embryology , Wnt Signaling Pathway , Animals , Integrin beta1/genetics , Intervertebral Disc/cytology , Mice , Mice, Transgenic , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Notochord/cytology , Spine/cytology
4.
Br J Neurosurg ; 37(3): 272-276, 2023 Jun.
Article in English | MEDLINE | ID: mdl-32930611

ABSTRACT

AIM: Cervical anterior spinal fusion (ASF) with corpectomy has risks of catastrophic acute complications such as airway obstruction requiring re-intubation. Our team has adopted a management plan for all cervical corpectomy patients to be admitted to the intensive care unit (ICU) after the operations for overnight observation. Some of these patients were kept intubated after the operations and transferred to the ICU. This study aims to review the outcome of this practice and to identify independent predictors associated with a prolonged ICU stay. METHODS: We reviewed consecutive patients with cervical ASF from January 2010 to June 2018. The primary outcome was the ICU length of stay. Univariate and multivariate analyses were conducted to identify independent risk factors associated with a prolonged ICU stay. In total, 103 patients had ASF during the study period. ICU length of stay for elective ASF was 1.01 day (SD 0.373 days) and was significantly shorter than that for emergency ASF (13.29 days, SD 12.57 days) (p < 0.001). 79.6% (82/103) of the ASF patients were extubated in the operating theatre after surgery. Significantly more corpectomy patients (33.3%) versus ACDF patients (15.1%) were kept intubated to the ICU after the operation (p = 0.037). None required reintubation in the ICU. 90.9% (80/88) of the elective ASF can be discharged from the ICU within 24 hours and only 3.41% (3/88) of the elective ASF had prolonged post-operative stay in the ICU (≥48 hours). RESULTS: For prolonged postoperative ICU stay (≥48 hours), ICU admission airway status of ASF patients who were either extubated in the OT or kept intubated to ICU had no significant association (p = 0.903). Univariate and multivariate analysis had identified emergency admissions (p = 0.043) and the presence of postoperative neurological deficits (p = 0.031) as independent predictors associated with a prolonged postoperative ICU stay. CONCLUSION: In conclusion, cervical corpectomy and ASF were safe with minimal acute complications.


Subject(s)
Spinal Diseases , Spinal Fusion , Humans , Spinal Fusion/adverse effects , Cervical Vertebrae/surgery , Diskectomy , Spinal Diseases/surgery , Multivariate Analysis , Intensive Care Units , Retrospective Studies , Postoperative Complications/epidemiology , Postoperative Complications/surgery , Treatment Outcome
5.
Br J Neurosurg ; : 1-9, 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36654527

ABSTRACT

INTRODUCTION: In contrast to standard-of-care treatment of newly diagnosed glioblastoma, there is limited consensus on therapy upon disease progression. The role of resection for recurrent glioblastoma remains unclear. This study aimed to identify factors for overall survival (OS) and post-progression survival (PPS) as well as to validate an existing prediction model. METHODS: This was a multi-centre retrospective study that reviewed consecutive adult patients from 2006 to 2019 that received a repeat resection for recurrent glioblastoma. The primary endpoint was PPS defined as from the date of second surgery until death. RESULTS: 1032 glioblastoma patients were identified and 190 (18%) underwent resection for recurrence. Patients that had second surgery were more likely to be younger (<70 years) (adjusted OR: 0.3; 95% CI: 0.1-0.6), to have non-eloquent region tumours (aOR: 1.7; 95% CI: 1.1-2.6) and received temozolomide chemoradiotherapy (aOR: 0.2; 95% CI: 0.1-0.4). Resection for recurrent tumour was an independent predictor for OS (aOR: 1.5; 95% CI: 1.3-1.7) (mOS: 16.9 months versus 9.8 months). For patients that previously received temozolomide chemoradiotherapy and subsequent repeat resection (137, 13%), the median PPS was 9.0 months (IQR: 5.0-17.5). Independent PPS predictors for this group were a recurrent tumour volume of >50cc (aOR: 0.6; 95% CI: 0.4-0.9), local recurrence (aOR: 1.7; 95% CI: 1.1-3.3) and 5-ALA fluorescence-guided resection during second surgery (aOR: 1.7; 95% CI: 1.1-2.8). A National Institutes of Health Recurrent Glioblastoma Multiforme Scale score of 0 conferred an mPPS of 10.0 months, a score of 1-2, 9.0 months and a score of 3, 4.0 months (log-rank test, p-value < 0.05). CONCLUSION: Surgery for recurrent glioblastoma can be beneficial in selected patients and carries an acceptable morbidity rate. The pattern of recurrence influenced PPS and the NIH Recurrent GBM Scale was a reliable prognostication tool.

