Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Mol Cell ; 72(5): 836-848.e7, 2018 12 06.
Article in English | MEDLINE | ID: mdl-30415952

ABSTRACT

Transforming members of the MYC family (MYC, MYCL1, and MYCN) encode transcription factors containing six highly conserved regions, termed MYC homology boxes (MBs). By conducting proteomic profiling of the MB interactomes, we demonstrate that half of the MYC interactors require one or more MBs for binding. Comprehensive phenotypic analyses reveal that two MBs, MB0 and MBII, are universally required for transformation. MBII mediates interactions with acetyltransferase-containing complexes, enabling histone acetylation, and is essential for MYC-dependent tumor initiation. By contrast, MB0 mediates interactions with transcription elongation factors via direct binding to the general transcription factor TFIIF. MB0 is dispensable for tumor initiation but is a major accelerator of tumor growth. Notably, the full transforming activity of MYC can be restored by co-expression of the non-transforming MB0 and MBII deletion proteins, indicating that these two regions confer separate molecular functions, both of which are required for oncogenic MYC activity.


Subject(s)
Breast Neoplasms/genetics , Cell Transformation, Neoplastic/genetics , Gene Expression Regulation, Neoplastic , Proto-Oncogene Proteins c-myc/genetics , Transcription Factors, TFII/genetics , Animals , Breast Neoplasms/metabolism , Breast Neoplasms/mortality , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Female , Gene Expression Profiling , HEK293 Cells , Humans , Mice , Mice, Inbred NOD , Protein Binding , Protein Domains , Protein Interaction Mapping , Protein Isoforms/genetics , Protein Isoforms/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Signal Transduction , Survival Analysis , Transcription Factors, TFII/metabolism , Tumor Burden , Xenograft Model Antitumor Assays
2.
J Virol ; 86(2): 806-20, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22072767

ABSTRACT

Human cytomegalovirus infections involve the extensive modification of host cell pathways, including cell cycle control, the regulation of the DNA damage response, and averting promyelocytic leukemia (PML)-mediated antiviral responses. The UL35 gene from human cytomegalovirus is important for viral gene expression and efficient replication and encodes two proteins, UL35 and UL35a, whose mechanism of action is not well understood. Here, affinity purification coupled with mass spectrometry was used to identify previously unknown human cellular targets of UL35 and UL35a. We demonstrate that both viral proteins interact with the ubiquitin-specific protease USP7, and that UL35 expression can alter USP7 subcellular localization. In addition, UL35 (but not UL35a) was found to associate with three components of the Cul4(DCAF1) E3 ubiquitin ligase complex (DCAF1, DDB1, and DDA1) previously shown to be targeted by the HIV-1 Vpr protein. The coimmunoprecipitation and immunofluorescence microscopy of DCAF1 mutants revealed that the C-terminal region of DCAF1 is required for association with UL35 and mediates the dramatic relocalization of DCAF1 to UL35 nuclear bodies, which also contain conjugated ubiquitin. As previously reported for the Vpr-DCAF1 interaction, UL35 (but not UL35a) expression resulted in the accumulation of cells in the G(2) phase of the cell cycle, which is typical of a DNA damage response, and activated the G(2) checkpoint in a DCAF1-dependent manner. In addition, UL35 (but not UL35a) induced γ-H2AX and 53BP1 foci, indicating the activation of DNA damage and repair responses. Therefore, the identified interactions suggest that UL35 can contribute to viral replication through the manipulation of host responses.


Subject(s)
Cytomegalovirus Infections/genetics , Cytomegalovirus Infections/virology , Cytomegalovirus/metabolism , DNA Repair , Proteomics , Viral Proteins/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Cycle , Cell Line , Cytomegalovirus/genetics , Cytomegalovirus Infections/metabolism , Cytomegalovirus Infections/physiopathology , Gene Expression Regulation, Viral , Host-Pathogen Interactions , Humans , Protein Binding , Protein Serine-Threonine Kinases , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/metabolism , Ubiquitin-Protein Ligases , Ubiquitin-Specific Peptidase 7 , Viral Proteins/genetics
3.
J Virol ; 82(22): 11308-17, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18684821

ABSTRACT

How viral and host factors contribute to the severe pathogenicity of the H5N1 subtype of avian influenza virus infection in humans is poorly understood. We identified three clusters of differentially expressed innate immune response genes in lungs from H5N1 (A/Vietnam/1203/04) influenza virus-infected ferrets by oligonucleotide microarray analysis. Interferon response genes were more strongly expressed in H5N1-infected ferret lungs than in lungs from ferrets infected with the less pathogenic H3N2 subtype. In particular, robust CXCL10 gene expression in H5N1-infected ferrets led us to test the pathogenic role of signaling via CXCL10's cognate receptor, CXCR3, during H5N1 influenza virus infection. Treatment of H5N1-infected ferrets with the drug AMG487, a CXCR3 antagonist, resulted in a reduction of symptom severity and delayed mortality compared to vehicle treatment. We contend that unregulated host interferon responses are at least partially responsible for the severity of H5N1 infection and provide evidence that attenuating the CXCR3 signaling pathway improves the clinical course of H5N1 infection in ferrets.


Subject(s)
Gene Expression Profiling , Influenza A Virus, H5N1 Subtype/immunology , Influenza A Virus, H5N1 Subtype/physiology , Lung/immunology , Lung/pathology , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/pathology , Animals , Chemokine CXCL10/biosynthesis , Ferrets , Humans , Influenza A Virus, H3N2 Subtype/immunology , Influenza A Virus, H3N2 Subtype/physiology , Lung/virology , Male , Orthomyxoviridae Infections/virology , Receptors, CXCR3/antagonists & inhibitors , Survival Analysis
4.
Nat Commun ; 9(1): 3502, 2018 08 29.
Article in English | MEDLINE | ID: mdl-30158517

ABSTRACT

The c-MYC (MYC) oncoprotein is deregulated in over 50% of cancers, yet regulatory mechanisms controlling MYC remain unclear. To this end, we interrogated the MYC interactome using BioID mass spectrometry (MS) and identified PP1 (protein phosphatase 1) and its regulatory subunit PNUTS (protein phosphatase-1 nuclear-targeting subunit) as MYC interactors. We demonstrate that endogenous MYC and PNUTS interact across multiple cell types and that they co-occupy MYC target gene promoters. Inhibiting PP1 by RNAi or pharmacological inhibition results in MYC hyperphosphorylation at multiple serine and threonine residues, leading to a decrease in MYC protein levels due to proteasomal degradation through the canonical SCFFBXW7 pathway. MYC hyperphosphorylation can be rescued specifically with exogenous PP1, but not other phosphatases. Hyperphosphorylated MYC retained interaction with its transcriptional partner MAX, but binding to chromatin is significantly compromised. Our work demonstrates that PP1/PNUTS stabilizes chromatin-bound MYC in proliferating cells.


Subject(s)
Chromatin/metabolism , DNA-Binding Proteins/metabolism , Nuclear Proteins/metabolism , Protein Phosphatase 1/metabolism , Proto-Oncogene Proteins c-myc/metabolism , RNA-Binding Proteins/metabolism , Cell Line, Tumor , Chromatin Immunoprecipitation , DNA-Binding Proteins/genetics , Electrophoresis, Gel, Two-Dimensional , Humans , Immunoblotting , Immunoprecipitation , Mass Spectrometry , Nuclear Proteins/genetics , Protein Phosphatase 1/genetics , Protein Stability , Proto-Oncogene Proteins c-myc/genetics , RNA-Binding Proteins/genetics
5.
Cell Cycle ; 15(13): 1693-705, 2016 07 02.
Article in English | MEDLINE | ID: mdl-27267444

