Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Immunity ; 50(6): 1530-1541.e8, 2019 06 18.
Article in English | MEDLINE | ID: mdl-31216462

ABSTRACT

Rapidly evolving RNA viruses, such as the GII.4 strain of human norovirus (HuNoV), and their vaccines elicit complex serological responses associated with previous exposure. Specific correlates of protection, moreover, remain poorly understood. Here, we report the GII.4-serological antibody repertoire-pre- and post-vaccination-and select several antibody clonotypes for epitope and structural analysis. The humoral response was dominated by GII.4-specific antibodies that blocked ancestral strains or by antibodies that bound to divergent genotypes and did not block viral-entry-ligand interactions. However, one antibody, A1431, showed broad blockade toward tested GII.4 strains and neutralized the pandemic GII.P16-GII.4 Sydney strain. Structural mapping revealed conserved epitopes, which were occluded on the virion or partially exposed, allowing for broad blockade with neutralizing activity. Overall, our results provide high-resolution molecular information on humoral immune responses after HuNoV vaccination and demonstrate that infection-derived and vaccine-elicited antibodies can exhibit broad blockade and neutralization against this prevalent human pathogen.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Caliciviridae Infections/immunology , Caliciviridae Infections/prevention & control , Norovirus/immunology , Viral Vaccines/immunology , Amino Acid Sequence , Animals , Antibodies, Viral/chemistry , Caliciviridae Infections/epidemiology , Caliciviridae Infections/virology , Cell Line , Conserved Sequence , Epitopes/chemistry , Epitopes/immunology , Humans , Immunoglobulin G/immunology , Models, Molecular , Norovirus/classification , Protein Binding , Protein Conformation , Recombinant Proteins/immunology , Vaccination
2.
J Virol ; 97(5): e0160422, 2023 05 31.
Article in English | MEDLINE | ID: mdl-37098956

ABSTRACT

While neutralizing antibodies that target the HIV-1 fusion peptide have been elicited in mice by vaccination, antibodies reported thus far have been from only a single antibody class that could neutralize ~30% of HIV-1 strains. To explore the ability of the murine immune system to generate cross-clade neutralizing antibodies and to investigate how higher breadth and potency might be achieved, we tested 17 prime-boost regimens that utilized diverse fusion peptide-carrier conjugates and HIV-1 envelope trimers with different fusion peptides. We observed priming in mice with fusion peptide-carrier conjugates of variable peptide length to elicit higher neutralizing responses, a result we confirmed in guinea pigs. From vaccinated mice, we isolated 21 antibodies, belonging to 4 distinct classes of fusion peptide-directed antibodies capable of cross-clade neutralization. Top antibodies from each class collectively neutralized over 50% of a 208-strain panel. Structural analyses - both X-ray and cryo-EM - revealed each antibody class to recognize a distinct conformation of fusion peptide and to have a binding pocket capable of accommodating diverse fusion peptides. Murine vaccinations can thus elicit diverse neutralizing antibodies, and altering peptide length during prime can improve the elicitation of cross-clade responses targeting the fusion peptide site of HIV-1 vulnerability. IMPORTANCE The HIV-1 fusion peptide has been identified as a site for elicitation of broadly neutralizing antibodies, with prior studies demonstrating that priming with fusion peptide-based immunogens and boosting with soluble envelope (Env) trimers can elicit cross-clade HIV-1-neutralizing responses. To improve the neutralizing breadth and potency of fusion peptide-directed responses, we evaluated vaccine regimens that incorporated diverse fusion peptide-conjugates and Env trimers with variation in fusion peptide length and sequence. We found that variation in peptide length during prime elicits enhanced neutralizing responses in mice and guinea pigs. We identified vaccine-elicited murine monoclonal antibodies from distinct classes capable of cross-clade neutralization and of diverse fusion peptide recognition. Our findings lend insight into improved immunogens and regimens for HIV-1 vaccine development.


Subject(s)
AIDS Vaccines , HIV Infections , HIV Seropositivity , HIV-1 , Animals , Guinea Pigs , Mice , HIV Antibodies , Immunoglobulin Isotypes , Vaccination , Peptides , Antibodies, Neutralizing , Broadly Neutralizing Antibodies , env Gene Products, Human Immunodeficiency Virus , HIV Infections/prevention & control
3.
J Virol ; 94(13)2020 06 16.
Article in English | MEDLINE | ID: mdl-32295908