6.
Lab Invest ; 102(7): 731-740, 2022 07.
Article in English | MEDLINE | ID: mdl-35332262

ABSTRACT

The WHO (2021) Classification classified a group of pediatric-type high-grade gliomas as IDH wildtype, H3 wildtype but as of currently, they are characterized only by negative molecular features of IDH and H3. We recruited 35 cases of pediatric IDH wildtype and H3 wildtype hemispheric glioblastomas. We evaluated them with genome-wide methylation profiling, targeted sequencing, RNAseq, TERT promoter sequencing, and FISH. The median survival of the cohort was 27.6 months. With Capper et al.'s36 methylation groups as a map, the cases were found to be epigenetically heterogeneous and were clustered in proximity or overlay of methylation groups PXA-like (n = 8), LGG-like (n = 10), GBM_MYCN (n = 9), GBM_midline (n = 5), and GBM_RTKIII (n = 3). Histology of the tumors in these groups was not different from regular glioblastomas. Methylation groups were not associated with OS. We were unable to identify groups specifically characterized by EGFR or PDGFRA amplification as proposed by other authors. EGFR, PDGFRA, and MYCN amplifications were not correlated with OS. 4/9 cases of the GBM_MYCN cluster did not show MYCN amplification; the group was also enriched for EGFR amplification (4/9 cases) and the two biomarkers overlapped in two cases. Overall, PDGFRA amplification was found in only four cases and they were not restricted to any groups. Cases in proximity to GBM_midline were all hemispheric and showed loss of H3K27me3 staining. Fusion genes ALK/NTRK/ROS1/MET characteristic of infantile glioblastomas were not identified in 17 cases successfully sequenced. BRAF V600E was only found in the PXA group but CDKN2A deletion could be found in other methylation groups. PXA-like cases did not show PXA histological features similar to findings by other authors. No case showed TERT promoter mutation. Mutations of mismatch repair (MMR) genes were poor prognosticators in single (p ≤ 0.001) but not in multivariate analyses (p = 0.229). MGMT had no survival significance in this cohort. Of the other common biomarkers, only TP53 and ATRX mutations were significant poor prognosticators and only TP53 mutation was significant after multivariate analyses (p = 0.024). We conclude that IDH wildtype, H3 wildtype pediatric hemispheric glioblastomas are molecularly heterogeneous and in routine practice, TP53, ATRX, and MMR status could profitably be screened for risk stratification in laboratories without ready access to methylation profiling.


Subject(s)
Brain Neoplasms , Glioblastoma , Brain Neoplasms/pathology , Child , ErbB Receptors/genetics , Humans , Mutation , N-Myc Proto-Oncogene Protein/genetics , Protein-Tyrosine Kinases/genetics , Proto-Oncogene Proteins/genetics
7.
Neuropathol Appl Neurobiol ; 48(4): e12802, 2022 06.
Article in English | MEDLINE | ID: mdl-35191072

ABSTRACT

OBJECTIVE: We aimed to characterise glioblastomas of adolescents and young adults (AYAs) that were isocitrate dehydrogenase (IDH) wild type (wt) and H3wt. MATERIALS AND METHODS: Fifty such patients (aged 16-32) were studied by methylation profiling, targeted sequencing and targeted RNA-seq. RESULTS: Tumours predominantly clustered into three methylation classes according to the terminology of Capper et al. (2018): (anaplastic) pleomorphic xanthoastrocytoma (PXA) (21 cases), GBM_midline (15 cases) and glioblastoma RTK/mesenchymal (seven cases). Two cases clustered with ANA_PA, four cases with LGG classes and one with GBM_MYCN. Only fifteen cases reached a calibrated score >0.84 when the cases were uploaded to DKFZ Classifier. GBM_midline-clustered tumours had a poorer overall survival (OS) compared with the PXA-clustered tumours (p = 0.030). LGG-clustered cases had a significantly better survival than GBM_midline-clustered tumours and glioblastoma RTK/mesenchymal-clustered tumours. Only 13/21 (62%) of PXA-clustered cases were BRAF V600E mutated. Most GBM_midline-clustered cases were not located in the midline. GBM_midline-clustered cases were characterised by PDGFRA amplification/mutation (73.3%), mutations of mismatch repair genes (40.0%), and all showed H3K27me3 and EZH1P loss, and an unmethylated MGMT promoter. Across the whole cohort, MGMT promoter methylation and wt TERT promoter were favourable prognosticators. Mismatch repair gene mutations were poor prognosticators and together with methylation class and MGMT methylation, maintained their significance in multivariate analyses. BRAF mutation was a good prognosticator in the PXA-clustered tumours. CONCLUSION: Methylation profiling is a useful tool in the diagnosis and prognostication of AYA glioblastomas, and the methylation classes have distinct molecular characteristics. The usual molecular diagnostic criteria for adult IDHwt glioblastoma should be applied with caution within the AYA age group.