ABSTRACT

MYC is a key driver of cellular transformation and is deregulated in most human cancers. Studies of MYC and its interactors have provided mechanistic insight into its role as a regulator of gene transcription. MYC has been previously linked to chromatin regulation through its interaction with INI1 (SMARCB1/hSNF5/BAF47), a core member of the SWI/SNF chromatin remodeling complex. INI1 is a potent tumor suppressor that is inactivated in several types of cancers, most prominently as the hallmark alteration in pediatric malignant rhabdoid tumors. However, the molecular and functional interaction of MYC and INI1 remains unclear. Here, we characterize the MYC-INI1 interaction in mammalian cells, mapping their minimal binding domains to functionally significant regions of MYC (leucine zipper) and INI1 (repeat motifs), and demonstrating that the interaction does not interfere with MYC-MAX interaction. Protein-protein interaction network analysis expands the MYC-INI1 interaction to the SWI/SNF complex and a larger network of chromatin regulatory complexes. Genome-wide analysis reveals that the DNA-binding regions and target genes of INI1 significantly overlap with those of MYC. In an INI1-deficient rhabdoid tumor system, we observe that with re-expression of INI1, MYC and INI1 bind to common target genes and have opposing effects on gene expression. Functionally, INI1 re-expression suppresses cell proliferation and MYC-potentiated transformation. Our findings thus establish the antagonistic roles of the INI1 and MYC transcriptional regulators in mediating cellular and oncogenic functions.


Subject(s)
Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/pathology , Proto-Oncogene Proteins c-myc/metabolism , SMARCB1 Protein/metabolism , Transcription, Genetic , Amino Acid Motifs , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Cell Line, Tumor , Cell Proliferation , Chromatin Assembly and Disassembly , Conserved Sequence , Gene Expression Regulation, Neoplastic , HEK293 Cells , Humans , Leucine Zippers , Protein Binding , Protein Multimerization , Repetitive Sequences, Amino Acid , SMARCB1 Protein/chemistry
6.
J Proteomics ; 118: 95-111, 2015 Apr 06.
Article in English | MEDLINE | ID: mdl-25452129

ABSTRACT

The BioID proximity-based biotin labeling technique was recently developed for the characterization of protein-protein interaction networks [1]. To date, this method has been applied to a number of different polypeptides expressed in cultured cells. Here we report the adaptation of BioID to the identification of protein-protein interactions surrounding the c-MYC oncoprotein in human cells grown both under standard culture conditions and in mice as tumor xenografts. Notably, in vivo BioID yielded >100 high confidence MYC interacting proteins, including >30 known binding partners. Putative novel MYC interactors include components of the STAGA/KAT5 and SWI/SNF chromatin remodeling complexes, DNA repair and replication factors, general transcription and elongation factors, and transcriptional co-regulators such as the DNA helicase protein chromodomain 8 (CHD8). Providing additional confidence in these findings, ENCODE ChIP-seq datasets highlight significant coincident binding throughout the genome for the MYC interactors identified here, and we validate the previously unreported MYC-CHD8 interaction using both a yeast two hybrid analysis and the proximity-based ligation assay. In sum, we demonstrate that BioID can be utilized to identify bona fide interacting partners for a chromatin-associated protein in vivo. This technique will allow for a much improved understanding of protein-protein interactions in a previously inaccessible biological setting. BIOLOGICAL SIGNIFICANCE: The c-MYC (MYC) oncogene is a transcription factor that plays important roles in cancer initiation and progression. MYC expression is deregulated in more than 50% of human cancers, but the role of this protein in normal cell biology and tumor progression is still not well understood, in part because identifying MYC-interacting proteins has been technically challenging: MYC-containing chromatin-associated complexes are difficult to isolate using traditional affinity purification methods, and the MYC protein is exceptionally labile, with a half-life of only ~30 min. Developing a new strategy to gain insight into MYC-containing protein complexes would thus mark a key advance in cancer research. The recently described BioID proximity-based labeling technique represents a promising new complementary approach for the characterization of protein-protein interactions (PPIs) in cultured cells. Here we report that BioID can also be used to characterize protein-protein interactions for a chromatin-associated protein in tumor xenografts, and present a comprehensive, high confidence in vivo MYC interactome. This article is part of a Special Issue entitled: Protein dynamics in health and disease. Guest Editors: Pierre Thibault and Anne-Claude Gingras.


Subject(s)
Chromosomal Proteins, Non-Histone/metabolism , DNA-Binding Proteins/metabolism , Histone Acetyltransferases/metabolism , Neoplasms, Experimental/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Transcription Factors/metabolism , Animals , Cell Line, Tumor , Chromosomal Proteins, Non-Histone/genetics , DNA-Binding Proteins/genetics , Heterografts , Histone Acetyltransferases/genetics , Humans , Lysine Acetyltransferase 5 , Male , Mice , Mice, Inbred NOD , Mice, SCID , Neoplasm Transplantation , Neoplasms, Experimental/genetics , Proto-Oncogene Proteins c-myc/genetics , Transcription Factors/genetics
7.
Data Brief ; 1: 76-8, 2014 Dec.
Article in English | MEDLINE | ID: mdl-26217692

ABSTRACT

BioID was performed using FlagBirA⁎ (the R118G biotin ligase mutant protein) and FlagBirA⁎-Myc in HEK293 T-REx cells maintained both under standard cell culture conditions and as mouse xenografts. The mass spectrometry dataset acquired in this study has been uploaded to the MassIVE repository with ID: MSV000078518, and consists of 28 ⁎.raw MS files acquired on an Orbitrap Velos instrument, collected in data-dependent mode. iProphet processed MS/MS search results are also included as a reference. This study has been published as "BioID identifies novel c-MYC interacting partners in cultured cells and xenograft tumors", by Dingar et al. in the Journal of Proteomics, 2014 [1].

8.
PLoS One ; 9(12): e115337, 2014.
Article in English | MEDLINE | ID: mdl-25522242

ABSTRACT

The c-MYC transcription factor is a master regulator of many cellular processes and deregulation of this oncogene has been linked to more than 50% of all cancers. This deregulation can take many forms, including altered post-translational regulation. Here, using immunoprecipitation combined with mass spectrometry, we identified a MYC SUMOylation site (K326). Abrogation of signaling through this residue by substitution with arginine (K326R) has no obvious effects on MYC half-life, intracellular localization, transcriptional targets, nor on the biological effects of MYC overexpression in two different cell systems assessed for soft agar colony formation, proliferation, and apoptosis. While we have definitively demonstrated that MYC SUMOylation can occur on K326, future work will be needed to elucidate the mechanisms and biological significance of MYC regulation by SUMOylation.


Subject(s)
Proto-Oncogene Proteins c-myc/metabolism , Sumoylation , Amino Acid Substitution , Arginine/genetics , Arginine/metabolism , HEK293 Cells , Humans , MCF-7 Cells , Mass Spectrometry , Proto-Oncogene Proteins c-myc/genetics
9.
Cancer Res ; 73(21): 6504-15, 2013 Nov 01.
Article in English | MEDLINE | ID: mdl-24030976

ABSTRACT

Despite its central role in human cancer, MYC deregulation is insufficient by itself to transform cells. Because inherent mechanisms of neoplastic control prevent precancerous lesions from becoming fully malignant, identifying transforming alleles of MYC that bypass such controls may provide fundamental insights into tumorigenesis. To date, the only activated allele of MYC known is T58A, the study of which led to identification of the tumor suppressor FBXW7 and its regulator USP28 as a novel therapeutic target. In this study, we screened a panel of MYC phosphorylation mutants for their ability to promote anchorage-independent colony growth of human MCF10A mammary epithelial cells, identifying S71A/S81A and T343A/S344A/S347A/S348A as more potent oncogenic mutants compared with wild-type (WT) MYC. The increased cell-transforming activity of these mutants was confirmed in SH-EP neuroblastoma cells and in three-dimensional MCF10A acini. Mechanistic investigations initiated by a genome-wide mRNA expression analysis of MCF10A acini identified 158 genes regulated by the mutant MYC alleles, compared with only 112 genes regulated by both WT and mutant alleles. Transcriptional gain-of-function was a common feature of the mutant alleles, with many additional genes uniquely dysregulated by individual mutant. Our work identifies novel sites of negative regulation in MYC and thus new sites for its therapeutic attack.


Subject(s)
Biomarkers, Tumor/genetics , Cell Transformation, Neoplastic/pathology , Gene Expression Regulation, Neoplastic , Mammary Glands, Human/pathology , Mutation/genetics , Neuroblastoma/pathology , Proto-Oncogene Proteins c-myc/metabolism , Apoptosis , Biomarkers, Tumor/metabolism , Blotting, Western , Cell Adhesion , Cell Proliferation , Cell Transformation, Neoplastic/genetics , Cells, Cultured , Chromatin Immunoprecipitation , Colony-Forming Units Assay , Epithelial Cells/metabolism , Epithelial Cells/pathology , Female , Gene Expression Profiling , Humans , Mammary Glands, Human/metabolism , Neuroblastoma/genetics , Neuroblastoma/metabolism , Oligonucleotide Array Sequence Analysis , Oxygen Consumption , Phosphorylation , Proto-Oncogene Proteins c-myc/genetics , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Regulatory Sequences, Nucleic Acid , Reverse Transcriptase Polymerase Chain Reaction
10.
Science ; 339(6119): 590-5, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23287719

ABSTRACT

The ubiquitin system regulates virtually all aspects of cellular function. We report a method to target the myriad enzymes that govern ubiquitination of protein substrates. We used massively diverse combinatorial libraries of ubiquitin variants to develop inhibitors of four deubiquitinases (DUBs) and analyzed the DUB-inhibitor complexes with crystallography. We extended the selection strategy to the ubiquitin conjugating (E2) and ubiquitin ligase (E3) enzymes and found that ubiquitin variants can also enhance enzyme activity. Last, we showed that ubiquitin variants can bind selectively to ubiquitin-binding domains. Ubiquitin variants exhibit selective function in cells and thus enable orthogonal modulation of specific enzymatic steps in the ubiquitin system.


Subject(s)
Combinatorial Chemistry Techniques , Endopeptidases/metabolism , Protease Inhibitors/isolation & purification , Ubiquitin Thiolesterase/metabolism , Ubiquitin/metabolism , Ubiquitination/drug effects , Amino Acid Sequence , Conserved Sequence , Drug Design , Endopeptidases/chemistry , HEK293 Cells , Humans , Molecular Sequence Data , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Protein Conformation , Protein Structure, Secondary , Small Molecule Libraries , Ubiquitin/chemistry , Ubiquitin/genetics , Ubiquitin Thiolesterase/chemistry , Ubiquitin-Conjugating Enzymes/chemistry , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/metabolism
11.
Mol Biol Cell ; 22(24): 4868-82, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22031293

ABSTRACT

The association of small, ubiquitin-related modifier-specific isopeptidases (also known as sentrin-specific proteases, or SENPs) with nuclear pore complexes (NPCs) is conserved in eukaryotic organisms ranging from yeast to mammals. However, the functional significance of this association remains poorly understood, particularly in mammalian cells. In this study, we have characterized the molecular basis for interactions between SENP2 and NPCs in human cells. Using fluorescence recovery after photobleaching, we demonstrate that SENP2, although concentrated at the nuclear basket, is dynamically associated with NPCs. This association is mediated by multiple targeting elements within the N-terminus of SENP2 that function cooperatively to mediate NPC localization. One of these elements consists of a high-affinity nuclear localization signal that mediates indirect tethering to FG-repeat-containing nucleoporins through karyopherins. A second element mediates interactions with the Nup107-160 nucleoporin subcomplex. A third element consists of a nuclear export signal. Collectively, our findings reveal that SENP2 is tethered to NPCs through a complex interplay of interactions with nuclear import and export receptors and nucleoporins. Disruption of these interactions enhances SENP2 substrate accessibility, suggesting an important regulatory node in the SUMO pathway.


Subject(s)
Cysteine Endopeptidases/metabolism , Karyopherins/metabolism , Nuclear Localization Signals/metabolism , Nuclear Pore Complex Proteins/metabolism , Nuclear Pore/metabolism , Nuclear Proteins/metabolism , Active Transport, Cell Nucleus/physiology , Amino Acid Motifs , Cysteine Endopeptidases/genetics , HEK293 Cells , HeLa Cells , Humans , Karyopherins/genetics , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism , Nuclear Localization Signals/genetics , Nuclear Pore/genetics , Nuclear Pore Complex Proteins/genetics , Nuclear Proteins/genetics , Protein Structure, Tertiary , SUMO-1 Protein/genetics , SUMO-1 Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL