Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Angew Chem Int Ed Engl ; : e202408712, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38962896

ABSTRACT

Noncovalent spatial interaction has become an intriguing and important tool for constructing optoelectronic molecules. In this study, we linearly attached three conjugated units in a multi π-stacked manner by using just one trident bridge based on indeno[2,1-b]fluorene. To achieve this structure, we improved the synthetic approach through double C-H activation, significantly simplifying the preparation process. Due to the proximity of the C10, C11, and C12 sites in indeno[2,1-b]fluorene, we derived two novel donor|acceptor|donor (D|A|D) type molecules, 2DMB and 2DMFB, which exhibited closely packed intramolecular stacking, enabling efficient through-space charge transfer. This molecular construction is particularly suitable for developing high-performance thermally activated delayed fluorescence materials. With donor(s) and acceptor(s) constrained and separated within this spatially rigid structure, elevated radiative transition rates, and high photoluminescence quantum yields were achieved. Organic light-emitting diodes incorporating 2DMB and 2DMFB demonstrated superior efficiency, achieving maximum external quantum efficiencies of 28.6% and 16.2%, respectively.

2.
Adv Mater ; 35(51): e2306541, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37794632

ABSTRACT

Organic multilayer heterostructures with accurate spatial organization demonstrate strong light-matter interaction from excitonic responses and efficient carrier transfer across heterojunction interfaces, which are considered as promising candidates toward advanced optoelectronics. However, the precise regulation of the heterojunction surface area for finely adjusting exciton conversion and energy transfer is still formidable. Herein, organic bilayer heterostructures (OBHs) with controlled face-to-face heterojunction via a stepwise seeded growth strategy, which is favorable for efficient exciton propagation and conversion of optical interconnects are designed and synthesized. Notably, the relative position and overlap length ratio of component microwires (LDSA /LBPEA = 0.39-1.15) in OBHs are accurately regulated by modulating the crystallization time of seeded crystals, resulting into a tailored heterojunction surface area (R = Loverlap /LBPEA = 37.6%-65.3%). These as-prepared OBHs present the excitation position-dependent waveguide behaviors for optical outcoupling characteristics with tunable emission colors and intensities, which are applied into two-dimensional (2D) photonic barcodes. This strategy opens a versatile avenue to purposely design OBHs with tailored heterojunctions for efficient energy transfer and exciton conversion, facilitating the application possibilities of advanced integrated optoelectronics.

SELECTION OF CITATIONS
SEARCH DETAIL