Subject(s)
Astrocytoma , Brain Neoplasms , Glioblastoma , Adolescent , Astrocytoma/pathology , Brain Neoplasms/pathology , DNA Methylation , DNA Modification Methylases/genetics , DNA Repair Enzymes/genetics , Glioblastoma/pathology , Humans , Isocitrate Dehydrogenase/genetics , Mutation , Proto-Oncogene Proteins B-raf/genetics , Young Adult
8.
Neurol Sci ; 43(12): 6803-6811, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36048377

ABSTRACT

INTRODUCTION: The interrelationship between neurocognitive impairments and motor functions was observed in patients with advanced Parkinson's disease (PD). This study was conducted to identify pre-operative neurocognitive and clinical predictors of short-term motor outcome following subthalamic nucleus deep brain stimulation (STN-DBS). METHODS: All consecutive PD patients who were eligible for bilateral STN-DBS from 2009 to 2019 were evaluated before and at 1 year following surgery. Standard motor evaluation and neurocognitive tests including global cognition, memory, executive functions (attention and category fluency), confrontational speech, visuospatial abilities, and mood were conducted at baseline. The post-operative STN-DBS effects were assessed at 1 year following the surgery. Multiple regression analysis was applied to identify baseline independent predictors of post-operative STN-DBS effect. RESULTS: A total of 82 patients were analyzed. It was found that younger age at operation, higher levodopa responsiveness at baseline based on UPDRS-III total score, and better baseline verbal delayed memory and category fluency predicted post-operative motor outcome at 1 year following STN-DBS (F = 9.639, p < 0.001, R2 = .340). CONCLUSION: Our findings demonstrated the role of baseline cognitive burden, especially cognitive processes related to frontostriatal circuits, was significant clinical predictors of short-term motor outcomes following STN-DBS. Profile analysis of neurocognitive functions at baseline is recommended.


Subject(s)
Deep Brain Stimulation , Parkinson Disease , Subthalamic Nucleus , Humans , Subthalamic Nucleus/physiology , Parkinson Disease/complications , Parkinson Disease/therapy , Parkinson Disease/psychology , Levodopa , Cognition , Treatment Outcome
9.
Eur Spine J ; 31(3): 735-745, 2022 03.
Article in English | MEDLINE | ID: mdl-34564762

ABSTRACT

PURPOSE: Modic changes (MC) on magnetic resonance imaging (MRI) have been associated with the development and severity of low back pain (LBP). The etiology of MC remains elusive, but it has been suggested that altered metabolism may be a risk factor. As such, this study aimed to identify metabolomic biomarkers for MC phenotypes of the lumbar spine via a combined metabolomic-genomic approach. METHODS: A population cohort of 3,584 southern Chinese underwent lumbar spine MRI. Blood samples were genotyped with single-nucleotide polymorphisms (SNP) arrays (n = 2,482) and serum metabolomics profiling using magnetic resonance spectroscopy (n = 757), covering 130 metabolites representing three molecular windows, were assessed. Genome-wide association studies (GWAS) were performed on each metabolite, to construct polygenic scores for predicting metabolite levels in subjects who had GWAS but not metabolomic data. Associations between predicted metabolite levels and MC phenotypes were assessed using linear/logistic regression and least absolute shrinkage and selection operator (LASSO). Two-sample Mendelian randomization analysis tested for causal relationships between metabolic biomarkers and MC. RESULTS: 20.4% had MC (10.6% type 1, 67.2% type 2, 22.2% mixed types). Significant MC metabolomic biomarkers were mean diameter of very-low-density lipoprotein (VLDL)/low-density lipoprotein (LDL) particles and cholesterol esters/phospholipids in large LDL. Mendelian randomization indicated that decreased VLDL mean diameter may lead to MC. CONCLUSIONS: This large-scale study is the first to address metabolomics in subject with/without lumbar MC. Causality studies implicate VLDL related to MC, noting a metabolic etiology. Our study substantiates the field of "spino-metabolomics" and illustrates the power of integrating metabolomics-genomics-imaging phenotypes to discover biomarkers for spinal disorders, paving the way for more personalized spine care for patients.


Subject(s)
Genome-Wide Association Study , Lipoproteins, VLDL , Genomics , Humans , Lumbar Vertebrae/diagnostic imaging , Lumbar Vertebrae/pathology , Magnetic Resonance Imaging , Metabolomics , Phenotype , Risk Factors
10.
Neuroophthalmology ; 46(4): 264-269, 2022.
Article in English | MEDLINE | ID: mdl-35859628

ABSTRACT

Suprasellar germinomas can present with non-diagnostic, or even normal results on imaging. The spectrum of reported cases ranges from normal imaging, thickened pituitary stalks, to discrete tumour growths. This similar phenomenon is less commonly seen in the pineal region, or bifocal germinomas, and the literature is sparse with only a few case series or reports mentioning a similar presentation of signs and symptoms preceding radiological evidence of diagnosis. We report a case of pineal germinoma presenting with dorsal midbrain syndrome with no evidence of tumour growth on initial imaging despite symptoms. For patients presenting with this clinical radiological latent period, follow-up imaging is useful to identify interval development of germinomas. This applies to patients with dorsal midbrain syndrome, or even other unexplained ophthalmoplegia, as the initial sign of pineal region germinoma, despite normal imaging.

11.
Mod Pathol ; 34(7): 1245-1260, 2021 07.
Article in English | MEDLINE | ID: mdl-33692446

ABSTRACT

WHO 2016 classified glioblastomas into IDH-mutant and IDH-wildtype with the former having a better prognosis but there was no study on IDH-mutant primary glioblastomas only, as previous series included secondary glioblastomas. We recruited a series of 67 IDH-mutant primary glioblastomas/astrocytoma IV without a prior low-grade astrocytoma and examined them using DNA-methylation profiling, targeted sequencing, RNA sequencing and TERT promoter sequencing, and correlated the molecular findings with clinical parameters. The median OS of 39.4 months of 64 cases and PFS of 25.9 months of 57 cases were better than the survival data of IDH-wildtype glioblastomas and IDH-mutant secondary glioblastomas retrieved from datasets. The molecular features often seen in glioblastomas, such as EGFR amplification, combined +7/-10, and TERT promoter mutations were only observed in 6/53 (11.3%), 4/53 (7.5%), and 2/67 (3.0%) cases, respectively, and gene fusions were found only in two cases. The main mechanism for telomere maintenance appeared to be alternative lengthening of telomeres as ATRX mutation was found in 34/53 (64.2%) cases. In t-SNE analyses of DNA-methylation profiles, with an exceptional of one case, a majority of our cases clustered to IDH-mutant high-grade astrocytoma subclass (40/53; 75.5%) and the rest to IDH-mutant astrocytoma subclass (12/53; 22.6%). The latter was also enriched with G-CIMP high cases (12/12; 100%). G-CIMP-high status and MGMT promoter methylation were independent good prognosticators for OS (p = 0.022 and p = 0.002, respectively) and TP53 mutation was an independent poor prognosticator (p = 0.013) when correlated with other clinical parameters. Homozygous deletion of CDKN2A/B was not correlated with OS (p = 0.197) and PFS (p = 0.278). PDGFRA amplification or mutation was found in 16/59 (27.1%) of cases and was correlated with G-CIMP-low status (p = 0.010). Aside from the three well-known pathways of pathogenesis in glioblastomas, chromatin modifying and mismatch repair pathways were common aberrations (88.7% and 20.8%, respectively), the former due to high frequency of ATRX involvement. We conclude that IDH-mutant primary glioblastomas have better prognosis than secondary glioblastomas and have major molecular differences from other commoner glioblastomas. G-CIMP subgroups, MGMT promoter methylation, and TP53 mutation are useful prognostic adjuncts.


Subject(s)
Astrocytoma/genetics , Brain Neoplasms/genetics , Glioblastoma/genetics , Adult , Astrocytoma/mortality , Astrocytoma/pathology , Brain Neoplasms/mortality , Brain Neoplasms/pathology , DNA Mutational Analysis , Female , Glioblastoma/mortality , Glioblastoma/pathology , Humans , Isocitrate Dehydrogenase/genetics , Male , Middle Aged , Mutation , Prognosis
12.
PLoS Genet ; 14(4): e1007346, 2018 04.
Article in English | MEDLINE | ID: mdl-29659575

ABSTRACT

The growth plate mediates bone growth where SOX9 and GLI factors control chondrocyte proliferation, differentiation and entry into hypertrophy. FOXA factors regulate hypertrophic chondrocyte maturation. How these factors integrate into a Gene Regulatory Network (GRN) controlling these differentiation transitions is incompletely understood. We adopted a genome-wide whole tissue approach to establish a Growth Plate Differential Gene Expression Library (GP-DGEL) for fractionated proliferating, pre-hypertrophic, early and late hypertrophic chondrocytes, as an overarching resource for discovery of pathways and disease candidates. De novo motif discovery revealed the enrichment of SOX9 and GLI binding sites in the genes preferentially expressed in proliferating and prehypertrophic chondrocytes, suggesting the potential cooperation between SOX9 and GLI proteins. We integrated the analyses of the transcriptome, SOX9, GLI1 and GLI3 ChIP-seq datasets, with functional validation by transactivation assays and mouse mutants. We identified new SOX9 targets and showed SOX9-GLI directly and cooperatively regulate many genes such as Trps1, Sox9, Sox5, Sox6, Col2a1, Ptch1, Gli1 and Gli2. Further, FOXA2 competes with SOX9 for the transactivation of target genes. The data support a model of SOX9-GLI-FOXA phasic GRN in chondrocyte development. Together, SOX9-GLI auto-regulate and cooperate to activate and repress genes in proliferating chondrocytes. Upon hypertrophy, FOXA competes with SOX9, and control toward terminal differentiation passes to FOXA, RUNX, AP1 and MEF2 factors.


Subject(s)
Chondrocytes/metabolism , Hepatocyte Nuclear Factor 3-beta/metabolism , SOX9 Transcription Factor/metabolism , Zinc Finger Protein GLI1/metabolism , Animals , Bone Development/genetics , Bone Development/physiology , Cell Differentiation/genetics , Cell Differentiation/physiology , Chondrocytes/cytology , Chondrogenesis/genetics , Chondrogenesis/physiology , Core Binding Factor alpha Subunits/genetics , Core Binding Factor alpha Subunits/metabolism , Female , Gene Regulatory Networks , Growth Plate/cytology , Growth Plate/growth & development , Growth Plate/metabolism , Hepatocyte Nuclear Factor 3-beta/genetics , MEF2 Transcription Factors/genetics , MEF2 Transcription Factors/metabolism , Mice , Mice, Inbred C57BL , Mice, Inbred CBA , Models, Biological , SOX9 Transcription Factor/genetics , Signal Transduction , Transcriptional Activation , Zinc Finger Protein GLI1/genetics
13.
PLoS Genet ; 14(3): e1007242, 2018 03.
Article in English | MEDLINE | ID: mdl-29561836

ABSTRACT

Gerodermia osteodysplastica (GO) is characterized by skin laxity and early-onset osteoporosis. GORAB, the responsible disease gene, encodes a small Golgi protein of poorly characterized function. To circumvent neonatal lethality of the GorabNull full knockout, Gorab was conditionally inactivated in mesenchymal progenitor cells (Prx1-cre), pre-osteoblasts (Runx2-cre), and late osteoblasts/osteocytes (Dmp1-cre), respectively. While in all three lines a reduction in trabecular bone density was evident, only GorabPrx1 and GorabRunx2 mutants showed dramatically thinned, porous cortical bone and spontaneous fractures. Collagen fibrils in the skin of GorabNull mutants and in bone of GorabPrx1 mutants were disorganized, which was also seen in a bone biopsy from a GO patient. Measurement of glycosaminoglycan contents revealed a reduction of dermatan sulfate levels in skin and cartilage from GorabNull mutants. In bone from GorabPrx1 mutants total glycosaminoglycan levels and the relative percentage of dermatan sulfate were both strongly diminished. Accordingly, the proteoglycans biglycan and decorin showed reduced glycanation. Also in cultured GORAB-deficient fibroblasts reduced decorin glycanation was evident. The Golgi compartment of these cells showed an accumulation of decorin, but reduced signals for dermatan sulfate. Moreover, we found elevated activation of TGF-ß in GorabPrx1 bone tissue leading to enhanced downstream signalling, which was reproduced in GORAB-deficient fibroblasts. Our data suggest that the loss of Gorab primarily perturbs pre-osteoblasts. GO may be regarded as a congenital disorder of glycosylation affecting proteoglycan synthesis due to delayed transport and impaired posttranslational modification in the Golgi compartment.


Subject(s)
Bone Diseases/congenital , Dwarfism/metabolism , Osteoblasts/pathology , Proteoglycans/metabolism , Skin Diseases, Genetic/metabolism , Transforming Growth Factor beta/metabolism , Vesicular Transport Proteins/metabolism , Animals , Bone Diseases/metabolism , Bone Diseases/pathology , Cell Differentiation , Decorin/metabolism , Dermatan Sulfate/metabolism , Disease Models, Animal , Dwarfism/pathology , Female , Fractures, Bone/genetics , Glycosylation , Golgi Matrix Proteins , Mesenchymal Stem Cells/pathology , Mesenchymal Stem Cells/physiology , Mice, Inbred C57BL , Mice, Transgenic , Osteoblasts/metabolism , Signal Transduction , Skin Diseases, Genetic/pathology , Vesicular Transport Proteins/genetics
14.
Br J Neurosurg ; : 1-8, 2021 Feb 12.
Article in English | MEDLINE | ID: mdl-33576706

ABSTRACT

INTRODUCTION: Radiotherapy-induced glioblastomas (RIGB) are a well-known late and rare complication of brain irradiation. Yet the clinical, radiological and molecular characteristics of these tumors are not well characterized. METHODS: This was a retrospective multicentre study that analysed adult patients with newly diagnosed glioblastoma over a 10-year period. Patients with RIGB were identified according to Cahan's criteria for radiation-induced tumors. A case-control analysis was performed to compare known prognostic factors for overall survival (OS) with an independent cohort of IDH-1 wildtype de novo glioblastomas treated with standard temozolomide chemoradiotherapy. Survival analysis was performed by Cox proportional hazards regression. RESULTS: A total of 590 adult patients were diagnosed with glioblastoma. 19 patients (3%) had RIGB. The mean age of patients upon diagnosis was 48 years ± 15. The mean latency duration from radiotherapy to RIGB was 14 years ± 8. The mean total dose was 58Gy ± 10. One-third of patients (37%, 7/19) had nasopharyngeal cancer and a fifth (21%, 4/19) had primary intracranial germinoma. Compared to a cohort of 146 de novo glioblastoma patients, RIGB patients had a shorter median OS of 4.8 months versus 19.2 months (p-value: <.001). Over a third of RIGBs involved the cerebellum (37%, 7/19) and was higher than the control group (4%, 6/146; p-value: <.001). A fifth of RIGBs (21%, 3/19) were pMGMT methylated which was significantly fewer than the control group (49%, 71/146; p-value: .01). For RIGB patients (32%, 6/19) treated with re-irradiation, the one-year survival rate was 67% and only 8% for those without such treatment (p-value: .007). CONCLUSION: The propensity for RIGBs to develop in the cerebellum and to be pMGMT unmethylated may contribute to their poorer prognosis. When possible re-irradiation may offer a survival benefit. Nasopharyngeal cancer and germinomas accounted for the majority of original malignancies reflecting their prevalence among Southern Chinese.

15.
Int J Mol Sci ; 22(11)2021 May 21.
Article in English | MEDLINE | ID: mdl-34064134

ABSTRACT

Bone is a dynamic tissue constantly responding to environmental changes such as nutritional and mechanical stress. Bone homeostasis in adult life is maintained through bone remodeling, a controlled and balanced process between bone-resorbing osteoclasts and bone-forming osteoblasts. Osteoblasts secrete matrix, with some being buried within the newly formed bone, and differentiate to osteocytes. During embryogenesis, bones are formed through intramembraneous or endochondral ossification. The former involves a direct differentiation of mesenchymal progenitor to osteoblasts, and the latter is through a cartilage template that is subsequently converted to bone. Advances in lineage tracing, cell sorting, and single-cell transcriptome studies have enabled new discoveries of gene regulation, and new populations of skeletal stem cells in multiple niches, including the cartilage growth plate, chondro-osseous junction, bone, and bone marrow, in embryonic development and postnatal life. Osteoblast differentiation is regulated by a master transcription factor RUNX2 and other factors such as OSX/SP7 and ATF4. Developmental and environmental cues affect the transcriptional activities of osteoblasts from lineage commitment to differentiation at multiple levels, fine-tuned with the involvement of co-factors, microRNAs, epigenetics, systemic factors, circadian rhythm, and the microenvironments. In this review, we will discuss these topics in relation to transcriptional controls in osteogenesis.


Subject(s)
Osteogenesis/genetics , Transcription Factors/genetics , Transcription, Genetic/genetics , Animals , Bone and Bones/physiology , Cell Differentiation/genetics , Gene Expression Regulation/genetics , Humans
16.
Int J Mol Sci ; 22(19)2021 Sep 27.
Article in English | MEDLINE | ID: mdl-34638745

ABSTRACT

In ageing tissues, long-lived extracellular matrix (ECM) proteins are susceptible to the accumulation of structural damage due to diverse mechanisms including glycation, oxidation and protease cleavage. Peptide location fingerprinting (PLF) is a new mass spectrometry (MS) analysis technique capable of identifying proteins exhibiting structural differences in complex proteomes. PLF applied to published young and aged intervertebral disc (IVD) MS datasets (posterior, lateral and anterior regions of the annulus fibrosus) identified 268 proteins with age-associated structural differences. For several ECM assemblies (collagens I, II and V and aggrecan), these differences were markedly conserved between degeneration-prone (posterior and lateral) and -resistant (anterior) regions. Significant differences in peptide yields, observed within collagen I α2, collagen II α1 and collagen V α1, were located within their triple-helical regions and/or cleaved C-terminal propeptides, indicating potential accumulation of damage and impaired maintenance. Several proteins (collagen V α1, collagen II α1 and aggrecan) also exhibited tissue region (lateral)-specific differences in structure between aged and young samples, suggesting that some ageing mechanisms may act locally within tissues. This study not only reveals possible age-associated differences in ECM protein structures which are tissue-region specific, but also highlights the ability of PLF as a proteomic tool to aid in biomarker discovery.


Subject(s)
Aging/metabolism , Collagen/metabolism , Intervertebral Disc/metabolism , Peptide Mapping , Aged , Extracellular Matrix , Humans , Proteomics
17.
J Magn Reson Imaging ; 51(5): 1390-1400, 2020 05.
Article in English | MEDLINE | ID: mdl-31710416

ABSTRACT

BACKGROUND: Proteoglycan (PG) is a major component of the intervertebral disc extracellular matrix (ECM) that acts to hydrate the disc nucleus. Early detection of PG degradation is valuable for both diagnosis and preclinical research of intervertebral disc degeneration (IVDD). PURPOSE: To compare different MR techniques for detecting early degradative changes of PG in IVDD. STUDY TYPE: Prospective. PHANTOM/SPECIMEN: Glycosaminoglycan (GAG) phantom/bovine discs with papain injection and human cadaveric discs. FIELD STRENGTH/SEQUENCES: 7T/diffusion-weighted MR spectroscopy (DW-MRS), T2 -weighted MRS (T2 W-MRS), and chemical exchange saturation transfer (CEST) imaging. ASSESSMENT: DW-MRS, T2 W-MRS, and CEST imaging were applied longitudinally to measure PG diffusivity, T2 value, overall content, and spatial distribution in the disc nucleus with enzyme-induced proteolytic ECM degradation (n = 8). Similar MR measurements were applied in GAG phantom and human cadaveric discs with different levels of degeneration (n = 6). STATISTICAL TESTS: T-tests were conducted to measure the differences of PG properties between pre- and post-enzyme injection. Linear regression and mixed-effects models were used to assess the associations among different PG properties as well as the degeneration grades in human cadaveric discs. RESULTS: In bovine discs, PG diffusivity increased most rapidly after the enzyme was injected into the disc nucleus (12 hours postinjection, t = 5.76, P = 0.0007). The PG T2 value did not change significantly (t < 1.54, P > 0.17 for all timepoints) during ECM degradation and was not associated with PG diffusivity (t = 0.06, P = 0.95). PG distribution change was more rapid than overall PG content and was strongly associated with PG diffusivity increase (t = -9.25, P < 1 × 10-8 ). In severely degenerated human cadaveric discs, the PG ADCs and T2 values were both associated with degeneration grades. DATA CONCLUSION: PG diffusivity is a direct biomarker for early ECM degradation, while PG distribution can be an indirect biomarker for early IVDD. LEVEL OF EVIDENCE: 2 Technical Efficacy Stage: 2 J. Magn. Reson. Imaging 2020;51:1390-1400.


Subject(s)
Intervertebral Disc Degeneration , Intervertebral Disc , Animals , Cattle , Humans , Intervertebral Disc Degeneration/diagnostic imaging , Magnetic Resonance Imaging , Prospective Studies , Proteoglycans
18.
Int J Mol Sci ; 21(6)2020 Mar 18.
Article in English | MEDLINE | ID: mdl-32197418

ABSTRACT

Healthy and degenerating intervertebral discs (IVDs) are innervated by sympathetic nerves, however, adrenoceptor (AR) expression and functionality have never been investigated systematically. Therefore, AR gene expression was analyzed in both tissue and isolated cells from degenerated human IVDs. Furthermore, human IVD samples and spine sections of wildtype mice (WT) and of a mouse line that develops spontaneous IVD degeneration (IVDD, in SM/J mice) were stained for ARs and extracellular matrix (ECM) components. In IVD homogenates and cells α1a-, α1b-, α2a-, α2b-, α2c-, ß1-, and ß2-AR genes were expressed. In human sections, ß2-AR was detectable, and its localization parallels with ECM alterations. Similarly, in IVDs of WT mice, only ß2-AR was expressed, and in IVDs of SM/J mice, ß2AR expression was stronger accompanied by increased collagen II, collagen XII, decorin as well as decreased cartilage oligomeric matrix protein expression. In addition, norepinephrine stimulation of isolated human IVD cells induced intracellular signaling via ERK1/2 and PKA. For the first time, the existence and functionality of ARs were demonstrated in IVD tissue samples, suggesting that the sympathicus might play a role in IVDD. Further studies will address relevant cellular mechanisms and thereby help to develop novel therapeutic options for IVDD.


Subject(s)
Gene Expression Regulation , Intervertebral Disc Degeneration/metabolism , MAP Kinase Signaling System , Receptors, Adrenergic/biosynthesis , Aged , Animals , Female , Humans , Intervertebral Disc Degeneration/pathology , Male , Mice , Mice, Transgenic , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism
19.
Hum Mol Genet ; 26(23): 4572-4587, 2017 12 01.
Article in English | MEDLINE | ID: mdl-28973168

ABSTRACT

Bone remodeling is a balanced process between bone synthesis and degradation, maintaining homeostasis and a constant bone mass in adult life. Imbalance will lead to conditions such as osteoporosis or hyperostosis. Osteoblasts build bone, becoming embedded in bone matrix as mature osteocytes. Osteocytes have a role in sensing and translating mechanical loads into biochemical signals, regulating the differentiation and activity of osteoblasts residing at the bone surface through the secretion of Sclerostin (SOST), an inhibitor of WNT signaling. Excessive mechanical load can lead to activation of cellular stress responses altering cell behavior and differentiation. The unfolded protein response (UPR) is a shared pathway utilized by cells to cope with stress stimuli. We showed that in a transgenic mouse model, activation of the UPR in early differentiating osteocytes delays maturation, maintaining active bone synthesis. In addition, expression of SOST is delayed or suppressed; resulting in active WNT signaling and enhanced periosteal bone formation, and the combined outcome is generalized hyperostosis. A clear relationship between the activation of the unfolded protein response was established and the onset of hyperostosis that can be suppressed with a chemical chaperone, sodium 4-phenobutyrate (4-PBA). As the phenotype is highly consistent with craniodiaphyseal dysplasia (CDD; OMIM 122860), we propose activation of the UPR could be part of the disease mechanism for CDD patients as these patients are heterozygous for SOST mutations that impair protein folding and secretion. Thus, therapeutic agents ameliorating protein folding or the UPR can be considered as a potential therapeutic treatment.


Subject(s)
Craniofacial Abnormalities/metabolism , Hyperostosis/metabolism , Osteochondrodysplasias/metabolism , Osteocytes/metabolism , Unfolded Protein Response , Adaptor Proteins, Signal Transducing , Animals , Bone Morphogenetic Proteins/genetics , Bone Morphogenetic Proteins/metabolism , Bone Remodeling/physiology , Bone and Bones/metabolism , Collagen Type X/genetics , Collagen Type X/metabolism , Craniofacial Abnormalities/genetics , Craniofacial Abnormalities/pathology , Genetic Markers/genetics , Humans , Hyperostosis/genetics , Hyperostosis/pathology , Mice , Mice, Transgenic , Osteoblasts/metabolism , Osteochondrodysplasias/genetics , Osteochondrodysplasias/pathology , Osteocytes/pathology , Osteogenesis/physiology , Phenylbutyrates/pharmacology , Stress, Mechanical , Wnt Signaling Pathway
20.
Acta Neuropathol ; 136(4): 641-655, 2018 10.
Article in English | MEDLINE | ID: mdl-29948154

ABSTRACT

Pediatric low-grade gliomas (PLGGs) consist of a number of entities with overlapping histological features. PLGGs have much better prognosis than the adult counterparts, but a significant proportion of PLGGs suffers from tumor progression and recurrence. It has been shown that pediatric and adult low-grade gliomas are molecularly distinct. Yet the clinical significance of some of newer biomarkers discovered by genomic studies has not been fully investigated. In this study, we evaluated in a large cohort of 289 PLGGs a list of biomarkers and examined their clinical relevance. TERT promoter (TERTp), H3F3A and BRAF V600E mutations were detected by direct sequencing. ATRX nuclear loss was examined by immunohistochemistry. CDKN2A deletion, KIAA1549-BRAF fusion, and MYB amplification were determined by fluorescence in situ hybridization (FISH). TERTp, H3F3A, and BRAF V600E mutations were identified in 2.5, 6.4, and 7.4% of PLGGs, respectively. ATRX loss was found in 4.9% of PLGGs. CDKN2A deletion, KIAA1549-BRAF fusion and MYB amplification were detected in 8.8, 32.0 and 10.6% of PLGGs, respectively. Survival analysis revealed that TERTp mutation, H3F3A mutation, and ATRX loss were significantly associated with poor PFS (p < 0.0001, p < 0.0001, and p = 0.0002) and OS (p < 0.0001, p < 0.0001, and p < 0.0001). BRAF V600E was associated with shorter PFS (p = 0.011) and OS (p = 0.032) in a subset of PLGGs. KIAA1549-BRAF fusion was a good prognostic marker for longer PFS (p = 0.0017) and OS (p = 0.0029). MYB amplification was also a favorable marker for a longer PFS (p = 0.040). Importantly, we showed that these molecular biomarkers can be used to stratify PLGGs into low- (KIAA1549-BRAF fusion or MYB amplification), intermediate-I (BRAF V600E and/or CDKN2A deletion), intermediate-II (no biomarker), and high-risk (TERTp or H3F3A mutation or ATRX loss) groups with distinct PFS (p < 0.0001) and OS (p < 0.0001). This scheme should aid in clinical decision-making.


Subject(s)
Brain Neoplasms/pathology , Glioma/pathology , Neoplasm Grading/methods , Adolescent , Biomarkers, Tumor , Child , Child, Preschool , Cohort Studies , Female , Humans , Immunohistochemistry , Infant , Infant, Newborn , Male , Mutation/genetics , Pathology, Molecular , Pediatrics , Prognosis , Progression-Free Survival , Risk Assessment , Survival Analysis , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL