Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Cell ; 186(18): 3793-3809.e26, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37562401

ABSTRACT

Hepatocytes, the major metabolic hub of the body, execute functions that are human-specific, altered in human disease, and currently thought to be regulated through endocrine and cell-autonomous mechanisms. Here, we show that key metabolic functions of human hepatocytes are controlled by non-parenchymal cells (NPCs) in their microenvironment. We developed mice bearing human hepatic tissue composed of human hepatocytes and NPCs, including human immune, endothelial, and stellate cells. Humanized livers reproduce human liver architecture, perform vital human-specific metabolic/homeostatic processes, and model human pathologies, including fibrosis and non-alcoholic fatty liver disease (NAFLD). Leveraging species mismatch and lipidomics, we demonstrate that human NPCs control metabolic functions of human hepatocytes in a paracrine manner. Mechanistically, we uncover a species-specific interaction whereby WNT2 secreted by sinusoidal endothelial cells controls cholesterol uptake and bile acid conjugation in hepatocytes through receptor FZD5. These results reveal the essential microenvironmental regulation of hepatic metabolism and its human-specific aspects.


Subject(s)
Endothelial Cells , Liver , Animals , Humans , Mice , Endothelial Cells/metabolism , Hepatocytes/metabolism , Kupffer Cells/metabolism , Liver/cytology , Liver/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Fibrosis/metabolism
2.
Hum Genomics ; 17(1): 80, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37641126

ABSTRACT

Over the last century, outbreaks and pandemics have occurred with disturbing regularity, necessitating advance preparation and large-scale, coordinated response. Here, we developed a machine learning predictive model of disease severity and length of hospitalization for COVID-19, which can be utilized as a platform for future unknown viral outbreaks. We combined untargeted metabolomics on plasma data obtained from COVID-19 patients (n = 111) during hospitalization and healthy controls (n = 342), clinical and comorbidity data (n = 508) to build this patient triage platform, which consists of three parts: (i) the clinical decision tree, which amongst other biomarkers showed that patients with increased eosinophils have worse disease prognosis and can serve as a new potential biomarker with high accuracy (AUC = 0.974), (ii) the estimation of patient hospitalization length with ± 5 days error (R2 = 0.9765) and (iii) the prediction of the disease severity and the need of patient transfer to the intensive care unit. We report a significant decrease in serotonin levels in patients who needed positive airway pressure oxygen and/or were intubated. Furthermore, 5-hydroxy tryptophan, allantoin, and glucuronic acid metabolites were increased in COVID-19 patients and collectively they can serve as biomarkers to predict disease progression. The ability to quickly identify which patients will develop life-threatening illness would allow the efficient allocation of medical resources and implementation of the most effective medical interventions. We would advocate that the same approach could be utilized in future viral outbreaks to help hospitals triage patients more effectively and improve patient outcomes while optimizing healthcare resources.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , Triage , Allantoin , Disease Outbreaks , Machine Learning
3.
J Proteome Res ; 22(11): 3401-3417, 2023 11 03.
Article in English | MEDLINE | ID: mdl-37877579

ABSTRACT

Imaging mass spectrometry is a well-established technology that can easily and succinctly communicate the spatial localization of molecules within samples. This review communicates the recent advances in the field, with a specific focus on matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) applied on tissues. The general sample preparation strategies for different analyte classes are explored, including special considerations for sample types (fresh frozen or formalin-fixed,) strategies for various analytes (lipids, metabolites, proteins, peptides, and glycans) and how multimodal imaging strategies can leverage the strengths of each approach is mentioned. This work explores appropriate experimental design approaches and standardization of processes needed for successful studies, as well as the various data analysis platforms available to analyze data and their strengths. The review concludes with applications of imaging mass spectrometry in various fields, with a focus on medical research, and some examples from plant biology and microbe metabolism are mentioned, to illustrate the breadth and depth of MALDI IMS.


Subject(s)
Formaldehyde , Peptides , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Formaldehyde/chemistry , Polysaccharides , Specimen Handling
4.
Yale J Biol Med ; 96(1): 23-42, 2023 03.
Article in English | MEDLINE | ID: mdl-37009190

ABSTRACT

Objective: We aim to comprehensively describe the transcriptional activity and signaling of pulmonary parenchymal and immune cells before and after cardiopulmonary bypass (CPB) by using a multi-omic approach coupled with functional cellular assays. We hypothesize that key signaling pathways from specific cells within the lung alter pulmonary endothelial cell function resulting in worsening or improving disease. Methods: We collected serial tracheobronchial lavage samples from intubated patients less than 2-years-old undergoing surgery with CPB. Samples were immediately processed for single cell RNA sequencing (10x Genomics). Cell clustering, cell-type annotation, and visualization were performed, and differentially expressed genes (DEG) between serial samples were identified. Metabolomic and proteomic analyses were performed on the supernatant using mass spectrometry and a multiplex assay (SomaScan) respectively. Functional assays were done using electric cell-substrate impedance sensing to measure resistance across human pulmonary microvascular endothelial cells (HPMECs). Results: Analysis of eight patients showed a heterogeneous mixture of pulmonary parenchymal and immune cells. Cell clustering demonstrated time-dependent changes in the transcriptomic signature indicating altered cellular phenotypes after CPB. DEG analysis was represented by genes involved in host defense, innate immunity, and the mitochondrial respiratory transport chain. Ingenuity pathway analysis showed upregulation of the integrated stress response across all cell types after CPB. Metabolomic analysis demonstrated upregulation of ascorbate and aldarate metabolism. Unbiased proteomic analysis revealed upregulation of proteins involved in cytokine and chemokine pathways. Post-CPB patient supernatant improved HMPEC barrier function, suggesting a protective cellular response to CPB. Conclusion: Children who undergo CPB for cardiac surgery have distinct cell populations, transcriptional activity, and metabolism that change over time. The response to ischemia-reperfusion injury in the lower airway of children appears to be protective, with the need to identify potential targets through future investigations.


Subject(s)
Cardiopulmonary Bypass , Endothelial Cells , Child , Humans , Child, Preschool , Cardiopulmonary Bypass/adverse effects , Cardiopulmonary Bypass/methods , Capillary Permeability , Proteomics , Lung/blood supply , Lung/metabolism
5.
Hum Genomics ; 15(1): 1, 2021 01 02.
Article in English | MEDLINE | ID: mdl-33386081

ABSTRACT

In this paper, we introduce a network machine learning method to identify potential bioactive anti-COVID-19 molecules in foods based on their capacity to target the SARS-CoV-2-host gene-gene (protein-protein) interactome. Our analyses were performed using a supercomputing DreamLab App platform, harnessing the idle computational power of thousands of smartphones. Machine learning models were initially calibrated by demonstrating that the proposed method can predict anti-COVID-19 candidates among experimental and clinically approved drugs (5658 in total) targeting COVID-19 interactomics with the balanced classification accuracy of 80-85% in 5-fold cross-validated settings. This identified the most promising drug candidates that can be potentially "repurposed" against COVID-19 including common drugs used to combat cardiovascular and metabolic disorders, such as simvastatin, atorvastatin and metformin. A database of 7694 bioactive food-based molecules was run through the calibrated machine learning algorithm, which identified 52 biologically active molecules, from varied chemical classes, including flavonoids, terpenoids, coumarins and indoles predicted to target SARS-CoV-2-host interactome networks. This in turn was used to construct a "food map" with the theoretical anti-COVID-19 potential of each ingredient estimated based on the diversity and relative levels of candidate compounds with antiviral properties. We expect this in silico predicted food map to play an important role in future clinical studies of precision nutrition interventions against COVID-19 and other viral diseases.


Subject(s)
COVID-19/diet therapy , Functional Food , Machine Learning , COVID-19/virology , Databases, Factual , Genes, Viral , Humans , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification
6.
Xenobiotica ; 51(6): 657-667, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33870862

ABSTRACT

Effects of cholecalciferol (VitD3) and calcitriol (1,25-VitD3), on the expression and function of major vitamin D metabolizing enzymes (cytochrome P450 [CYP]2R1, CYP24A1) and select drug transport pathways (ABCB1/P-gp, SLCO4C1/OATP4C1) were evaluated in human kidney proximal tubule epithelial cells (hPTECs) under normal and uraemic serum conditions.hPTECs were incubated with 10% normal or uraemic serum for 24 h followed by treatment with 2% ethanol vehicle, or 100 and 240 nM doses of VitD3, or 1,25-VitD3 for 6 days. The effects of treatment on mRNA and protein expression and functional activity of select CYP enzymes and transporters were assessedUnder uraemic serum, treatment with 1,25-VitD3 resulted in increased mRNA but decreased protein expression of CYP2R1. Activity of CYP2R1 was not influenced by serum or VitD analogues. CYP24A1 expression was increased with 1,25-VitD3 under normal as well as uraemic serum, although to a lesser extent. ABCB1/P-gp mRNA expression increased under normal and uraemic serum, with exposure to 1,25-VitD3. SLCO4C1/OATP4C1 exhibited increased mRNA but decreased protein expression, under uraemic serum + 1,25-VitD3. Functional assessments of transport showed no changes regardless of exposure to serum or 1,25-VitD3.Key findings indicate that uraemic serum and VitD treatment led to differential effects on the functional expression of CYPs and transporters in hPTECs.


Subject(s)
Organic Anion Transporters , Pharmaceutical Preparations , Uremia , Cholecalciferol , Humans , Kidney , Vitamin D
7.
Hum Genomics ; 13(1): 11, 2019 02 19.
Article in English | MEDLINE | ID: mdl-30782214

ABSTRACT

Lipocalins (LCNs) are members of a family of evolutionarily conserved genes present in all kingdoms of life. There are 19 LCN-like genes in the human genome, and 45 Lcn-like genes in the mouse genome, which include 22 major urinary protein (Mup) genes. The Mup genes, plus 29 of 30 Mup-ps pseudogenes, are all located together on chromosome (Chr) 4; evidence points to an "evolutionary bloom" that resulted in this Mup cluster in mouse, syntenic to the human Chr 9q32 locus at which a single MUPP pseudogene is located. LCNs play important roles in physiological processes by binding and transporting small hydrophobic molecules -such as steroid hormones, odorants, retinoids, and lipids-in plasma and other body fluids. LCNs are extensively used in clinical practice as biochemical markers. LCN-like proteins (18-40 kDa) have the characteristic eight ß-strands creating a barrel structure that houses the binding-site; LCNs are synthesized in the liver as well as various secretory tissues. In rodents, MUPs are involved in communication of information in urine-derived scent marks, serving as signatures of individual identity, or as kairomones (to elicit fear behavior). MUPs also participate in regulation of glucose and lipid metabolism via a mechanism not well understood. Although much has been learned about LCNs and MUPs in recent years, more research is necessary to allow better understanding of their physiological functions, as well as their involvement in clinical disorders.


Subject(s)
Evolution, Molecular , Lipocalins/genetics , Animals , Genome, Human , Humans , Lipocalins/metabolism , Mice , Multigene Family
8.
Alcohol Clin Exp Res ; 40(9): 1825-31, 2016 09.
Article in English | MEDLINE | ID: mdl-27501276

ABSTRACT

BACKGROUND: There is controversy regarding the active agent responsible for alcohol addiction. The theory that ethanol (EtOH) itself was the agent in alcohol drinking behavior was widely accepted until acetaldehyde (AcH) was found in the brain. The importance of AcH formation in the brain is still subject to speculation due to the lack of a method to accurately assay the AcH levels directly. A highly sensitive gas chromatography mass spectrometry (GC-MS) method to reliably determine AcH concentration with certainty is needed to address whether neural AcH is indeed responsible for increased alcohol consumption. METHODS: A headspace gas chromatograph coupled to selected-ion monitoring MS was utilized to develop a quantitative assay for AcH and EtOH. Our GC-MS approach was carried out using a Bruker Scion 436-GC SQ MS. RESULTS: Our approach yields limits of detection of AcH in the nanomolar range and limits of quantification in the low micromolar range. Our linear calibration includes 5 concentrations with a least-square regression greater than 0.99 for both AcH and EtOH. Tissue analyses using this method revealed the capacity to quantify EtOH and AcH in blood, brain, and liver tissue from mice. CONCLUSIONS: By allowing quantification of very low concentrations, this method may be used to examine the formation of EtOH metabolites, specifically AcH, in murine brain tissue in alcohol research.


Subject(s)
Acetaldehyde/analysis , Brain Chemistry/physiology , Ethanol/analysis , Gas Chromatography-Mass Spectrometry/methods , Liver/chemistry , Alcoholism , Animals , Brain/drug effects , Brain Chemistry/drug effects , Ethanol/administration & dosage , Female , Gas Chromatography-Mass Spectrometry/standards , Liver/drug effects , Mice , Mice, Inbred C57BL
10.
Chem Biol Interact ; 384: 110714, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37716420

ABSTRACT

Colon cancer is the third leading cause of cancer death globally. Although early screenings and advances in treatments have reduced mortality since 1970, identification of novel targets for therapeutic intervention is needed to address tumor heterogeneity and recurrence. Previous work identified aldehyde dehydrogenase 1B1 (ALDH1B1) as a critical factor in colon tumorigenesis. To investigate further, we utilized a human colon adenocarcinoma cell line (SW480) in which the ALDH1B1 protein expression has been knocked down by 80% via shRNA. Through multi-omics (transcriptomics, proteomics, and untargeted metabolomics) analysis, we identified the impact of ALDH1B1 knocking down (KD) on molecular signatures in colon cancer cells. Suppression of ALDH1B1 expression resulted in 357 differentially expressed genes (DEGs), 191 differentially expressed proteins (DEPs) and 891 differentially altered metabolites (DAMs). Functional annotation and enrichment analyses revealed that: (1) DEGs were enriched in integrin-linked kinase (ILK) signaling and growth and development pathways; (2) DEPs were mainly involved in apoptosis signaling and cellular stress response pathways; and (3) DAMs were associated with biosynthesis, intercellular and second messenger signaling. Collectively, the present study provides new molecular information associated with the cellular functions of ALDH1B1, which helps to direct future investigation of colon cancer.


Subject(s)
Adenocarcinoma , Colonic Neoplasms , Humans , Aldehyde Dehydrogenase/genetics , Aldehyde Dehydrogenase/metabolism , Aldehyde Dehydrogenase, Mitochondrial/genetics , Colonic Neoplasms/genetics , Colonic Neoplasms/pathology , Aldehyde Dehydrogenase 1 Family/metabolism , Multiomics
11.
bioRxiv ; 2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37398356

ABSTRACT

Reduced glutathione (GSH) is an abundant antioxidant that regulates intracellular redox homeostasis by scavenging reactive oxygen species (ROS). Glutamate-cysteine ligase catalytic (GCLC) subunit is the rate-limiting step in GSH biosynthesis. Using the Pax6-Cre driver mouse line, we deleted expression of the Gclc gene in all pancreatic endocrine progenitor cells. Intriguingly, Gclc knockout (KO) mice, following weaning, exhibited an age-related, progressive diabetes phenotype, manifested as strikingly increased blood glucose and decreased plasma insulin levels. This severe diabetes trait is preceded by pathologic changes in islet of weanling mice. Gclc KO weanlings showed progressive abnormalities in pancreatic morphology including: islet-specific cellular vacuolization, decreased islet-cell mass, and alterations in islet hormone expression. Islets from newly-weaned mice displayed impaired glucose-stimulated insulin secretion, decreased insulin hormone gene expression, oxidative stress, and increased markers of cellular senescence. Our results suggest that GSH biosynthesis is essential for normal development of the mouse pancreatic islet, and that protection from oxidative stress-induced cellular senescence might prevent abnormal islet-cell damage during embryogenesis.

12.
Pharm Res ; 29(11): 3188-98, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22760660

ABSTRACT

PURPOSE: To develop a dose dependent version of BCS and identify a critical dose after which the amount absorbed is independent from the dose. METHODS: We utilized a mathematical model of drug absorption in order to produce simulations of the fraction of dose absorbed (F) and the amount absorbed as function of the dose for the various classes of BCS and the marginal cases in between classes. RESULTS: Simulations based on the mathematical model of F versus dose produced patterns of a constant F throughout a wide range of doses for drugs of Classes I, II and III, justifying biowaiver claim. For Classes I and III the pattern of a constant F stops at a critical dose Dose(cr) after which the amount of drug absorbed, is independent from the dose. For doses higher than Dose(cr), Class I drugs become Class II and Class III drugs become Class IV. Dose(cr) was used to define an in vivo effective solubility as S(eff) = Dose(cr)/250 ml. Literature data were used to support our simulation results. CONCLUSIONS: A new biopharmaceutic classification of drugs is proposed, based on F, separating drugs into three regions, taking into account the dose, and Dose(cr), while the regions for claiming biowaiver are clearly defined.


Subject(s)
Biopharmaceutics/methods , Models, Biological , Pharmaceutical Preparations/administration & dosage , Pharmacokinetics , Dose-Response Relationship, Drug , Intestinal Absorption , Permeability , Pharmaceutical Preparations/chemistry , Pharmaceutical Preparations/classification , Solubility
13.
J Am Soc Mass Spectrom ; 33(2): 238-241, 2022 Feb 02.
Article in English | MEDLINE | ID: mdl-35005981

ABSTRACT

The third annual conference of the Imaging Mass Spectrometry Society (IMSS3) was held October 3-6, 2021 in a hybrid format that included virtual and in-person attendance (Colorado Springs, CO). Here, we highlight many of the methods and applications presented, the state of the field, and some insights into the emerging areas in the field of imaging mass spectrometry. We also reflect upon the processes behind planning a hybrid conference and discuss the successes and challenges of the event in retrospect.

14.
Article in English | MEDLINE | ID: mdl-37483863

ABSTRACT

1,4-Dioxane (DX) is an emerging drinking water contaminant worldwide, which poses a threat to public health due to its demonstrated liver carcinogenicity and potential for human exposure. The lack of drinking water standards for DX is attributed to undetermined mechanisms of DX carcinogenicity. This mini-review provides a brief discussion of a series of mechanistic studies, wherein unique mouse models were exposed to DX in drinking water to elucidate redox changes associated with DX cytotoxicity and genotoxicity. The overall conclusions from these studies support a direct genotoxic effect by high dose DX and imply that oxidative stress involving CYP2E1 activation may play a causal role in DX liver genotoxicity and potentially carcinogenicity. The mechanistic data derived from these studies can serve as important references to refine the assessment of carcinogenic pathways that may be triggered at environmentally relevant low doses of DX in future animal and human studies.

15.
Sci Total Environ ; 806(Pt 2): 150703, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34600989

ABSTRACT

1,4-Dioxane (DX) is a synthetic chemical used as a stabilizer for industrial solvents. Recent occurrence data show widespread and significant contamination of drinking water with DX in the US. DX is classified by the International Agency for Research on Cancer as a group 2B carcinogen with the primary target organ being the liver in animal studies. Despite the exposure and cancer risk, US EPA has not established a drinking water Maximum Contaminant Level (MCL) for DX and a wide range of drinking water targets have been established across the US and by Health Canada. The DX carcinogenic mechanism remains unknown; this information gap contributes to the varied approaches to its regulation. Our recent mice study indicated alterations in oxidative stress response accompanying DNA damage as an early change by high dose DX (5000 ppm) in drinking water. Herein, we report a follow-up study, in which we used glutathione (GSH)-deficient glutamate-cysteine ligase modifier subunit (Gclm)-null mice to investigate the role of redox homeostasis in DX-induced liver cytotoxicity and genotoxicity. Gclm-null and wild-type mice were exposed to DX for one week (1000 mg/kg/day by oral gavage) or three months (5000 ppm in drinking water). Subchronic exposure of high dose DX caused mild liver cytotoxicity. DX induced assorted molecular changes in the liver including: (i) a compensatory nuclear factor erythroid 2-related factor 2 (NRF2) anti-oxidative response at the early stage (one week), (ii) progressive CYP2E1 induction, (iii) development of oxidative stress, as evidenced by persistent NRF2 induction, oxidation of GSH pool, and accumulation of the lipid peroxidation by-product 4-hydroxynonenal, and (iv) elevations in oxidative DNA damage and DNA repair response. These DX-elicited changes were exaggerated in GSH-deficient mice. Collectively, the current study provides additional evidence linking redox dysregulation to DX liver genotoxicity, implying oxidative stress as a candidate mechanism of DX liver carcinogenicity.


Subject(s)
DNA Damage , Oxidative Stress , Animals , Dioxanes , Follow-Up Studies , Glutathione/metabolism , Liver/metabolism , Mice , Mice, Knockout
16.
Chem Biol Interact ; 368: 110175, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36162455

ABSTRACT

Several members of the aldehyde dehydrogenase (ALDH) family, especially ALDH1 isoenzymes, have been identified as biomarkers of cancer stem cells (CSCs), a small subpopulation of oncogenic cells with self-renewal and multipotency capability. Consistent with this contention, cell populations with high ALDH enzymatic activity exhibit greater carcinogenic potential. It has been reported that ALDH1, especially ALDH1A1, serves as a valuable biomarker for colon CSCs. However, the functional roles of ALDHs in CSCs and solid tumors of the colon tissue is not fully understood. The aim of the present study was to identify molecular signature associated with high ALDH activity in human colorectal adenocarcinoma (COLO320DM) cells by proteomics profiling. Aldefluor™ assay was performed to sort COLO320DM cells exhibiting high (ALDHhigh) and low (ALDHlow) ALDH activity. Label-free quantitative proteomics analyses were conducted on these two cell populations. Proteomics profiling revealed a total of 229 differentially expressed proteins (DEPs) in ALDHhigh relative to ALDHlow cells, of which 182 were down-regulated and 47 were up-regulated. In agreement with previous studies, ALDH1A1 appeared to be the principal ALDH isozyme contributing to the Aldefluor™ assay activity in COLO320DM cells. Ingenuity pathway analysis of the proteomic datasets indicated that DEPs were associated with mitochondrial dysfunction, sirtuin signaling, oxidative phosphorylation and nucleotide excision repair. Our proteomics study predicts that high ALDH1A1 activity may be involved in these cellular pathways to promote a metabolic switch and cellular survival of CSCs.


Subject(s)
Adenocarcinoma , Colonic Neoplasms , Humans , Aldehyde Dehydrogenase/genetics , Aldehyde Dehydrogenase/metabolism , Adenocarcinoma/metabolism , Oxidative Phosphorylation , Proteomics , Colonic Neoplasms/pathology , Aldehyde Dehydrogenase 1 Family , Neoplastic Stem Cells/metabolism , DNA Damage , Cell Line, Tumor
17.
Chem Biol Interact ; 360: 109931, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35429548

ABSTRACT

Alcohol consumption is a global healthcare problem with enormous social, economic, and clinical consequences. The liver sustains the earliest and the greatest degree of tissue injury due to chronic alcohol consumption and it has been estimated that alcoholic liver disease (ALD) accounts for almost 50% of all deaths from cirrhosis in the world. In this study, we used a modified Lieber-DeCarli (LD) diet to treat mice with alcohol and simulate chronic alcohol drinking. Using an untargeted metabolomics approach, our aim was to identify the various metabolites and pathways that are altered in the early stages of ALD. Histopathology showed minimal changes in the liver after 6 weeks of alcohol consumption. However, untargeted metabolomics analyses identified 304 metabolic features that were either up- or down-regulated in the livers of ethanol-consuming mice. Pathway analysis revealed significant alcohol-induced alterations, the most significant of which was in the FXR/RXR activation pathway. Targeted metabolomics focusing on bile acid biosynthesis showed elevated taurine-conjugated cholic acid compounds in ethanol-consuming mice. In summary, we showed that the changes in the liver metabolome manifest very early in the development of ALD, and when minimal changes in liver histopathology have occurred. Although alterations in biochemical pathways indicate a complex pathology in the very early stages of alcohol consumption, bile acid changes may serve as biomarkers of the early onset of ALD.


Subject(s)
Bile Acids and Salts , Liver Diseases, Alcoholic , Animals , Bile Acids and Salts/metabolism , Ethanol/metabolism , Liver/metabolism , Liver Diseases, Alcoholic/pathology , Metabolomics , Mice , Mice, Inbred C57BL
18.
Drug Deliv Transl Res ; 12(6): 1445-1454, 2022 06.
Article in English | MEDLINE | ID: mdl-34322850

ABSTRACT

Studies have suggested imatinib mesylate (ImM) as a potential treatment for systemic lupus erythematosus nephritis (SLEN). However, ImM has limited renal excretion. The goal of the current research was to develop an ImM containing nanoformulation, conduct studies to evaluate pharmacokinetics, and determine whether kidney deposition can be enhanced in a mouse model of SLEN. A fish oil-based ImM oil-in-water nanoemulsion was developed and characterized for particle size, zeta potential, pH, and stability. MRL/MpJ-Faslrp (model of SLEN) and MRL/MpJ (control) mice (12-13 weeks) received one dose of ImM as either a nanoemulsion or naked drug. Pharmacokinetics and kidney deposition studies were performed. Statistics were conducted with a student's T-test. The nanoemulsion characteristics included particle size range of 60-80 nm, zeta potential of -6.6 to -7.8 mV, polydispersity index < 0.3, 3-day stability at 4 °C, and limited ImM leakage from the nanoemulsion in serum. Pharmacokinetics of the nanoformulation showed changes to pharmacokinetic parameters suggesting reduced systemic exposures (with reduced potential for toxicities) to ImM. Kidney deposition of ImM was threefold higher after 4 h in the MRL/MpJ-Faslrp mice that received the nanoformulation vs. naked drug. The current study showed encouraging results for development of a stable and well-characterized nanoemulsion for optimizing kidney deposition of ImM. Future strategies will define dose-efficacy and dose-toxicity relationships and evaluate approaches to further enhance kidney delivery and optimize deposition to the mesangial location of the kidney.


Subject(s)
Lupus Nephritis , Animals , Disease Models, Animal , Female , Humans , Imatinib Mesylate/therapeutic use , Kidney , Lupus Nephritis/drug therapy , Male , Mice , Particle Size
19.
Hepatol Commun ; 6(3): 513-525, 2022 03.
Article in English | MEDLINE | ID: mdl-34811964

ABSTRACT

Alcoholic fatty liver disease (AFLD) is characterized by lipid accumulation and inflammation and can progress to cirrhosis and cancer in the liver. AFLD diagnosis currently relies on histological analysis of liver biopsies. Early detection permits interventions that would prevent progression to cirrhosis or later stages of the disease. Herein, we have conducted the first comprehensive time-course study of lipids using novel state-of-the art lipidomics methods in plasma and liver in the early stages of a mouse model of AFLD, i.e., Lieber-DeCarli diet model. In ethanol-treated mice, changes in liver tissue included up-regulation of triglycerides (TGs) and oxidized TGs and down-regulation of phosphatidylcholine, lysophosphatidylcholine, and 20-22-carbon-containing lipid-mediator precursors. An increase in oxidized TGs preceded histological signs of early AFLD, i.e., steatosis, with these changes observed in both the liver and plasma. The major lipid classes dysregulated by ethanol play important roles in hepatic inflammation, steatosis, and oxidative damage. Conclusion: Alcohol consumption alters the liver lipidome before overt histological markers of early AFLD. This introduces the exciting possibility that specific lipids may serve as earlier biomarkers of AFLD than those currently being used.


Subject(s)
Fatty Liver, Alcoholic , Fatty Liver , Liver Diseases, Alcoholic , Animals , Biomarkers/metabolism , Ethanol/adverse effects , Fatty Liver, Alcoholic/diagnosis , Inflammation , Lipidomics , Liver Cirrhosis , Liver Diseases, Alcoholic/diagnosis , Mice , Oxidation-Reduction , Triglycerides
20.
J Pharm Pharmacol ; 73(12): 1683-1692, 2021 Dec 07.
Article in English | MEDLINE | ID: mdl-34480477

ABSTRACT

OBJECTIVES: To develop a simultaneous population pharmacokinetic model of cyclophosphamide (CY) and 4-hydroxycyclophosphamide (4-OH) in patients with glomerulonephritis. METHODS: In total, 23 patients participated in a pharmacokinetic evaluation using dense plasma sampling. A population pharmacokinetic model was developed in Monolix Suite 2020R1 that simultaneously describes the kinetics of CY and 4-OH. Several structural and residual error models were evaluated and patient variables were tested as potential covariates. The final model was selected based on visual predictive check and bootstrap. Simulations of plasma concentrations for various doses were conducted. KEY FINDINGS: A model including two compartments for CY and one for 4-OH was found to best describe the data. A proportional error model for both compounds was chosen. The following estimates were found for the main CY pharmacokinetic parameters: total clearance, 13.3 l/h with inter-individual variability (IIV) 32%, and central volume of distribution, 59.8 l with IIV 12%. The metabolite elimination rate constant was 4.3 h-1 with IIV 36% and the proportion of metabolism 64%. Sex was a significant covariate on the central volume of CY, with females exhibiting 25% lower value than males. CONCLUSIONS: A population pharmacokinetic model was developed for CY and 4-OH in patients with autoimmune glomerulonephritis. Simulations using various dose regimens allow for informed dosing before the initiation of therapy.


Subject(s)
Autoimmune Diseases , Cyclophosphamide/pharmacokinetics , Glomerulonephritis , Immunosuppressive Agents/pharmacokinetics , Kidney , Adult , Autoimmune Diseases/drug therapy , Cyclophosphamide/analogs & derivatives , Cyclophosphamide/blood , Cyclophosphamide/therapeutic use , Female , Glomerulonephritis/drug therapy , Humans , Immunosuppressive Agents/blood , Immunosuppressive Agents/therapeutic use , Male , Middle Aged , Models, Biological
SELECTION OF CITATIONS
SEARCH DETAIL