ABSTRACT

HIV-1 envelope (Env) trimers, stabilized in a prefusion-closed conformation, can elicit humoral responses capable of neutralizing HIV-1 strains closely matched in sequence to the immunizing strain. One strategy to increase elicited neutralization breadth involves vaccine priming of immune responses against a target site of vulnerability, followed by vaccine boosting of these responses with prefusion-closed Env trimers. This strategy has succeeded at the fusion peptide (FP) site of vulnerability in eliciting cross-clade neutralizing responses in standard vaccine-test animals. However, the breadth and potency of the elicited responses have been less than optimal. Here, we identify three mutations (3mut), Met302, Leu320, and Pro329, that stabilize the apex of the Env trimer in a prefusion-closed conformation and show antigenically, structurally, and immunogenically that combining 3mut with other approaches (e.g., repair and stabilize and glycine-helix breaking) yields well-behaved clade C-Env trimers capable of boosting the breadth of FP-directed responses. Crystal structures of these trimers confirmed prefusion-closed apexes stabilized by hydrophobic patches contributed by Met302 and Leu320, with Pro329 assuming canonically restricted dihedral angles. We substituted the N-terminal eight residues of FP (FP8, residues 512 to 519) of these trimers with the second most prevalent FP8 sequence (FP8v2, AVGLGAVF) and observed a 3mut-stabilized consensus clade C-Env trimer with FP8v2 to boost the breadth elicited in guinea pigs of FP-directed responses induced by immunogens containing the most prevalent FP8 sequence (FP8v1, AVGIGAVF). Overall, 3mut can stabilize the Env trimer apex, and the resultant apex-stabilized Env trimers can be used to expand the neutralization breadth elicited against the FP site of vulnerability.IMPORTANCE A major hurdle to the development of an effective HIV-1 vaccine is the elicitation of serum responses capable of neutralizing circulating strains of HIV, which are extraordinarily diverse in sequence and often highly neutralization resistant. Recently, we showed how sera with 20 to 30% neutralization breadth could, nevertheless, be elicited in standard vaccine test animals by priming with the most prevalent N-terminal 8 residues of the HIV-1 fusion peptide (FP8), followed by boosting with a stabilized BG505-envelope (Env) trimer. Here, we show that subsequent boosting with a 3mut-apex-stabilized consensus C-Env trimer, modified to have the second most prevalent FP8 sequence, elicits higher neutralization breadth than that induced by continued boosting with the stabilized BG505-Env trimer. With increased neutralizing breadth elicited by boosting with a heterologous trimer containing the second most prevalent FP8 sequence, the fusion peptide-directed immune-focusing approach moves a step closer toward realizing an effective HIV-1 vaccine regimen.


Subject(s)
AIDS Vaccines/immunology , env Gene Products, Human Immunodeficiency Virus/genetics , env Gene Products, Human Immunodeficiency Virus/immunology , Animals , Antibodies, Neutralizing/immunology , Female , Guinea Pigs , HEK293 Cells , HIV Antibodies/immunology , HIV Seropositivity , HIV-1/immunology , Humans , Immunization, Secondary , Peptides , Vaccines, Subunit
4.
Adv Sci (Weinh) ; : e2309268, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38704686

ABSTRACT

Broadly neutralizing antibodies are proposed as therapeutic and prophylactic agents against HIV-1, but their potency and breadth are less than optimal. This study describes the immunization of a llama with the prefusion-stabilized HIV-1 envelope (Env) trimer, BG505 DS-SOSIP, and the identification and improvement of potent neutralizing nanobodies recognizing the CD4-binding site (CD4bs) of vulnerability. Two of the vaccine-elicited CD4bs-targeting nanobodies, G36 and R27, when engineered into a triple tandem format with llama IgG2a-hinge region and human IgG1-constant region (G36×3-IgG2a and R27×3-IgG2a), neutralized 96% of a multiclade 208-strain panel at geometric mean IC80s of 0.314 and 0.033 µg mL-1, respectively. Cryo-EM structures of these nanobodies in complex with Env trimer revealed the two nanobodies to neutralize HIV-1 by mimicking the recognition of the CD4 receptor. To enhance their neutralizing potency and breadth, nanobodies are linked to the light chain of the V2-apex-targeting broadly neutralizing antibody, CAP256V2LS. The resultant human-llama bispecific antibody CAP256L-R27×3LS exhibited ultrapotent neutralization and breadth exceeding other published HIV-1 broadly neutralizing antibodies, with pharmacokinetics determined in FcRn-Fc mice similar to the parent CAP256V2LS. Vaccine-elicited llama nanobodies, when combined with V2-apex broadly neutralizing antibodies, may therefore be able to fulfill anti-HIV-1 therapeutic and prophylactic clinical goals.

5.
J Virol ; 86(22): 12115-28, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22933274

ABSTRACT

Recent studies have shown that natural infection by HIV-2 leads to the elicitation of high titers of broadly neutralizing antibodies (NAbs) against primary HIV-2 strains (T. I. de Silva, et al., J. Virol. 86:930-946, 2012; R. Kong, et al., J. Virol. 86:947-960, 2012; G. Ozkaya Sahin, et al., J. Virol. 86:961-971, 2012). Here, we describe the envelope (Env) binding and neutralization properties of 15 anti-HIV-2 human monoclonal antibodies (MAbs), 14 of which were newly generated from 9 chronically infected subjects. All 15 MAbs bound specifically to HIV-2 gp120 monomers and neutralized heterologous primary virus strains HIV-2(7312A) and HIV-2(ST). Ten of 15 MAbs neutralized a third heterologous primary virus strain, HIV-2(UC1). The median 50% inhibitory concentrations (IC(50)s) for these MAbs were surprisingly low, ranging from 0.007 to 0.028 µg/ml. Competitive Env binding studies revealed three MAb competition groups: CG-I, CG-II, and CG-III. Using peptide scanning, site-directed mutagenesis, chimeric Env constructions, and single-cycle virus neutralization assays, we mapped the epitope of CG-I antibodies to a linear region in variable loop 3 (V3), the epitope of CG-II antibodies to a conformational region centered on the carboxy terminus of V4, and the epitope(s) of CG-III antibodies to conformational regions associated with CD4- and coreceptor-binding sites. HIV-2 Env is thus highly immunogenic in vivo and elicits antibodies having diverse epitope specificities, high potency, and wide breadth. In contrast to the HIV-1 Env trimer, which is generally well shielded from antibody binding and neutralization, HIV-2 is surprisingly vulnerable to broadly reactive NAbs. The availability of 15 human MAbs targeting diverse HIV-2 Env epitopes can facilitate comparative studies of HIV/SIV Env structure, function, antigenicity, and immunogenicity.


Subject(s)
Antibodies, Monoclonal/chemistry , Epitope Mapping/methods , HIV-2/chemistry , Amino Acid Sequence , Antibodies, Neutralizing/immunology , Biotinylation , Enzyme-Linked Immunosorbent Assay/methods , Epitopes/chemistry , HIV Antibodies/immunology , HIV Infections/immunology , Humans , Models, Molecular , Molecular Sequence Data , Mutagenesis, Site-Directed , Mutation , Neutralization Tests/methods , Peptides/chemistry , Protein Binding , Protein Structure, Tertiary , Sequence Homology, Amino Acid
6.
Cell Rep ; 42(7): 112755, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37436899

ABSTRACT

Elicitation of antibodies that neutralize the tier-2 neutralization-resistant isolates that typify HIV-1 transmission has been a long-sought goal. Success with prefusion-stabilized envelope trimers eliciting autologous neutralizing antibodies has been reported in multiple vaccine-test species, though not in humans. To investigate elicitation of HIV-1 neutralizing antibodies in humans, here, we analyze B cells from a phase I clinical trial of the "DS-SOSIP"-stabilized envelope trimer from strain BG505, identifying two antibodies, N751-2C06.01 and N751-2C09.01 (named for donor-lineage.clone), that neutralize the autologous tier-2 strain, BG505. Though derived from distinct lineages, these antibodies form a reproducible antibody class that targets the HIV-1 fusion peptide. Both antibodies are highly strain specific, which we attribute to their partial recognition of a BG505-specific glycan hole and to their binding requirements for a few BG505-specific residues. Prefusion-stabilized envelope trimers can thus elicit autologous tier-2 neutralizing antibodies in humans, with initially identified neutralizing antibodies recognizing the fusion-peptide site of vulnerability.


Subject(s)
AIDS Vaccines , HIV Infections , HIV Seropositivity , HIV-1 , Humans , Antibodies, Neutralizing , env Gene Products, Human Immunodeficiency Virus , HIV Antibodies , Peptides
7.
iScience ; 26(8): 107403, 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37554450

ABSTRACT

Soluble HIV-1-envelope (Env) trimers elicit immune responses that target their solvent-exposed protein bases, the result of removing these trimers from their native membrane-bound context. To assess whether glycosylation could limit these base responses, we introduced sequons encoding potential N-linked glycosylation sites (PNGSs) into base-proximal regions. Expression and antigenic analyses indicated trimers bearing six-introduced PNGSs to have reduced base recognition. Cryo-EM analysis revealed trimers with introduced PNGSs to be prone to disassembly and introduced PNGS to be disordered. Protein-base and glycan-base trimers induced reciprocally symmetric ELISA responses, in which only a small fraction of the antibody response to glycan-base trimers recognized protein-base trimers and vice versa. EM polyclonal epitope mapping revealed glycan-base trimers -even those that were stable biochemically- to elicit antibodies that recognized disassembled trimers. Introduced glycans can thus mask the protein base but their introduction may yield neo-epitopes that dominate the immune response.

8.
J Virol ; 85(9): 4578-85, 2011 May.
Article in English | MEDLINE | ID: mdl-21325411

ABSTRACT

HIV-1 is neutralized by a class of antibodies that preferentially recognize a site formed on the assembled viral spike. Such quaternary structure-specific antibodies have diverse neutralization breadths, with antibodies PG16 and PG9 able to neutralize 70 to 80% of circulating HIV-1 isolates while antibody 2909 is specific for strain SF162. We show that alteration between a rare lysine and a common N-linked glycan at position 160 of HIV-1 gp120 is primarily responsible for toggling between 2909 and PG16/PG9 neutralization sensitivity. Quaternary structure-specific antibodies appear to target antigenic variants of the same epitope, with neutralization breadth determined by the prevalence of recognized variants among circulating isolates.


Subject(s)
Antibodies, Neutralizing/immunology , HIV Antibodies/immunology , HIV Envelope Protein gp120/immunology , HIV-1/immunology , Epitopes/genetics , Epitopes/immunology , Glycosylation , Lysine/metabolism
9.
J Virol ; 85(6): 2524-35, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21191009

ABSTRACT

Monoclonal antibody 2909 belongs to a class of potently neutralizing antibodies that recognize quaternary epitopes on HIV-1. Some members of this class, such as 2909, are strain specific, while others, such as antibody PG16, are broadly neutralizing; all, however, recognize a region on the gp120 envelope glycoprotein that includes two loops (V2 and V3) and forms appropriately only in the oligomeric HIV-1 spike (gp120(3)/gp41(3)). Here we present the crystal structure of 2909 and report structure-function analysis with antibody chimeras composed of 2909 and other members of this antibody class. The 2909 structure was dominated by a heavy-chain third-complementarity-determining region (CDR H3) of 21 residues, which comprised 36% of the combining surface and formed a ß-hairpin club extending ∼20 Å beyond the rest of the antibody. Sequence analysis and mass spectrometry identified sites of tyrosine sulfation at the middle and top of CDR H3; substitutions with phenylalanine either ablated (middle substitution) or substantially diminished (top substitution) neutralization. Chimeric antibodies composed of heavy and light chains, exchanged between 2909 and other members of the class, indicated a substantial lack of complementation. Comparison of 2909 to PG16 (which is tyrosine sulfated and the only other member of the class for which a structure has previously been reported) showed that both utilize protruding, anionic CDR H3s for recognition. Thus, despite some diversity, members of this class share structural and functional similarities, with conserved features of the CDR H3 subdomain likely reflecting prevalent solutions by the human immune system for recognition of a quaternary site of HIV-1 vulnerability.


Subject(s)
Antibodies, Monoclonal/chemistry , Antibodies, Neutralizing/chemistry , HIV Antibodies/chemistry , HIV-1/immunology , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Crystallography, X-Ray , HIV Antibodies/immunology , Humans , Mass Spectrometry , Molecular Sequence Data , Protein Structure, Quaternary , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Sequence Analysis, DNA
10.
Vaccines (Basel) ; 10(11)2022 Nov 12.
Article in English | MEDLINE | ID: mdl-36423012

ABSTRACT

Conjugate-vaccine immunogens require three components: a carrier protein, an antigen, and a crosslinker, capable of coupling antigen to carrier protein, while preserving both T-cell responses from carrier protein and B-cell responses from antigen. We previously showed that the N-terminal eight residues of the HIV-1 fusion peptide (FP8) as an antigen could prime for broad cross-clade neutralizing responses, that recombinant heavy chain of tetanus toxin (rTTHC) as a carrier protein provided optimal responses, and that choice of crosslinker could impact both antigenicity and immunogenicity. Here, we delve more deeply into the impact of varying the linker between FP8 and rTTHC. In specific, we assessed the physical properties, the antigenicity, and the immunogenicity of conjugates for crosslinkers ranging in spacer-arm length from 1.5 to 95.2 Å, with varying hydrophobicity and crosslinking-functional groups. Conjugates coupled with different degrees of multimerization and peptide-to-rTTHC stoichiometry, but all were well recognized by HIV-fusion-peptide-directed antibodies VRC34.01, VRC34.05, PGT151, and ACS202 except for the conjugate with the longest linker (24-PEGylated SMCC; SM(PEG)24), which had lower affinity for ACS202, as did the conjugate with the shortest linker (succinimidyl iodoacetate; SIA), which also had the lowest peptide-to-rTTHC stoichiometry. Murine immunizations testing seven FP8-rTTHC conjugates elicited fusion-peptide-directed antibody responses, with SIA- and SM(PEG)24-linked conjugates eliciting lower responses than the other five conjugates. After boosting with prefusion-closed envelope trimers from strains BG505 clade A and consensus clade C, trimer-directed antibody-binding responses were lower for the SIA-linked conjugate; elicited neutralizing responses were similar, however, though statistically lower for the SM(PEG)24-linked conjugate, when tested against a strain especially sensitive to fusion-peptide-directed responses. Overall, correlation analyses revealed the immunogenicity of FP8-rTTHC conjugates to be negatively impacted by hydrophilicity and extremes of length or low peptide-carrier stoichiometry, but robust to other linker parameters, with several commonly used crosslinkers yielding statistically indistinguishable serological results.

11.
EClinicalMedicine ; 48: 101477, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35783486

ABSTRACT

Background: Advances in therapeutic drugs have increased life-expectancies for HIV-infected individuals, but the need for an effective vaccine remains. We assessed safety and immunogenicity of HIV-1 vaccine, Trimer 4571 (BG505 DS-SOSIP.664) adjuvanted with aluminum hydroxide (alum), in HIV-negative adults. Methods: We conducted a phase I, randomized, open-label, dose-escalation trial at the National Institutes of Health Clinical Center in Bethesda, MD, USA. Eligible participants were HIV-negative, healthy adults between 18-50 years. Participants were randomized 1:1 to receive Trimer 4571 adjuvanted with 500 mcg alum by either the subcutaneous (SC) or intramuscular (IM) route at weeks 0, 8, and 20 in escalating doses of 100 mcg or 500 mcg. The primary objectives were to evaluate the safety and tolerability of Trimer 4571 with a secondary objective of evaluating vaccine-induced antibody responses. The primary and safety endpoints were evaluated in all participants who received at least one dose of Trimer 4571. Trial results were summarized using descriptive statistics. This trial is registered at ClinicalTrials.gov, NCT03783130. Findings: Between March 7 and September 11, 2019, 16 HIV-negative participants were enrolled, including six (38%) males and ten (62%) females. All participants received three doses of Trimer 4571. Solicited reactogenicity was mild to moderate in severity, with one isolated instance of severe injection site redness (6%) following a third 500 mcg SC administration. The most commonly reported solicited symptoms included mild injection site tenderness in 14 (88%) and mild myalgia in six (38%) participants. The most frequent unsolicited adverse event attributed to vaccination was mild injection site pruritus in six (38%) participants. Vaccine-induced seropositivity occurred in seven (44%) participants and resolved in all but one (6%). No serious adverse events occurred. Trimer 4571-specific binding antibodies were detected in all groups two weeks after regimen completion, primarily focused on the glycan-free trimer base. Neutralizing antibody activity was limited to the 500 mcg dose groups. Interpretation: Trimer 4571 was safe, well tolerated, and immunogenic in this first-in-human trial. While this phase 1 trial is limited in size, our results inform and support further evaluation of prefusion-stabilized HIV-1 envelope trimers as a component of vaccine design strategies to generate broadly neutralizing antibodies against HIV-1. Funding: Intramural Research Program of the Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health.

12.
J Virol ; 84(16): 8098-110, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20538861

ABSTRACT

HIV-1 resists neutralization by most antibodies. Two somatically related human antibodies, PG9 and PG16, however, each neutralize 70 to 80% of circulating HIV-1 isolates. Here we present the structure of the antigen-binding fragment of PG16 in monoclinic and orthorhombic lattices at 2.4 and 4.0 A, respectively, and use a combination of structural analysis, paratope dissection, and neutralization assessment to determine the functional relevance of three unusual PG9/PG16 features: N-linked glycosylation, extensive affinity maturation, and a heavy chain-third complementarity-determining region (CDR H3) that is one of the longest observed in human antibodies. Glycosylation extended off the side of the light chain variable domain and was not required for neutralization. The CDR H3 formed an axe-shaped subdomain, which comprised 42% of the CDR surface, with the axe head looming approximately 20 A above the other combining loops. Comprehensive sets of chimeric swaps between PG9 and PG16 of light chain, heavy chain, and CDR H3 were employed to decipher structure-function relationships. Chimeric swaps generally complemented functionally, with differences in PG9/PG16 neutralization related primarily to residue differences in CDR H3. Meanwhile, chimeric reversions to genomic V genes showed isolate-dependent effects, with affinity maturation playing a significant role in augmenting neutralization breadth (P = 0.036) and potency (P < 0.0001). The structural and functional details of extraordinary CDR H3 and extensive affinity maturation provide insights into the neutralization mechanism of and the elicitation pathway for broadly neutralizing antibodies like PG9 and PG16.


Subject(s)
Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/immunology , HIV Antibodies/chemistry , HIV Antibodies/immunology , HIV-1/immunology , Amino Acid Sequence , Antibodies, Neutralizing/metabolism , Antibody Affinity , Complementarity Determining Regions/chemistry , Complementarity Determining Regions/immunology , Crystallography, X-Ray , Glycosylation , HIV Antibodies/metabolism , Humans , Models, Molecular , Molecular Sequence Data , Neutralization Tests , Protein Structure, Quaternary , Sequence Alignment
13.
Article in English | MEDLINE | ID: mdl-21821902

ABSTRACT

MutSß is a eukaryotic mismatch repair protein that preferentially targets extrahelical unpaired nucleotides and shares partial functional redundancy with MutSα (MSH2-MSH6). Although mismatch recognition by MutSα has been shown to involve a conserved Phe-X-Glu motif, little is known about the lesion-binding mechanism of MutSß. Combined MSH3/MSH6 deficiency triggers a strong predisposition to cancer in mice and defects in msh2 and msh6 account for roughly half of hereditary nonpolyposis colorectal cancer mutations. These three MutS homologs are also believed to play a role in trinucleotide repeat instability, which is a hallmark of many neurodegenerative disorders. The baculovirus overexpression and purification of recombinant human MutSß and three truncation mutants are presented here. Binding assays with heteroduplex DNA were carried out for biochemical characterization. Crystallization and preliminary X-ray diffraction analysis of the protein bound to a heteroduplex DNA substrate are also reported.


Subject(s)
MutS Homolog 2 Protein/chemistry , Crystallization , Crystallography, X-Ray , Humans , MutS Homolog 2 Protein/genetics , MutS Homolog 2 Protein/isolation & purification , Mutation , Protein Binding
14.
Nat Commun ; 12(1): 6470, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34753907

ABSTRACT

Antibody-Framework-to-Antigen Distance (AFAD) - the distance between the body of an antibody and a protein antigen - is an important parameter governing antibody recognition. Here, we quantify AFAD for ~2,000 non-redundant antibody-protein-antigen complexes in the Protein Data Bank. AFADs showed a gaussian distribution with mean of 16.3 Å and standard deviation (σ) of 2.4 Å. Notably, antibody-antigen complexes with extended AFADs (>3σ) were exclusively human immunodeficiency virus-type 1 (HIV-1)-neutralizing antibodies. High correlation (R2 = 0.8110) was observed between AFADs and glycan coverage, as assessed by molecular dynamics simulations of the HIV-1-envelope trimer. Especially long AFADs were observed for antibodies targeting the glycosylated trimer apex, and we tested the impact of introducing an apex-glycan hole (N160K); the cryo-EM structure of the glycan hole-targeting HIV-1-neutralizing antibody 2909 in complex with an N160K-envelope trimer revealed a substantially shorter AFAD. Overall, extended AFADs exclusively recognized densely glycosylated surfaces, with the introduction of a glycan hole enabling closer recognition.


Subject(s)
Antigen-Antibody Complex/immunology , Broadly Neutralizing Antibodies/immunology , HIV Antibodies/immunology , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/metabolism , Antigen-Antibody Complex/metabolism , Epitopes/immunology , Epitopes/metabolism , HIV Infections/immunology , HIV Infections/metabolism , HIV-1/immunology , HIV-1/metabolism , Humans , Molecular Dynamics Simulation
15.
Vaccine ; 39(25): 3379-3387, 2021 06 08.
Article in English | MEDLINE | ID: mdl-34020817

ABSTRACT

Metastable glycosylated immunogens present challenges for GMP manufacturing. The HIV-1 envelope (Env) glycoprotein trimer is covered by N-linked glycan comprising half its mass and requires both trimer assembly and subunit cleavage to fold into a prefusion-closed conformation. This conformation, the vaccine-desired antigenic state, is both metastable to structural rearrangement and labile to subunit dissociation. Prior reported GMP manufacturing for a soluble trimer stabilized in a near-native state by disulfide (SOS) and Ile-to-Pro (IP) mutations has employed affinity methods based on antibody 2G12, which recognizes only ~30% of circulating HIV strains. Here, we develop a scalable manufacturing process based on commercially available, non-affinity resins, and we apply the process to current GMP (cGMP) production of trimers from clades A and C, which have been found to boost cross-clade neutralizing responses in vaccine-test species. The clade A trimer, which we named "BG505 DS-SOSIP.664", contained an engineered disulfide (201C-433C; DS) within gp120, which further stabilized this trimer in a prefusion-closed conformation resistant to CD4-induced triggering. BG505 DS-SOSIP.664 was expressed in a CHO-DG44 stable cell line and purified with initial and final tangential flow filtration steps, three commercially available resin-based chromatography steps, and two orthogonal viral clearance steps. The non-affinity purification enabled efficient scale-up, with a 250 L-scale cGMP run yielding 9.6 g of purified BG505 DS-SOSIP.664. Antigenic analysis indicated retention of a prefusion-closed conformation, including recognition by apex-directed and fusion peptide-directed antibodies. The developed manufacturing process was suitable for 50 L-scale production of a second prefusion-stabilized Env trimer vaccine candidate, ConC-FP8v2 RnS-3mut-2G-SOSIP.664, yielding 7.8 g of this consensus clade C trimer. The successful process development and purification scale-up of HIV-1 Env trimers from different clades by using commercially available materials provide experimental demonstration for cGMP manufacturing of trimeric HIV-Env vaccine immunogens, in an antigenically desired conformation, without the use of costly affinity resins.


Subject(s)
AIDS Vaccines , HIV-1 , Antibodies, Neutralizing , HIV Antibodies , HIV Antigens , HIV-1/genetics , Protein Multimerization , env Gene Products, Human Immunodeficiency Virus/genetics
16.
Cell Rep ; 32(5): 107981, 2020 08 04.
Article in English | MEDLINE | ID: mdl-32755575

ABSTRACT

The HIV fusion peptide (FP) is a promising vaccine target. FP-directed monoclonal antibodies from vaccinated macaques have been identified that neutralize up to ∼60% of HIV strains; these vaccinations, however, have involved ∼1 year with an extended neutralization-eclipse phase without measurable serum neutralization. Here, in 32 macaques, we test seven vaccination regimens, each comprising multiple immunizations of FP-carrier conjugates and HIV envelope (Env) trimers. Comparisons of vaccine regimens reveal FP-carrier conjugates to imprint cross-clade neutralizing responses and a cocktail of FP conjugate and Env trimer to elicit the earliest broad responses. We identify a signature, appearing as early as week 6 and involving the frequency of B cells recognizing both FP and Env trimer, predictive of vaccine-elicited breadth ∼1 year later. Immune monitoring of B cells in response to vaccination can thus enable vaccine insights even in the absence of serum neutralization, here identifying FP imprinting, cocktail approach, and early signature as means to improve FP-directed vaccine responses.


Subject(s)
Antibodies, Neutralizing/immunology , B-Lymphocytes/immunology , HIV Antibodies/immunology , Monitoring, Immunologic , Peptides/immunology , Recombinant Fusion Proteins/immunology , AIDS Vaccines/immunology , Animals , HIV Antigens/immunology , HIV Infections/immunology , Hemocyanins/metabolism , Immunization , Macaca mulatta , Male , Polysaccharides/metabolism , Protein Multimerization , env Gene Products, Human Immunodeficiency Virus/immunology
17.
Sci Rep ; 10(1): 3032, 2020 02 20.
Article in English | MEDLINE | ID: mdl-32080235

ABSTRACT

The vaccine elicitation of broadly neutralizing antibodies against HIV-1 is a long-sought goal. We previously reported the amino-terminal eight residues of the HIV-1-fusion peptide (FP8) - when conjugated to the carrier protein, keyhole limpet hemocyanin (KLH) - to be capable of inducing broadly neutralizing responses against HIV-1 in animal models. However, KLH is a multi-subunit particle derived from a natural source, and its manufacture as a clinical product remains a challenge. Here we report the preclinical development of recombinant tetanus toxoid heavy chain fragment (rTTHC) linked to FP8 (FP8-rTTHC) as a suitable FP-conjugate vaccine immunogen. We assessed 16 conjugates, made by coupling the 4 most prevalent FP8 sequences with 4 carrier proteins: the aforementioned KLH and rTTHC; the H. influenzae protein D (HiD); and the cross-reactive material from diphtheria toxin (CRM197). While each of the 16 FP8-carrier conjugates could elicit HIV-1-neutralizing responses, rTTHC conjugates induced higher FP-directed responses overall. A Sulfo-SIAB linker yielded superior results over an SM(PEG)2 linker but combinations of carriers, conjugation ratio of peptide to carrier, or choice of adjuvant (Adjuplex or Alum) did not significantly impact elicited FP-directed neutralizing responses in mice. Overall, SIAB-linked FP8-rTTHC appears to be a promising vaccine candidate for advancing to clinical assessment.


Subject(s)
AIDS Vaccines/immunology , HIV-1/immunology , Peptides/immunology , Recombinant Fusion Proteins/immunology , Adjuvants, Immunologic , Amino Acid Sequence , Animals , Cross Reactions/immunology , Female , Immunization , Mice, Inbred BALB C , Mice, Inbred C57BL , Neutralization Tests , Peptides/chemistry
18.
J Mol Biol ; 368(1): 105-18, 2007 Apr 20.
Article in English | MEDLINE | ID: mdl-17331537

ABSTRACT

Escherichia coli DNA topoisomerase III belongs to the type IA family of DNA topoisomerases, which transiently cleave single-stranded DNA (ssDNA) via a 5' phosphotyrosine intermediate. We have solved crystal structures of wild-type E. coli topoisomerase III bound to an eight-base ssDNA molecule in three different pH environments. The structures reveal the enzyme in three distinct conformational states while bound to DNA. One conformation resembles the one observed previously with a DNA-bound, catalytically inactive mutant of topoisomerase III where DNA binding realigns catalytic residues to form a functional active site. Another conformation represents a novel intermediate in which DNA is bound along the ssDNA-binding groove but does not enter the active site, which remains in a catalytically inactive, closed state. A third conformation shows an intermediate state where the enzyme is still in a closed state, but the ssDNA is starting to invade the active site. For the first time, the active site region in the presence of both the catalytic tyrosine and ssDNA substrate is revealed for a type IA DNA topoisomerase, although there is no evidence of ssDNA cleavage. Comparative analysis of the various conformational states suggests a sequence of domain movements undertaken by the enzyme upon substrate binding.


Subject(s)
DNA Topoisomerases, Type I/chemistry , DNA Topoisomerases, Type I/metabolism , DNA, Bacterial/metabolism , Escherichia coli/enzymology , DNA, Single-Stranded/metabolism , Models, Biological , Models, Molecular , Protein Binding , Protein Conformation , Protein Structure, Quaternary
19.
Protein Sci ; 16(10): 2240-50, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17766373

ABSTRACT

We report the design and engineering of a robust, reagentless fluorescent glucose biosensor based on the periplasmic glucose-binding protein obtained from Thermotoga maritima (tmGBP). The gene for this protein was cloned from genomic DNA and overexpressed in Escherichia coli, the identity of its cognate sugar was confirmed, ligand binding was studied, and the structure of its glucose complex was solved to 1.7 Angstrom resolution by X-ray crystallography. TmGBP is specific for glucose and exhibits high thermostability (midpoint of thermal denaturation is 119 +/- 1 degrees C and 144 +/- 2 degrees C in the absence and presence of 1 mM glucose, respectively). A series of fluorescent conjugates was constructed by coupling single, environmentally sensitive fluorophores to unique cysteines introduced by site-specific mutagenesis at positions predicted to be responsive to ligand-induced conformational changes based on the structure. These conjugates were screened to identify engineered tmGBPs that function as reagentless fluorescent glucose biosensors. The Y13C*Cy5 conjugate is bright, gives a large response to glucose over concentration ranges appropriate for in vivo monitoring of blood glucose levels (1-30 mM), and can be immobilized in an orientation-specific manner in microtiter plates to give a reversible response to glucose. The immobilized protein retains its response after long-term storage at room temperature.


Subject(s)
Bacterial Proteins/chemistry , Carrier Proteins/chemistry , Fluorescent Dyes/chemistry , Glucose/analysis , Thermotoga maritima , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biosensing Techniques , Carbocyanines/chemistry , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cloning, Molecular , Crystallography, X-Ray , Glucose/chemistry , Glucose/metabolism , Hydrogen Bonding , Ligands , Models, Molecular , Mutagenesis, Site-Directed , Thermotoga maritima/genetics
20.
J Mol Biol ; 362(2): 259-70, 2006 Sep 15.
Article in English | MEDLINE | ID: mdl-16904687

ABSTRACT

Periplasmic binding proteins (PBPs) comprise a protein superfamily that is involved in prokaryotic solute transport and chemotaxis. These proteins have been used to engineer reagentless biosensors to detect natural or non-natural ligands. There is considerable interest in obtaining very stable members of this superfamily from thermophilic bacteria to use as robust engineerable parts in biosensor development. Analysis of the recently determined genome sequence of Thermus thermophilus revealed the presence of more than 30 putative PBPs in this thermophile. One of these is annotated as a glucose binding protein (GBP) based on its genetic linkage to genes that are homologous to an ATP-binding cassette glucose transport system, although the PBP sequence is homologous to periplasmic maltose binding proteins (MBPs). Here we present the cloning, over-expression, characterization of cognate ligands, and determination of the X-ray crystal structure of this gene product. We find that it is a very stable (apo-protein Tm value is 100(+/- 2) degrees C; complexes 106(+/- 3) degrees C and 111(+/- 1) degrees C for glucose and galactose, respectively) glucose (Kd value is 0.08(+/- 0.03) microM) and galactose (Kd value is 0.94(+/- 0.04) microM) binding protein. Determination of the X-ray crystal structure revealed that this T. thermophilus glucose binding protein (ttGBP) is structurally homologous to MBPs rather than other GBPs. The di or tri-saccharide ligands in MBPs are accommodated in long relatively shallow grooves. In the ttGBP binding site, this groove is partially filled by two loops and an alpha-helix, which create a buried binding site that allows binding of only monosaccharides. Comparison of ttGBP and MBP provides a clear example of structural adaptations by which the size of ligand binding sites can be controlled in the PBP super family.


Subject(s)
Bacterial Proteins/chemistry , Disaccharides/metabolism , Glucose/metabolism , Monosaccharides/metabolism , Periplasmic Binding Proteins/chemistry , Protein Structure, Tertiary , Thermus thermophilus/chemistry , Amino Acid Sequence , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Binding Sites , Carrier Proteins/chemistry , Carrier Proteins/genetics , Crystallography, X-Ray , Hydrogen Bonding , Ligands , Maltose-Binding Proteins , Models, Molecular , Molecular Sequence Data , Periplasmic Binding Proteins/classification , Periplasmic Binding Proteins/genetics , Periplasmic Binding Proteins/metabolism , Protein Binding , Protein Denaturation , Sequence Alignment , Thermus thermophilus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL