Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Med Genet ; 61(4): 369-377, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-37935568

ABSTRACT

BACKGROUND: Titinopathies are caused by mutations in the titin gene (TTN). Titin is the largest known human protein; its gene has the longest coding phase with 364 exons. Titinopathies are very complex neuromuscular pathologies due to the variable age of onset of symptoms, the great diversity of pathological and muscular impairment patterns (cardiac, skeletal muscle or mixed) and both autosomal dominant and recessive modes of transmission. Until now, only few CNVs in TTN have been reported without clear genotype-phenotype associations. METHODS: Our study includes eight families with dominant titinopathies. We performed next-generation sequencing or comparative genomic hybridisation array analyses and found CNVs in the TTN gene. We characterised these CNVs by RNA sequencing (RNAseq) analyses in six patients' muscles and performed genotype-phenotype inheritance association study by combining the clinical and biological data of these eight families. RESULTS: Seven deletion-type CNVs in the TTN gene were identified among these families. Genotype and RNAseq results showed that five deletions do not alter the reading frame and one is out-of-reading frame. The main phenotype identified was distal myopathy associated with contractures. The analysis of morphological, clinical and genetic data and imaging let us draw new genotype-phenotype associations of titinopathies. CONCLUSION: Identifying TTN CNVs will further increase diagnostic sensitivity in these complex neuromuscular pathologies. Our cohort of patients enabled us to identify new deletion-type CNVs in the TTN gene, with unexpected autosomal dominant transmission. This is valuable in establishing new genotype-phenotype associations of titinopathies, mainly distal myopathy in most of the patients.


Subject(s)
Distal Myopathies , Humans , Connectin/genetics , Distal Myopathies/genetics , DNA Copy Number Variations/genetics , Muscle, Skeletal/pathology , Mutation/genetics , Phenotype
2.
N Engl J Med ; 385(11): 996-1004, 2021 09 09.
Article in English | MEDLINE | ID: mdl-34496175

ABSTRACT

BACKGROUND: Cerebral cavernous malformations (CCMs) are common sporadic and inherited vascular malformations of the central nervous system. Although familial CCMs are linked to loss-of-function mutations in KRIT1 (CCM1), CCM2, or PDCD10 (CCM3), the genetic cause of sporadic CCMs, representing 80% of cases, remains incompletely understood. METHODS: We developed two mouse models harboring mutations identified in human meningiomas with the use of the prostaglandin D2 synthase (PGDS) promoter. We performed targeted DNA sequencing of surgically resected CCMs from patients and confirmed our findings by droplet digital polymerase-chain-reaction analysis. RESULTS: We found that in mice expressing one of two common genetic drivers of meningioma - Pik3ca H1047R or AKT1 E17K - in PGDS-positive cells, a spectrum of typical CCMs develops (in 22% and 11% of the mice, respectively) instead of meningiomas, which prompted us to analyze tissue samples from sporadic CCMs from 88 patients. We detected somatic activating PIK3CA and AKT1 mutations in 39% and 1%, respectively, of lesion tissue from the patients. Only 10% of lesions harbored mutations in the CCM genes. We analyzed lesions induced by the activating mutations Pik3ca H1074R and AKT1 E17K in mice and identified the PGDS-expressing pericyte as the probable cell of origin. CONCLUSIONS: In tissue samples from sporadic CCMs, mutations in PIK3CA were represented to a greater extent than mutations in any other gene. The contribution of somatic mutations in the genes that cause familial CCMs was comparatively small. (Funded by the Fondation ARC pour la Recherche contre le Cancer and others.).


Subject(s)
Class I Phosphatidylinositol 3-Kinases/genetics , Intracranial Arteriovenous Malformations/genetics , Mutation , Proto-Oncogene Proteins c-akt/genetics , Animals , Disease Models, Animal , Female , Humans , Intracranial Arteriovenous Malformations/pathology , KRIT1 Protein/genetics , Male , Meningioma/genetics , Mice , Mice, Inbred Strains
3.
Ann Pathol ; 40(6): 463-467, 2020 Nov.
Article in French | MEDLINE | ID: mdl-32718767

ABSTRACT

HIV-related lymphoid hyperplasia has been exceptionally described outside lymph nodes. To our knowledge, 3 cases of nasopharyngeal localisation have been described in the literature. We report here an intracranial localisation with an important ophthalmological clinical impact. Our observation allows us to approach the differential diagnoses of intracranial lesions in the HIV-positive patient, to analyse the differential diagnoses of benign lymphoid hyperplasia and to discuss the therapeutic options.


Subject(s)
HIV Infections , Pseudolymphoma , Diagnosis, Differential , HIV Infections/complications , Humans , Hyperplasia , Pseudolymphoma/diagnosis
4.
Nature ; 498(7455): 492-6, 2013 Jun 27.
Article in English | MEDLINE | ID: mdl-23748444

ABSTRACT

Cerebral cavernous malformation (CCM) is a vascular dysplasia, mainly localized within the brain and affecting up to 0.5% of the human population. CCM lesions are formed by enlarged and irregular blood vessels that often result in cerebral haemorrhages. CCM is caused by loss-of-function mutations in one of three genes, namely CCM1 (also known as KRIT1), CCM2 (OSM) and CCM3 (PDCD10), and occurs in both sporadic and familial forms. Recent studies have investigated the cause of vascular dysplasia and fragility in CCM, but the in vivo functions of this ternary complex remain unclear. Postnatal deletion of any of the three Ccm genes in mouse endothelium results in a severe phenotype, characterized by multiple brain vascular malformations that are markedly similar to human CCM lesions. Endothelial-to-mesenchymal transition (EndMT) has been described in different pathologies, and it is defined as the acquisition of mesenchymal- and stem-cell-like characteristics by the endothelium. Here we show that endothelial-specific disruption of the Ccm1 gene in mice induces EndMT, which contributes to the development of vascular malformations. EndMT in CCM1-ablated endothelial cells is mediated by the upregulation of endogenous BMP6 that, in turn, activates the transforming growth factor-ß (TGF-ß) and bone morphogenetic protein (BMP) signalling pathway. Inhibitors of the TGF-ß and BMP pathway prevent EndMT both in vitro and in vivo and reduce the number and size of vascular lesions in CCM1-deficient mice. Thus, increased TGF-ß and BMP signalling, and the consequent EndMT of CCM1-null endothelial cells, are crucial events in the onset and progression of CCM disease. These studies offer novel therapeutic opportunities for this severe, and so far incurable, pathology.


Subject(s)
Disease Progression , Epithelial-Mesenchymal Transition , Hemangioma, Cavernous, Central Nervous System/pathology , Animals , Bone Morphogenetic Protein 6/antagonists & inhibitors , Bone Morphogenetic Protein 6/metabolism , Bone Morphogenetic Protein 6/pharmacology , Disease Models, Animal , Epithelial-Mesenchymal Transition/drug effects , Epithelial-Mesenchymal Transition/genetics , Hemangioma, Cavernous, Central Nervous System/genetics , Humans , KRIT1 Protein , Mice , Microtubule-Associated Proteins/deficiency , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Proto-Oncogene Proteins/deficiency , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics , Transforming Growth Factor beta/antagonists & inhibitors , Transforming Growth Factor beta/metabolism , Up-Regulation
5.
Eur Heart J ; 38(10): 751-758, 2017 Mar 07.
Article in English | MEDLINE | ID: mdl-27941019

ABSTRACT

AIMS: To describe the incidence and identify predictors of sudden death (SD), major conduction defects and sustained ventricular tachyarrhythmias (VTA) in myotonic dystrophy type 1 (DM1). METHODS AND RESULTS: We retrospectively enrolled 1388 adults with DM1 referred to six French medical centres between January 2000 and October 2013. We confirmed their vital status, classified all deaths, and determined the incidence of major conduction defects requiring permanent pacing and sustained VTA. We searched for predictors of overall survival, SD, major conduction defects, and sustained VTA by Cox regression analysis. Over a median 10-year follow-up, 253 (18.2%) patients died, 39 (3.6%) suddenly. Analysis of the cardiac rhythm at the time of the 39 SD revealed sustained VTA in 9, asystole in 5, complete atrioventricular block in 1 and electromechanical dissociation in two patients. Non-cardiac causes were identified in the five patients with SD who underwent autopsies. Major conduction defects developed in 143 (19.3%) and sustained VTA in 26 (2.3%) patients. By Cox regression analysis, age, family history of SD and left bundle branch block were independent predictors of SD, while age, male sex, electrocardiographic conduction abnormalities, syncope, and atrial fibrillation were independent predictors of major conduction defects; non-sustained VTA was the only predictor of sustained VTA. CONCLUSIONS: SD was a frequent mode of death in DM1, with multiple mechanisms involved. Major conduction defects were by far more frequent than sustained VTA, whose only independent predictor was a personal history of non-sustained VTA. ClinicalTrials.gov no: NCT01136330.


Subject(s)
Cardiac Conduction System Disease/etiology , Death, Sudden, Cardiac/etiology , Myotonic Dystrophy/complications , Adult , Age Factors , Atrioventricular Block/etiology , Atrioventricular Block/mortality , Bundle-Branch Block/etiology , Bundle-Branch Block/mortality , Cardiac Conduction System Disease/mortality , Cardiac Pacing, Artificial , Defibrillators, Implantable , Female , Humans , Male , Middle Aged , Myotonic Dystrophy/mortality , Pedigree , Retrospective Studies , Tachycardia, Ventricular/etiology , Tachycardia, Ventricular/mortality
6.
Biochem Biophys Res Commun ; 494(1-2): 133-137, 2017 12 09.
Article in English | MEDLINE | ID: mdl-29054413

ABSTRACT

Mitochondrial (mt) DNA-associated NARP (neurogenic muscle weakness, ataxia, and retinitis pigmentosa) syndrome is due to mutation in the MT-ATP6 gene. We report the case of a 18-year-old man who presented with deafness, a myoclonic epilepsy, muscle weakness since the age of 10 and further developed a retinitis pigmentosa and ataxia. The whole mtDNA analysis by next-generation sequencing revealed the presence of the 2 bp microdeletion m.9127-9128 del AT in the ATP6 gene at 82% heteroplasmy in muscle and to a lower load in blood (10-20%) and fibroblasts (50%). Using the patient's fibroblasts, we demonstrated a 60% reduction of the oligomycin-sensitive ATPase hydrolytic activity, a 40% decrease in the ATP synthesis and determination of the mitochondrial membrane potential using the fluorescent probe tetramethylrhodamine, ethyl ester indicated a significant reduction in oligomycin sensitivity. In conclusion, we demonstrated that this novel AT deletion in the ATP6 gene is pathogenic and responsible for the NARP syndrome.


Subject(s)
Mitochondrial Myopathies/enzymology , Mitochondrial Myopathies/genetics , Mitochondrial Proton-Translocating ATPases/genetics , Retinitis Pigmentosa/enzymology , Retinitis Pigmentosa/genetics , Sequence Deletion , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Adenosine Triphosphate/metabolism , Base Sequence , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cells, Cultured , DNA Mutational Analysis , DNA, Mitochondrial/genetics , High-Throughput Nucleotide Sequencing , Humans , Male , Membrane Potential, Mitochondrial/drug effects , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mitochondrial Proton-Translocating ATPases/metabolism , Oligomycins/pharmacology , Syndrome , Young Adult
7.
Ann Neurol ; 80(5): 741-753, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27666438

ABSTRACT

OBJECTIVE: Cerebral small vessel disease (cSVD) is a heterogeneous group of disorders. Screening of known cSVD genes identifies the causative mutation in <15% of familial cSVD cases. We sought to identify novel causes of cSVD. METHODS: We used linkage analysis and exome sequencing to identify the causal mutation in a French cSVD family. The identified candidate gene was then screened in 202 cSVD unrelated probands, including 1 proband from the first reported pontine autosomal dominant microangiopathy with leukoencephalopathy (PADMAL) family. Sanger sequencing was used to confirm variants in all mutated probands and analyze their segregation in probands' relatives. Mutation consequences were assessed with luciferase reporter assays and real-time quantitative polymerase chain reaction (RT-qPCR). RESULTS: A candidate heterozygous variant located in a predicted miR-29 microRNA binding site, within the 3' untranslated region of COL4A1, was identified in the large French cSVD family. Five additional unrelated probands, including the PADMAL proband, harbored heterozygous variants in this microRNA binding site. Variants cosegregated with the affected phenotype, and cumulative logarithm of odds score reached 6.03, establishing linkage to this locus. A highly significant difference was observed when comparing the number of variants within this binding site in cases and controls (p = 1.77 × 10E-12). RT-qPCR analyses of patients' primary fibroblasts and luciferase reporter assays strongly favor an upregulation of COL4A1 mediated by disruption of miR-29 binding to its target site. Magnetic resonance imaging features were characterized by the presence of multiple pontine infarcts in all symptomatic mutation carriers. INTERPRETATION: Mutations upregulating COL4A1 expression lead to PADMAL, a severe early onset ischemic cSVD, distinct from the various phenotypes associated with COL4A1 missense glycine mutations. Ann Neurol 2016;80:741-753.


Subject(s)
Cerebral Small Vessel Diseases , Collagen Type IV/metabolism , Leukoencephalopathies , MicroRNAs/metabolism , Pons/diagnostic imaging , Age of Onset , Cerebral Small Vessel Diseases/diagnostic imaging , Cerebral Small Vessel Diseases/genetics , Cerebral Small Vessel Diseases/physiopathology , Collagen Type IV/genetics , Exome , Female , France , Genetic Linkage , Humans , Leukoencephalopathies/diagnostic imaging , Leukoencephalopathies/genetics , Leukoencephalopathies/physiopathology , Male , Middle Aged , Mutation , Pedigree , Protein Binding , Up-Regulation
8.
Mol Ther ; 22(1): 219-25, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23831596

ABSTRACT

Oculopharyngeal muscular dystrophy (OPMD) is a late-onset autosomal dominant genetic disease mainly characterized by ptosis and dysphagia. We conducted a phase I/IIa clinical study (ClinicalTrials.gov NCT00773227) using autologous myoblast transplantation following myotomy in adult OPMD patients. This study included 12 patients with clinical diagnosis of OPMD, indication for cricopharyngeal myotomy, and confirmed genetic diagnosis. The feasibility and safety end points of both autologous myoblast transplantation and the surgical procedure were assessed by videoendoscopy in addition to physical examinations. Potential therapeutic benefit was also assessed through videoendoscopy and videofluoroscopy of swallowing, quality of life score, dysphagia grade, and a drink test. Patients were injected with a median of 178 million myoblasts following myotomy. Short and long-term (2 years) safety and tolerability were observed in all the patients, with no adverse effects. There was an improvement in the quality of life score for all 12 patients, and no functional degradation in swallowing was observed for 10 patients. A cell dose-dependant improvement in swallowing was even observed in this study. This trial supports the hypothesis that a local injection of autologous myoblasts in the pharyngeal muscles is a safe and efficient procedure for OPMD patients.


Subject(s)
Muscular Dystrophy, Oculopharyngeal/therapy , Myoblasts, Skeletal/transplantation , Aged , Esophageal Sphincter, Upper/metabolism , Esophageal Sphincter, Upper/physiopathology , Female , Humans , Male , Middle Aged , Muscular Dystrophy, Oculopharyngeal/diagnosis , Muscular Dystrophy, Oculopharyngeal/genetics , Pharyngeal Muscles/metabolism , Pharyngeal Muscles/physiopathology , Pharyngeal Muscles/surgery , Transplantation, Autologous , Treatment Outcome
9.
J Neurol Neurosurg Psychiatry ; 85(3): 345-53, 2014 Mar.
Article in English | MEDLINE | ID: mdl-23606733

ABSTRACT

OBJECTIVE: Several families with characteristic features of hereditary myopathy with early respiratory failure (HMERF) have remained without genetic cause. This international study was initiated to clarify epidemiology and the genetic underlying cause in these families, and to characterise the phenotype in our large cohort. METHODS: DNA samples of all currently known families with HMERF without molecular genetic cause were obtained from 12 families in seven different countries. Clinical, histopathological and muscle imaging data were collected and five biopsy samples made available for further immunohistochemical studies. Genotyping, exome sequencing and Sanger sequencing were used to identify and confirm sequence variations. RESULTS: All patients with clinical diagnosis of HMERF were genetically solved by five different titin mutations identified. One mutation has been reported while four are novel, all located exclusively in the FN3 119 domain (A150) of A-band titin. One of the new mutations showed semirecessive inheritance pattern with subclinical myopathy in the heterozygous parents. Typical clinical features were respiratory failure at mid-adulthood in an ambulant patient with very variable degree of muscle weakness. Cytoplasmic bodies were retrospectively observed in all muscle biopsy samples and these were reactive for myofibrillar proteins but not for titin. CONCLUSIONS: We report an extensive collection of families with HMERF with five different mutations in exon 343 of TTN, which establishes this exon as the primary target for molecular diagnosis of HMERF. Our relatively large number of new families and mutations directly implies that HMERF is not extremely rare, not restricted to Northern Europe and should be considered in undetermined myogenic respiratory failure.


Subject(s)
Genetic Diseases, Inborn/epidemiology , Muscular Diseases/epidemiology , Respiratory Insufficiency/epidemiology , Adult , Aged , Connectin/genetics , Exome/genetics , Female , Genetic Diseases, Inborn/genetics , Genetic Diseases, Inborn/pathology , Genetic Linkage/genetics , Genetic Predisposition to Disease/genetics , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Muscle, Skeletal/pathology , Muscular Diseases/genetics , Muscular Diseases/pathology , Mutation/genetics , Pedigree , Phenotype , Respiratory Insufficiency/genetics , Respiratory Insufficiency/pathology
10.
Cells ; 12(2)2023 01 16.
Article in English | MEDLINE | ID: mdl-36672271

ABSTRACT

A single missense variant of the TMPO/LAP2α gene, encoding LAP2 proteins, has been associated with cardiomyopathy in two brothers. To further evaluate its role in cardiac muscle, we included TMPO in our cardiomyopathy diagnostic gene panel. A screening of ~5000 patients revealed three novel rare TMPO heterozygous variants in six males diagnosed with hypertrophic or dilated cardiomypathy. We identified in different cellular models that (1) the frameshift variant LAP2α p.(Gly395Glufs*11) induced haploinsufficiency, impeding cell proliferation and/or producing a truncated protein mislocalized in the cytoplasm; (2) the C-ter missense variant LAP2α p.(Ala240Thr) led to a reduced proximity events between LAP2α and the nucleosome binding protein HMGN5; and (3) the LEM-domain missense variant p.(Leu124Phe) decreased both associations of LAP2α/ß with the chromatin-associated protein BAF and inhibition of the E2F1 transcription factor activity which is known to be dependent on Rb, partner of LAP2α. Additionally, the LAP2α expression was lower in the left ventricles of male mice compared to females. In conclusion, our study reveals distinct altered properties of LAP2 induced by these TMPO/LAP2 variants, leading to altered cell proliferation, chromatin structure or gene expression-regulation pathways, and suggests a potential sex-dependent role of LAP2 in myocardial function and disease.


Subject(s)
Cardiomyopathies , Chromosomes , Female , Male , Mice , Animals , Cardiomyopathies/genetics , Chromatin , Phenotype
11.
Cancer ; 118(18): 4545-54, 2012 Sep 15.
Article in English | MEDLINE | ID: mdl-22359215

ABSTRACT

BACKGROUND: O(6) -methylguanine-DNA methyltransferase (MGMT) promoter methylation status was proposed as a prognostic biomarker for patients with glioblastoma. However, the prognostic impact of MGMT in patients with newly diagnosed glioblastoma who receive carmustine-releasing wafers (Gliadel) along with temozolomide (TMZ) is still unknown. METHODS: MGMT promoter methylation status and protein expression were analyzed in formalin-fixed, paraffin-embedded tumor specimens obtained from 111 French patients with newly diagnosed glioblastoma. Patients received the Gliadel wafers followed by radiotherapy plus concomitant and adjuvant TMZ chemotherapy while they were enrolled in a French multicenter prospective study. RESULTS: For the whole cohort, the median overall survival (OS) was 17.5 months, and the progression-free survival was 10.3 months. Patients with tumors that harbored MGMT methylation had a significantly longer OS compared with patients who had wild-type MGMT (21.7 months vs 15.1 months; P = .025). Similarly, patients who had low MGMT protein expression (≤15%) had a significantly improved OS compared with patients who had high MGMT expression (27.0 months vs 15.1 months; P = .021). The extent of resection was the strongest clinical predictor of outcome. In multivariate Cox models that were adjusted for sex, performance status, and extent of surgery, both MGMT methylation and protein expression were identified as independent prognosticators, and the finding was validated internally using a bootstrap resampling technique. Discrepancies were identified between protein expression and MGMT methylation status, thus suggesting that the 2 assays probably assess different biologic features. CONCLUSIONS: MGMT promoter methylation status and low MGMT expression both were identified as positive prognosticators in patients with newly diagnosed glioblastoma who underwent surgical resection and received Gliadel wafer implants followed by adjuvant radiotherapy and concomitant oral TMZ chemotherapy (the Stupp protocol).


Subject(s)
Brain Neoplasms/genetics , Brain Neoplasms/therapy , DNA Methylation , Glioblastoma/genetics , Glioblastoma/therapy , O(6)-Methylguanine-DNA Methyltransferase/genetics , Promoter Regions, Genetic , Adult , Aged , Antineoplastic Agents, Alkylating/therapeutic use , Biomarkers, Tumor , Carmustine/therapeutic use , Chemoradiotherapy , Chemotherapy, Adjuvant , Combined Modality Therapy , Dacarbazine/analogs & derivatives , Dacarbazine/therapeutic use , Disease-Free Survival , Female , Humans , Male , Middle Aged , O(6)-Methylguanine-DNA Methyltransferase/biosynthesis , Prognosis , Temozolomide
12.
J Cell Sci ; 123(Pt 7): 1073-80, 2010 Apr 01.
Article in English | MEDLINE | ID: mdl-20332120

ABSTRACT

Little is known about the molecular mechanisms that regulate the organization of vascular lumen. In this paper we show that lumen formation correlates with endothelial polarization. Adherens junctions (AJs) and VE-cadherin (VEC, encoded by CDH5) are required for endothelial apicobasal polarity in vitro and during embryonic development. Silencing of CDH5 gene expression leads to abrogation of endothelial polarity accompanied by strong alterations in lumenal structure. VEC co-distributes with members of the Par polarity complex (Par3 and PKCzeta) and is needed for activation of PKCzeta. CCM1 is encoded by the CCM1 gene, which is mutated in 60% of patients affected by cerebral cavernous malformation (CCM). The protein interacts with VEC and directs AJ organization and AJ association with the polarity complex, both in cell-culture models and in human CCM1 lesions. Both VEC and CCM1 control Rap1 concentration at cell-cell junctions. We propose that VEC, CCM1 and Rap1 form a signaling complex. In the absence of any of these proteins, AJs are dismantled, cell polarity is lost and vascular lumenal structure is severely altered.


Subject(s)
Brain Neoplasms/genetics , Endothelial Cells/metabolism , Hemangioma, Cavernous, Central Nervous System/genetics , Microtubule-Associated Proteins/metabolism , Neovascularization, Physiologic , Proto-Oncogene Proteins/metabolism , Adherens Junctions/metabolism , Animals , Antigens, CD/genetics , Antigens, CD/metabolism , Brain Neoplasms/pathology , Cadherins/genetics , Cadherins/metabolism , Cell Line , Cell Polarity/genetics , Endothelial Cells/pathology , Genetic Predisposition to Disease , Hemangioma, Cavernous, Central Nervous System/pathology , Humans , KRIT1 Protein , Mice , Mice, Inbred C57BL , Microtubule-Associated Proteins/genetics , Multiprotein Complexes/metabolism , Polymorphism, Genetic , Protein Binding/genetics , Proto-Oncogene Proteins/genetics , RNA, Small Interfering/genetics , Signal Transduction , rap1 GTP-Binding Proteins/genetics , rap1 GTP-Binding Proteins/metabolism
13.
Bull Acad Natl Med ; 196(2): 445-55; discussion 455-7, 2012 Feb.
Article in French | MEDLINE | ID: mdl-23420962

ABSTRACT

Dementia with Lewy bodies is probably the second most frequent neurodegenerative dementia. Its neuropathological features overlap those of both Parkinson's disease and Alzheimer's disease, and the neuropathological hallmarks are therefore uncertain. Dementia with Lewy bodies is rather a clinical syndrome than a "neuropathological diagnosis". A combination of six original but non specific features is useful for diagnosis, namely fluctuating attention and cognition; recurrent daytime well-formed and detailed visual hallucinations; features of parkinsonism; rapid eye movement sleep behavior disorders; severe neuroleptic sensitivity; and low dopamine uptake in the basal ganglia. Because of the therapeutic implications, diagnosis of dementia with Lewy bodies is an important challenge.


Subject(s)
Lewy Body Disease/diagnosis , Cholinesterase Inhibitors/therapeutic use , Humans , Lewy Body Disease/classification , Lewy Body Disease/drug therapy , Neuroimaging
14.
Ann Clin Transl Neurol ; 8(9): 1906-1912, 2021 09.
Article in English | MEDLINE | ID: mdl-34312993

ABSTRACT

The aim of this study was to analyze patients from two distinct families with a novel distal titinopathy phenotype associated with exactly the same CNV in the TTN gene. We used an integrated strategy combining deep phenotyping and complete molecular analyses in patients. The CNV is the most proximal out-of-frame TTN variant reported and leads to aberrant splicing transcripts leading to a frameshift. In this case, the dominant effect would be due to dominant-negative and/or haploinsufficiency. Few CNV in TTN have been reported to date. Our data represent a novel phenotype-genotype association and provides hypotheses for its dominant effects.


Subject(s)
Connectin/genetics , Muscular Dystrophies/genetics , Muscular Dystrophies/pathology , Muscular Dystrophies/physiopathology , Aged , Aged, 80 and over , DNA Copy Number Variations , Female , Humans , Male , Middle Aged , Pedigree , Phenotype
15.
Sci Rep ; 11(1): 11239, 2021 05 27.
Article in English | MEDLINE | ID: mdl-34045576

ABSTRACT

Lung cancer patients frequently develop brain metastases (BM). Despite aggressive treatment including neurosurgery and external-radiotherapy, overall survival remains poor. There is a pressing need to further characterize factors in the microenvironment of BM that may confer resistance to radiotherapy (RT), such as hypoxia. Here, hypoxia was first evaluated in 28 biopsies from patients with non­small cell lung cancer (NSCLC) BM, using CA-IX immunostaining. Hypoxia characterization (pimonidazole, CA-IX and HIF-1α) was also performed in different preclinical NSCLC BM models induced either by intracerebral injection of tumor cells (H2030-Br3M, H1915) into the cortex and striatum, or intracardial injection of tumor cells (H2030-Br3M). Additionally, [18F]-FMISO-PET and oxygen-saturation-mapping-MRI (SatO2-MRI) were carried out in the intracerebral BM models to further characterize tumor hypoxia and evaluate the potential of Hypoxia-image-guided-RT (HIGRT). The effect of RT on proliferation of BM ([18F]-FLT-PET), tumor volume and overall survival was determined. We showed that hypoxia is a major yet heterogeneous feature of BM from lung cancer both preclinically and clinically. HIGRT, based on hypoxia heterogeneity observed between cortical and striatal metastases in the intracerebrally induced models, showed significant potential for tumor control and animal survival. These results collectively highlight hypoxia as a hallmark of BM from lung cancer and the value of HIGRT in better controlling tumor growth.


Subject(s)
Brain Neoplasms/diagnostic imaging , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Lung Neoplasms/diagnostic imaging , Radiotherapy, Image-Guided , Tumor Hypoxia , Aged , Animals , Brain Neoplasms/radiotherapy , Brain Neoplasms/secondary , Carcinoma, Non-Small-Cell Lung/radiotherapy , Carcinoma, Non-Small-Cell Lung/secondary , Cell Line, Tumor , Humans , Lung Neoplasms/pathology , Lung Neoplasms/radiotherapy , Magnetic Resonance Imaging , Middle Aged , Rats , Registries
16.
Mol Genet Metab Rep ; 24: 100597, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32477874

ABSTRACT

Glycogen storage disease type XV (GSD XV) is a recently described muscle glycogenosis due to glycogenin-1 (GYG1) deficiency characterized by the presence of polyglucosan bodies on muscle biopsy (Polyglucosan body myopathy-2, PGBM2). Here we describe a 44 year-old man with limb-girdle muscle weakness mimicking a limb-girdle muscular dystrophy (LGMD), and early onset exertional myalgia. Neurologic examination revealed a waddling gait with hyperlordosis, bilateral asymmetric scapular winging, mild asymmetric deltoid and biceps brachii weakness, and pelvic-girdle weakness involving the gluteal muscles and, to a lesser extent, the quadriceps. Serum creatine kinase levels were slightly elevated. Electrophysiological examination showed a myopathic pattern. There was no cardiac or respiratory involvement. Whole-body muscle MRI revealed atrophy and fat replacement of the tongue, biceps brachii, pelvic girdle and erector spinae. A deltoid muscle biopsy showed the presence of PAS-positive inclusions that remained non-digested with alpha-amylase treatment. Electron microscopy studies confirmed the presence of polyglucosan bodies. A diagnostic gene panel designed by the Genetic Diagnosis Laboratory of Strasbourg University Hospital (France) for 210 muscular disorders genes disclosed two heterozygous, pathogenic GYG1 gene mutations (c.304G>C;p.(Asp102His) + c.164_165del). Considering the clinical heterogeneity found in the previously described 38 GYG-1 deficient patients, we suggest that GYG1 should be systematically included in targeted NGS gene panels for LGMDs, distal myopathies, and metabolic myopathies.

17.
Hum Mutat ; 30(2): E345-75, 2009 Feb.
Article in English | MEDLINE | ID: mdl-18853459

ABSTRACT

Dysferlinopathies belong to the heterogeneous group of autosomal recessive muscular dystrophies. Mutations in the gene encoding dysferlin (DYSF) lead to distinct phenotypes, mainly Limb Girdle Muscular Dystrophy type 2B (LGMD2B) and Miyoshi myopathy (MM). Here, we analysed the mutational data from the largest cohort described to date, a cohort of 134 patients, included based on clinical suspicion of primary dysferlinopathy and/or dysferlin protein deficiency identified on muscle biopsy samples. Data were compiled from 38 patients previously screened for mutations in our laboratory (Nguyen, et al., 2005; Nguyen, et al., 2007), and 96 supplementary patients screened for DYSF mutations using genomic DHPLC analysis, and subsequent sequencing of detected variants, in a routine diagnostic setting. In 89 (66%) out of 134 patients, molecular analysis identified two disease causing mutations, confirming the diagnosis of primary Dysferlinopathy on a genetic basis. Furthermore, one mutation was identified in 30 patients, without identification of a second deleterious allele. We are currently developing complementary analysis for patients in whom only one or no disease-causing allele could be identified using the genomic screening procedure. Altogether, 64 novel mutations have been identified in this cohort, which corresponds to approximately 25% of all DYSF mutations reported to date. The mutational spectrum of this cohort significantly shows a higher proportion of nonsense mutations, but a lower proportion of deleterious missense changes as compared to previous series. (c) 2008 Wiley-Liss, Inc.


Subject(s)
Membrane Proteins/genetics , Muscle Proteins/genetics , Mutation/genetics , Adolescent , Adult , Aged , Cohort Studies , DNA Mutational Analysis , Dysferlin , Female , Humans , Male , Middle Aged , Muscular Dystrophies/diagnosis , Muscular Dystrophies/genetics
18.
Brain ; 131(Pt 9): 2304-20, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18669490

ABSTRACT

Lissencephalies are congenital malformations responsible for epilepsy and mental retardation in children. A number of distinct lissencephaly syndromes have been characterized, according to the aspect and the topography of the cortical malformation, the involvement of other cerebral structures and the identified genetic defect. A mutation in TUBA1A, coding for alpha 1 tubulin, was recently identified in a mutant mouse associated with a behavioural disorder and a disturbance of the laminar cytoarchitectony of the isocortex and the hippocampus. Mutations of TUBA1A were subsequently found in children with mental retardation and brain malformations showing a wide spectrum of severities. Here we describe four fetuses with TUBA1A mutations and a prenatal diagnosis of major cerebral dysgeneses leading to a termination of pregnancy due to the severity of the prognosis. The study of these fetuses at 23, 25, 26 and 35 gestational weeks shows that mutations of TUBA1A are associated with a neuropathological phenotypic spectrum which consistently encompasses five brain structures, including the neocortex, hippocampus, corpus callosum, cerebellum and brainstem. Less constantly, abnormalities were also identified in basal ganglia, olfactory bulbs and germinal zones. At the microscopical level, migration abnormalities are suggested by abnormal cortical and hippocampal lamination, and heterotopic neurons in the cortex, cerebellum and brainstem. There are also numerous neuronal differentiation defects, such as the presence of immature, randomly oriented neurons and abnormal axon tracts and fascicles. Thus, the TUBA1A phenotype is distinct from LIS1, DCX, RELN and ARX lissencephalies. Compared with the phenotypes of children mutated for TUBA1A, these prenatally diagnosed fetal cases occur at the severe end of the TUBA1A lissencephaly spectrum. This study emphasizes the importance of neuropathological examinations in cases of lissencephaly for improving our knowledge of the distinct pathogenetic and pathophysiological mechanisms.


Subject(s)
Brain/pathology , Fetal Diseases/pathology , Lissencephaly/pathology , Mutation, Missense , Tubulin/genetics , Adult , Brain Stem/pathology , Cerebellum/pathology , Corpus Callosum/pathology , Doublecortin Protein , Female , Fetal Diseases/genetics , Hippocampus/pathology , Humans , Lissencephaly/genetics , Phenotype , Pregnancy , Prenatal Diagnosis , Reelin Protein
19.
Open Forum Infect Dis ; 6(1): ofy349, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30740467

ABSTRACT

Cerebral alveolar echinococcosis (AE) is rare and mostly associated with liver involvement. We report an exceptional case of a 62-year-old man with a hereditary hemorrhagic telangiectasia harboring a primary cerebral AE mimicking neurocysticercosis with >100 cerebral lesions and without liver involvement.

20.
Mol Genet Genomic Med ; 7(8): e815, 2019 08.
Article in English | MEDLINE | ID: mdl-31251474

ABSTRACT

BACKGROUND: MEGDHEL is an autosomal recessive syndrome defined as 3-MEthylGlutaconic aciduria (3-MGA) with Deafness, Hepatopathy, Encephalopathy, and Leigh-like syndrome on magnetic resonance imaging, due to mutations in the SERAC1 (Serine Active Site Containing 1) gene, which plays a role in the mitochondrial cardiolipin metabolism. METHODS: We report the case of a young patient who presented with a convulsive encephalopathy, 3-methylglutaconic aciduria, deafness, and bilateral T2 hypersignals of the putamen and the thalami, who passed away at 8 years of age. RESULTS: Analysis of nuclear genes using an ampliSeq™ targeted custom panel disclosed two compound heterozygous variants in the SERAC1 gene: a nonsense substitution in exon 4, c.202C>T, resulting in a premature stop codon (p.Arg68*), and a novel variant at a canonical splicing site upstream exon 4 (c.129-1G>C). mRNAs sequencing from the fibroblasts of the patient showed that the splice site variant resulted in exon 3 skipping without frameshift while Western blot experiments showed the absence of SERAC1 expression compared to controls and abnormal filipin staining. CONCLUSION: We showed that the loss of the putative transmembrane domain of SERAC1, due to a novel splice site variant, impairs the protein expression and is responsible for the MEGDHEL syndrome.


Subject(s)
Brain Diseases/genetics , Carboxylic Ester Hydrolases/genetics , Deafness/genetics , Metabolism, Inborn Errors/genetics , Brain/diagnostic imaging , Brain Diseases/diagnosis , Child , Deafness/diagnosis , Exons/genetics , Fatal Outcome , Humans , Magnetic Resonance Imaging , Male , Metabolism, Inborn Errors/diagnosis , Pedigree , Protein Domains/genetics , RNA Splice Sites/genetics , Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL