Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Immunity ; 54(3): 542-556.e9, 2021 03 09.
Article in English | MEDLINE | ID: mdl-33631118

ABSTRACT

A combination of vaccination approaches will likely be necessary to fully control the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. Here, we show that modified vaccinia Ankara (MVA) vectors expressing membrane-anchored pre-fusion stabilized spike (MVA/S) but not secreted S1 induced strong neutralizing antibody responses against SARS-CoV-2 in mice. In macaques, the MVA/S vaccination induced strong neutralizing antibodies and CD8+ T cell responses, and conferred protection from SARS-CoV-2 infection and virus replication in the lungs as early as day 2 following intranasal and intratracheal challenge. Single-cell RNA sequencing analysis of lung cells on day 4 after infection revealed that MVA/S vaccination also protected macaques from infection-induced inflammation and B cell abnormalities and lowered induction of interferon-stimulated genes. These results demonstrate that MVA/S vaccination induces neutralizing antibodies and CD8+ T cells in the blood and lungs and is a potential vaccine candidate for SARS-CoV-2.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Genetic Vectors/genetics , SARS-CoV-2/immunology , Vaccines, DNA/immunology , Vaccinia virus/genetics , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antigens, Viral/genetics , Antigens, Viral/immunology , COVID-19/immunology , COVID-19/pathology , COVID-19/virology , COVID-19 Vaccines/genetics , Disease Models, Animal , Gene Expression , Gene Order , Immunophenotyping , Lung/immunology , Lung/pathology , Lung/virology , Macaca , Macrophages, Alveolar/immunology , Macrophages, Alveolar/metabolism , Macrophages, Alveolar/pathology , Mice , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Vaccination/methods , Vaccines, DNA/genetics
2.
Blood ; 142(8): 742-747, 2023 08 24.
Article in English | MEDLINE | ID: mdl-37367252

ABSTRACT

Among the risk factors for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), ABO(H) blood group antigens are among the most recognized predictors of infection. However, the mechanisms by which ABO(H) antigens influence susceptibility to COVID-19 remain incompletely understood. The receptor-binding domain (RBD) of SARS-CoV-2, which facilitates host cell engagement, bears significant similarity to galectins, an ancient family of carbohydrate-binding proteins. Because ABO(H) blood group antigens are carbohydrates, we compared the glycan-binding specificity of SARS-CoV-2 RBD with that of galectins. Similar to the binding profile of several galectins, the RBDs of SARS-CoV-2, including Delta and Omicron variants, exhibited specificity for blood group A. Not only did each RBD recognize blood group A in a glycan array format, but each SARS-CoV-2 virus also displayed a preferential ability to infect blood group A-expressing cells. Preincubation of blood group A cells with a blood group-binding galectin specifically inhibited the blood group A enhancement of SARS-CoV-2 infection, whereas similar incubation with a galectin that does not recognize blood group antigens failed to impact SARS-CoV-2 infection. These results demonstrated that SARS-CoV-2 can engage blood group A, providing a direct link between ABO(H) blood group expression and SARS-CoV-2 infection.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , ABO Blood-Group System , Galectins
3.
Article in English | MEDLINE | ID: mdl-38878020

ABSTRACT

BACKGROUND: Biologic therapies inhibiting the IL-4 or IL-5 pathways are very effective in the treatment of asthma and other related conditions. However, the cytokines IL-4 and IL-5 also play a role in the generation of adaptive immune responses. Although these biologics do not cause overt immunosuppression, their effect in primary severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immunization has not been studied completely. OBJECTIVE: Our aim was to evaluate the antibody and cellular immunity after SARS-CoV-2 mRNA vaccination in patients on biologics (PoBs). METHODS: Patients with severe asthma or atopic dermatitis who were taking benralizumab, dupilumab, or mepolizumab and had received the initial dose of the 2-dose adult SARS-CoV-2 mRNA vaccine were enrolled in a prospective, observational study. As our control group, we used a cohort of immunologically healthy subjects (with no significant immunosuppression) who were not taking biologics (NBs). We used a multiplexed immunoassay to measure antibody levels, neutralization assays to assess antibody function, and flow cytometry to quantitate Spike-specific lymphocytes. RESULTS: We analyzed blood from 57 patients in the PoB group and 46 control subjects from the NB group. The patients in the PoB group had lower levels of SARS-CoV-2 antibodies, pseudovirus neutralization, live virus neutralization, and frequencies of Spike-specific B and CD8 T cells at 6 months after vaccination. In subgroup analyses, patients with asthma who were taking biologics had significantly lower pseudovirus neutralization than did subjects with asthma who were not taking biologics. CONCLUSION: The patients in the PoB group had reduced SARS-CoV-2-specific antibody titers, neutralizing activity, and virus-specific B- and CD8 T-cell counts. These results have implications when considering development of a more individualized immunization strategy in patients who receive biologic medications blocking IL-4 or IL-5 pathways.

4.
J Med Virol ; 96(2): e29456, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38329187

ABSTRACT

A state-wide prospective longitudinal investigation of the genomic surveillance of the omicron B.1.1.529 SARS-CoV-2 variant and its sublineages in Tamil Nadu, India, was conducted between December 2021 and March 2023. The study aimed to elucidate their mutational patterns and their genetic interrelationship in the Indian population. The study identified several unique mutations at different time-points, which likely could attribute to the changing disease characteristics, transmission, and pathogenicity attributes of omicron variants. The study found that the omicron variant is highly competent in its mutating potentials, and that it continues to evolve in the general population, likely escaping from natural as well as vaccine-induced immune responses. Our findings suggest that continuous surveillance of viral variants at the global scenario is warranted to undertake intervention measures against potentially precarious SARS-CoV-2 variants and their evolution.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , India/epidemiology , Longitudinal Studies , Prospective Studies , COVID-19/epidemiology , Genomics
5.
Br J Haematol ; 202(5): 937-941, 2023 09.
Article in English | MEDLINE | ID: mdl-37287128

ABSTRACT

Patients with sickle cell disease (SCD) are considered to be immunocompromised, yet data on the antibody response to SARS-CoV-2 vaccination in SCD is limited. We investigated anti-SARS-CoV-2 IgG titres and overall neutralizing activity in 201 adults with SCD and demographically matched non-SCD controls. Unexpectedly, patients with SCD generate a more robust and durable COVID-19 vaccine IgG response compared to matched controls, though the neutralizing activity remained similar across both cohorts. These findings suggest that patients with SCD achieve a similar antibody response following COVID-19 vaccination compared to the general population, with implications for optimal vaccination strategies for patients with SCD.


Subject(s)
Anemia, Sickle Cell , COVID-19 , Adult , Humans , COVID-19 Vaccines , COVID-19/prevention & control , SARS-CoV-2 , Vaccination , Immunoglobulin G , Anemia, Sickle Cell/complications , Anemia, Sickle Cell/therapy , Antibodies, Viral , Immunity , Antibodies, Neutralizing
6.
Cytokine ; 170: 156319, 2023 10.
Article in English | MEDLINE | ID: mdl-37544133

ABSTRACT

OBJECTIVE: Pregnant patients face greater morbidity and mortality from COVID-19 related illness than their non-pregnant peers. Previous research in non-pregnant patients established that poor clinical outcomes in SARS-CoV-2 positive patients admitted to the ICU were correlated with a significant increase in the proinflammatory markers interleukin (IL)-1ß, IL-6, IL-8, and IL-10. Importantly, high levels of these inflammatory markers have also been associated with adverse pregnancy outcomes, including spontaneous preterm birth, preeclampsia, and severe respiratory disease. STUDY DESIGN: This was a retrospective cohort study that compared the serum inflammatory cytokine profiles of pregnant patients with acute/post-acute SARS-CoV-2 infection to those with previous exposure. All subjects in both cohorts tested positive for SARS-CoV-2 antibodies; however, those in the acute/post-acute infection cohort had a documented positive SARS-CoV-2 reverse transcription polymerase chain reaction (RT-PCR) result within 30 days of serum sample collection. Serum samples were obtained during prenatal venipuncture from 13 to 39 weeks' gestation and the cohorts were matched by gestational age. The inflammatory cytokines interferon (IFN)-γ, IL-10, IL-1ß, IL-4, IL-6, IL-8, and tumor necrosis factor (TNF)-α were assayed from maternal serum using a standard ELISA assay and median cytokine concentrations were compared using the Mann-Whitney test. RESULTS AND DISCUSSION: We enrolled 50 non-Hispanic Black patients with confirmed COVID-19 infection who received prenatal care at Grady Memorial Hospital in Atlanta, Georgia. Those with acute/post-acute infection (n = 22) had significantly higher concentrations of SARS-CoV-2 antibody, IL-10, IL-1ß, and IL-8, while patients with previous exposure (n = 28) had significantly higher concentrations of IL-4. There were no significant inter-group differences in medical comorbidities. Pregnant patients with acute/post-acute SARS-CoV-2 infection had significantly higher serum concentrations of pro-inflammatory cytokines as compared to those with previous exposure, suggesting that, like in the non-pregnant population, SARS-CoV-2 infection alters the levels of circulating proinflammatory markers during pregnancy. The increased levels of cytokines may contribute to the adverse obstetric outcomes observed with COVID-19 illness.


Subject(s)
COVID-19 , Pregnancy Complications, Infectious , Premature Birth , Pregnancy , Female , Humans , Infant, Newborn , Interleukin-10 , SARS-CoV-2 , Retrospective Studies , Interleukin-4 , Interleukin-6 , Interleukin-8 , Pregnancy Outcome , Cytokines
7.
J Infect Dis ; 226(9): 1577-1587, 2022 11 01.
Article in English | MEDLINE | ID: mdl-35877413

ABSTRACT

Detecting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is essential for diagnosis, treatment, and infection control. Polymerase chain reaction (PCR) fails to distinguish acute from resolved infections, as RNA is frequently detected after infectiousness. We hypothesized that nucleocapsid in blood marks acute infection with the potential to enhance isolation and treatment strategies. In a retrospective serosurvey of inpatient and outpatient encounters, we categorized samples along an infection timeline using timing of SARS-CoV-2 testing and symptomatology. Among 1860 specimens from 1607 patients, the highest levels and frequency of antigenemia were observed in samples from acute SARS-CoV-2 infection. Antigenemia was higher in seronegative individuals and in those with severe disease. In our analysis, antigenemia exhibited 85.8% sensitivity and 98.6% specificity as a biomarker for acute coronavirus disease 2019 (COVID-19). Thus, antigenemia sensitively and specifically marks acute SARS-CoV-2 infection. Further study is warranted to determine whether antigenemia may aid individualized assessment of active COVID-19.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , COVID-19 Testing , Retrospective Studies , Sensitivity and Specificity , Nucleocapsid , Biomarkers
8.
medRxiv ; 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38699322

ABSTRACT

In December 2023, we observed a notable shift in the COVID-19 landscape, when the JN.1 emerged as a predominant SARS-CoV-2 variant with a 95% incidence. We characterized the clinical profile, and genetic changes in JN.1, an emerging SARS-CoV-2 variant of interest. Whole genome sequencing was performed on SARS-CoV-2 positive samples, followed by sequence analysis. Mutations within the spike protein sequences were analyzed and compared with the previous lineages and sublineages of SARS-CoV-2, to identify the potential impact of these unique mutations on protein structure and possible functionality. Several unique and dynamic mutations were identified herein. Our data provides key insights into the emergence of newer variants of SARS-CoV-2 in our region and highlights the need for robust and sustained genomic surveillance of SARS-CoV-2.

9.
Pathogens ; 12(3)2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36986353

ABSTRACT

In light of the COVID-19 pandemic, researchers across the world hastened to develop vaccines that would aid in bolstering herd immunity. Utilizing mRNA coding and viral vector technology, the currently approved vaccines were required to undergo extensive testing to confirm their safety for mass usage in the general population. However, clinical trials failed to test the safety and efficacy of the COVID-19 vaccines in groups with weakened immune systems, especially pregnant women. Lack of information on the effects of vaccinations in pregnancy and the safety of fetuses are among the topmost reasons preventing pregnant women from receiving immunization. Thus, the lack of data examining the effects of COVID-19 vaccinations on pregnant women must be addressed. This review focused on the safety and efficacy of the approved COVID-19 vaccinations in pregnancy and their impact on both maternal and fetal immune responses. For that, we took the approach of combined systematic review/meta-analysis and compiled the available data from the original literature from PubMed, Web of Science, EMBASE and Medline databases. All articles analyzed presented no adverse effects of vaccination in pregnancy, with varying conclusions on the degree of effectiveness. The majority of the findings described robust immune responses in vaccinated pregnant women, successful transplacental antibody transfer, and implications for neonatal immunity. Hence, findings from the cumulative data available can be helpful in achieving COVID-19 herd immunization, including pregnant women.

10.
Front Immunol ; 14: 1211558, 2023.
Article in English | MEDLINE | ID: mdl-37465682

ABSTRACT

Introduction: Maternally derived antibodies are crucial for neonatal immunity. Understanding the binding and cross-neutralization capacity of maternal and cord antibody responses to SARS-CoV-2 variants following COVID-19 vaccination in pregnancy can inform neonatal immunity. Methods: Here we characterized the binding and neutralizing antibody profile at delivery in 24 pregnant individuals following two doses of Moderna mRNA-1273 or Pfizer BNT162b2 vaccination. We analyzed for SARS-CoV-2 multivariant cross-neutralizing antibody levels for wildtype Wuhan, Delta, Omicron BA1, BA2, and BA4/BA5 variants. In addition, we evaluated the transplacental antibody transfer by profiling maternal and umbilical cord blood. Results: Our results reveal that the current COVID-19 vaccination induced significantly higher RBD-specific binding IgG titers in cord blood compared to maternal blood for both the Wuhan and Omicron BA1 strain. Interestingly, the binding IgG antibody levels for the Omicron BA1 strain were significantly lower when compared to the Wuhan strain in both maternal and cord blood. In contrast to the binding, the Omicron BA1, BA2, and BA4/5 specific neutralizing antibody levels were significantly lower compared to the Wuhan and Delta variants. It is interesting to note that the BA4/5 neutralizing capacity was not detected in either maternal or cord blood. Discussion: Our data suggest that the initial series of COVID-19 mRNA vaccines were immunogenic in pregnant women, and vaccine-elicited binding antibodies were detectable in cord blood at significantly higher levels for the Wuhan and Delta variants but not for the Omicron variants. Interestingly, the vaccination did not induce neutralizing antibodies for Omicron variants. These results provide novel insight into the impact of vaccination on maternal humoral immune response and transplacental antibody transfer for SARS-CoV-2 variants and support the need for bivalent boosters as new variants emerge.


Subject(s)
COVID-19 , Pregnancy Complications, Infectious , Pregnancy , Infant, Newborn , Female , Humans , COVID-19 Vaccines , SARS-CoV-2 , Fetal Blood , BNT162 Vaccine , COVID-19/prevention & control , Antibodies, Neutralizing , Antibodies, Viral
11.
Int J Gynaecol Obstet ; 162(1): 154-162, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36598270

ABSTRACT

OBJECTIVE: To improve our understanding of the immune response, including the neutralization antibody response, following COVID-19 vaccination in pregnancy. METHODS: This was a prospective cohort study comprising patients with PCR-confirmed SARS-CoV-2 infection and patients who received both doses of mRNA COVID-19 vaccine (mRNA-1273, BNT162b2) in pregnancy recruited from two hospitals in Atlanta, GA, USA. Maternal blood and cord blood at delivery were assayed for anti-receptor binding domain (RBD) IgG, IgA and IgM, and neutralizing antibody. The detection of antibodies, titers, and maternal to fetal transfer ratios were compared. RESULTS: Nearly all patients had detectable RBD-binding IgG in maternal and cord samples. The vaccinated versus infected cohort had a significantly greater proportion of cord samples with detectable neutralizing antibody (94% vs. 28%, P < 0.001) and significantly higher transfer ratios for RBD-specific IgG and neutralizing antibodies with a transfer efficiency of 105% (vs. 80%, P < 0.001) and 110% (vs. 90%, P < 0.001), respectively. There was a significant linear decline in maternal and cord blood RBD-specific IgG and neutralizing antibody titers as time from vaccination to delivery increased. CONCLUSIONS: Those who receive the mRNA COVID-19 vaccine mount an immune response that is equivalent to-if not greater than-those naturally infected by SARS-CoV-2 during pregnancy.


Subject(s)
2019-nCoV Vaccine mRNA-1273 , COVID-19 , Female , Pregnancy , Humans , BNT162 Vaccine , COVID-19 Vaccines , Antibody Formation , Prospective Studies , COVID-19/prevention & control , SARS-CoV-2 , Antibodies, Neutralizing , RNA, Messenger , Immunoglobulin G , Antibodies, Viral , Vaccination
12.
Cell Rep ; 42(9): 113150, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37708028

ABSTRACT

The pairing of antibody genes IGHV2-5/IGLV2-14 is established as a public immune response that potently cross-neutralizes SARS-CoV-2 variants, including Omicron, by targeting class-3/RBD-5 epitopes in the receptor binding domain (RBD). LY-CoV1404 (bebtelovimab) exemplifies this, displaying exceptional potency against Omicron sub-variants up to BA.5. Here, we report a human antibody, 002-S21B10, encoded by the public clonotype IGHV2-5/IGLV2-14. While 002-S21B10 neutralized key SARS-CoV-2 variants, it did not neutralize Omicron, despite sharing >92% sequence similarity with LY-CoV1404. The structure of 002-S21B10 in complex with spike trimer plus structural and sequence comparisons with LY-CoV1404 and other IGHV2-5/IGLV2-14 antibodies revealed significant variations in light-chain orientation, paratope residues, and epitope-paratope interactions that enable some antibodies to neutralize Omicron but not others. Confirming this, replacing the light chain of 002-S21B10 with the light chain of LY-CoV1404 restored 002-S21B10's binding to Omicron. Understanding such Omicron evasion from public response is vital for guiding therapeutics and vaccine design.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Antibodies, Viral , Antibodies, Neutralizing , Epitopes
13.
Open Forum Infect Dis ; 10(5): ofad226, 2023 May.
Article in English | MEDLINE | ID: mdl-37213426

ABSTRACT

Background: Nasopharyngeal qualitative reverse-transcription polymerase chain reaction (RT-PCR) is the gold standard for diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, but it is not practical or sufficient in every clinical scenario due to its inability to distinguish active from resolved infection. Alternative or adjunct testing may be needed to guide isolation precautions and treatment in patients admitted to the hospital. Methods: We performed a single-center, retrospective analysis of residual clinical specimens and medical record data to examine blood plasma nucleocapsid antigen as a candidate biomarker of active SARS-CoV-2. Adult patients admitted to the hospital or presenting to the emergency department with SARS-CoV-2 ribonucleic acid (RNA) detected by RT-PCR from a nasopharyngeal swab specimen were included. Both nasopharyngeal swab and a paired whole blood sample were required to be available for analysis. Results: Fifty-four patients were included. Eight patients had positive nasopharyngeal swab virus cultures, 7 of whom (87.5%) had concurrent antigenemia. Nineteen (79.2%) of 24 patients with detectable subgenomic RNA and 20 (80.0%) of 25 patients with N2 RT-PCR cycle threshold ≤ 33 had antigenemia. Conclusions: Most individuals with active SARS-CoV-2 infection are likely to have concurrent antigenemia, but there may be some individuals with active infection in whom antigenemia is not detectable. The potential for high sensitivity and convenience of a blood test prompts interest in further investigation as a screening tool to reduce reliance on nasopharyngeal swab sampling and as an adjunct diagnostic test to aid in clinical decision making during the period after acute coronavirus disease 2019.

14.
medRxiv ; 2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37398319

ABSTRACT

Novel mRNA vaccines have resulted in a reduced number of SARS-CoV-2 infections and hospitalizations. Yet, there is a paucity of studies regarding their effectiveness on immunocompromised autoimmune subjects. In this study, we enrolled subjects naïve to SARS-CoV-2 infections from two cohorts of healthy donors (HD, n=56) and systemic lupus erythematosus (SLE, n=69). Serological assessments of their circulating antibodies revealed a significant reduction of potency and breadth of neutralization in the SLE group, only partially rescued by a 3rd booster dose. Immunological memory responses in the SLE cohort were characterized by a reduced magnitude of spike-reactive B and T cell responses that were strongly associated with poor seroconversion. Vaccinated SLE subjects were defined by a distinct expansion and persistence of a DN2 spike-reactive memory B cell pool and a contraction of spike-specific memory cTfh cells, contrasting with the sustained germinal center (GC)-driven activity mediated by mRNA vaccination in the healthy population. Among the SLE-associated factors that dampened the vaccine responses, treatment with the monoclonal antibody anti-BAFF/Belimumab (a lupus FDA-approved B cell targeting agent) profoundly affected the vaccine responsiveness by restricting the de novo B cell responses and promoting stronger extra-follicular (EF)-mediated responses that were associated with poor immunogenicity and impaired immunological memory. In summary, this study interrogates antigen-specific responses and characterized the immune cell landscape associated with mRNA vaccination in SLE. The identification of factors associated with reduced vaccine efficacy illustrates the impact of SLE B cell biology on mRNA vaccine responses and provides guidance for the management of boosters and recall vaccinations in SLE patients according to their disease endotype and modality of treatment.

15.
Blood Cancer Discov ; 4(2): 106-117, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36511813

ABSTRACT

Patients with multiple myeloma (MM) mount suboptimal neutralizing antibodies (nAb) following 2 doses of SARS-CoV-2 mRNA vaccines. Currently, circulating SARS-CoV-2 variants of concern (VOC) carry the risk of breakthrough infections. We evaluated immune recognition of current VOC including BA.1, BA.2, and BA.5 in 331 racially representative patients with MM following 2 or 3 doses of mRNA vaccines. The third dose increased nAbs against WA1 in 82%, but against BA variants in only 33% to 44% of patients. Vaccine-induced nAbs correlated with receptor-binding domain (RBD)-specific class-switched memory B cells. Vaccine-induced spike-specific T cells were detected in patients without seroconversion and cross-recognized variant-specific peptides but were predominantly CD4+ T cells. Detailed clinical/immunophenotypic analysis identified features correlating with nAb/B/T-cell responses. Patients who developed breakthrough infections following 3 vaccine doses had lower live-virus nAbs, including against VOC. Patients with MM remain susceptible to SARS-CoV-2 variants following 3 vaccine doses and should be prioritized for emerging approaches to elicit variant-nAb and CD8+ T cells. SIGNIFICANCE: Three doses of SARS-CoV-2 mRNA vaccines fail to yield detectable VOC nAbs in nearly 60% and spike-specific CD8+ T cells in >80% of myeloma patients. Patients who develop breakthrough infections following vaccination have low levels of live-virus nAb. This article is highlighted in the In This Issue feature, p. 101.


Subject(s)
COVID-19 , Multiple Myeloma , Humans , SARS-CoV-2 , Breakthrough Infections , COVID-19/prevention & control , CD8-Positive T-Lymphocytes , mRNA Vaccines , Antibodies, Neutralizing
16.
Structure ; 31(7): 801-811.e5, 2023 07 06.
Article in English | MEDLINE | ID: mdl-37167972

ABSTRACT

Understanding the molecular features of neutralizing epitopes is important for developing vaccines/therapeutics against emerging SARS-CoV-2 variants. We describe three monoclonal antibodies (mAbs) generated from COVID-19 recovered individuals during the first wave of the pandemic in India. These mAbs had publicly shared near germline gene usage and potently neutralized Alpha and Delta, poorly neutralized Beta, and failed to neutralize Omicron BA.1 SARS-CoV-2 variants. Structural analysis of these mAbs in complex with trimeric spike protein showed that all three mAbs bivalently bind spike with two mAbs targeting class 1 and one targeting a class 4 receptor binding domain epitope. The immunogenetic makeup, structure, and function of these mAbs revealed specific molecular interactions associated with the potent multi-variant binding/neutralization efficacy. This knowledge shows how mutational combinations can affect the binding or neutralization of an antibody, which in turn relates to the efficacy of immune responses to emerging SARS-CoV-2 escape variants.


Subject(s)
Antibodies, Neutralizing , COVID-19 , Humans , SARS-CoV-2/genetics , Antibodies, Monoclonal , Epitopes , Neutralization Tests
17.
iScience ; 26(11): 108256, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37965140

ABSTRACT

Traditional cellular and live-virus methods for detection of SARS-CoV-2 neutralizing antibodies (nAbs) are labor- and time-intensive, and thus not suited for routine use in the clinical lab to predict vaccine efficacy and natural immune protection. Here, we report the development and validation of a rapid, high throughput method for measuring SARS-CoV-2 nAbs against native-like trimeric spike proteins. This assay uses a blockade of human angiotensin converting enzyme 2 (hACE-2) binding (BoAb) approach in an automated digital immunoassay on the Quanterix HD-X platform. BoAb assays using Wuhan-WT (vaccine strain), delta (B.1.167.2), omicron BA1 and BA2 variant viral strains showed strong correlation with cell-based pseudovirus neutralization activity (PNA) and live-virus neutralization activity. Importantly, we were able to detect similar patterns of delta and omicron variant resistance to neutralization in samples with paired vaccine strain and delta variant BoAb measurements. Finally, we screened clinical samples from patients with or without evidence of SARS-CoV-2 exposure by a single-dilution screening version of our assays, finding significant nAb activity only in exposed individuals. Importantly, this completely automated assay can be performed in 4 h to measure neutralizing antibody titers for 16 samples over 8 serial dilutions or, 128 samples at a single dilution with replicates. In principle, these assays offer a rapid, robust, and scalable alternative to time-, skill-, and cost-intensive standard methods for measuring SARS-CoV-2 nAb levels.

18.
Article in English | MEDLINE | ID: mdl-36483398

ABSTRACT

We describe severe acute respiratory coronavirus virus 2 (SARS-CoV-2) IgG seroprevalence and antigenemia among patients at a medical center in January-March 2021 using residual clinical blood samples. The overall seroprevalences were 17% by infection and 16% by vaccination. Spent or residual samples are a feasible alternative for rapidly estimating seroprevalence or monitoring trends in infection and vaccination.

19.
Cell Rep ; 38(9): 110436, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35235790

ABSTRACT

HIV-1 clade C envelope immunogens that elicit both neutralizing and non-neutralizing V1V2-scaffold-specific antibodies (protective correlates from RV144 human trial) are urgently needed due to the prevalence of this clade in the most impacted regions worldwide. To achieve this, we introduce structure-guided changes followed by consensus-C-sequence-guided optimizations at the V2 region to generate UFO-v2-RQH173 trimer. This improves the abundance of well-formed trimers. Following the immunization of rabbits, the wild-type protein fails to elicit any autologous neutralizing antibodies, but UFO-v2-RQH173 elicits both autologous neutralizing and broad V1V2-scaffold antibodies. The variant with a 173Y modification in the V2 region, most prevalent among HIV-1 sequences, shows decreased ability in displaying a native-like V1V2 epitope with time in vitro and elicited antibodies with lower neutralizing and higher V1V2-scaffold activities. Our results identify a stabilized clade C trimer capable of eliciting improved neutralizing and V1V2-scaffold antibodies and reveal the importance of the V2 region in tuning this.


Subject(s)
AIDS Vaccines , HIV Infections , HIV Seropositivity , HIV-1 , Animals , Antibodies, Neutralizing , HIV Antibodies , HIV Antigens , Rabbits , env Gene Products, Human Immunodeficiency Virus
20.
medRxiv ; 2022 Feb 02.
Article in English | MEDLINE | ID: mdl-35132426

ABSTRACT

Traditional cellular and live-virus methods for detection of SARS-CoV-2 neutralizing antibodies (nAbs) are labor- and time-intensive, and thus not suited for routine use in the clinical lab to predict vaccine efficacy and natural immune protection. Here, we report the development and validation of a rapid, high throughput method for measuring SARS-CoV-2 nAbs against native-like trimeric spike proteins. This assay uses a blockade of hACE-2 binding (BoAb) approach in an automated digital immunoassay on the Quanterix HD-X platform. BoAb assays using vaccine and delta variant viral strains showed strong correlation with cell-based pseudovirus and live-virus neutralization activity. Importantly, we were able to detect similar patterns of delta variant resistance to neutralization in samples with paired vaccine and delta variant BoAb measurements. Finally, we screened clinical samples from patients with or without evidence of SARS-CoV-2 exposure by a single-dilution screening version of our assays, finding significant nAb activity only in exposed individuals. In principle, these assays offer a rapid, robust, and scalable alternative to time-, skill-, and cost-intensive standard methods for measuring SARS-CoV-2 nAb levels.

SELECTION OF CITATIONS
SEARCH DETAIL