Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Am J Med Genet A ; 194(7): e63531, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38421086

ABSTRACT

Duplications of the 3q29 cytoband are rare chromosomal copy number variations (CNVs) (overlapping or recurrent ~1.6 Mb 3q29 duplications). They have been associated with highly variable neurodevelopmental disorders (NDDs) with various associated features or reported as a susceptibility factor to the development of learning disabilities and neuropsychiatric disorders. The smallest region of overlap and the phenotype of 3q29 duplications remain uncertain. We here report a French cohort of 31 families with a 3q29 duplication identified by chromosomal microarray analysis (CMA), including 14 recurrent 1.6 Mb duplications, eight overlapping duplications (>1 Mb), and nine small duplications (<1 Mb). Additional genetic findings that may be involved in the phenotype were identified in 11 patients. Focusing on apparently isolated 3q29 duplications, patients present mainly mild NDD as suggested by a high rate of learning disabilities in contrast to a low proportion of patients with intellectual disabilities. Although some are de novo, most of the 3q29 duplications are inherited from a parent with a similar mild phenotype. Besides, the study of small 3q29 duplications does not provide evidence for any critical region. Our data suggest that the overlapping and recurrent 3q29 duplications seem to lead to mild NDD and that a severe or syndromic clinical presentation should warrant further genetic analyses.


Subject(s)
Chromosome Duplication , Chromosomes, Human, Pair 3 , DNA Copy Number Variations , Phenotype , Humans , Female , Male , Chromosomes, Human, Pair 3/genetics , Chromosome Duplication/genetics , Child , DNA Copy Number Variations/genetics , Child, Preschool , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/pathology , Adolescent , Cohort Studies , Intellectual Disability/genetics , Intellectual Disability/pathology , Adult , Infant
2.
Hum Genet ; 140(6): 885-896, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33417013

ABSTRACT

The 22q11.2 deletion syndrome (22q11DS) is associated with a wide spectrum of cognitive and psychiatric symptoms. Despite the considerable work performed over the past 20 years, the genetic etiology of the neurodevelopmental phenotype remains speculative. Here, we report de novo heterozygous truncating variants in the HIRA (Histone cell cycle regulation defective, S. Cerevisiae, homolog of, A) gene associated with a neurodevelopmental disorder in two unrelated patients. HIRA is located within the commonly deleted region of the 22q11DS and encodes a histone chaperone that regulates neural progenitor proliferation and neurogenesis, and that belongs to the WD40 Repeat (WDR) protein family involved in brain development and neuronal connectivity. To address the specific impact of HIRA haploinsufficiency in the neurodevelopmental phenotype of 22q11DS, we combined Hira knock-down strategies in developing mouse primary hippocampal neurons, and the direct study of brains from heterozygous Hira+/- mice. Our in vitro analyses revealed that Hira gene is mostly expressed during neuritogenesis and early dendritogenesis stages in mouse total brain and in developing primary hippocampal neurons. Moreover, shRNA knock-down experiments showed that a twofold decrease of endogenous Hira expression level resulted in an impaired dendritic growth and branching in primary developing hippocampal neuronal cultures. In parallel, in vivo analyses demonstrated that Hira+/- mice displayed subtle neuroanatomical defects including a reduced size of the hippocampus, the fornix and the corpus callosum. Our results suggest that HIRA haploinsufficiency would likely contribute to the complex pathophysiology of the neurodevelopmental phenotype of 22q11DS by impairing key processes in neurogenesis and by causing neuroanatomical defects during cerebral development.


Subject(s)
Cell Cycle Proteins/genetics , DiGeorge Syndrome/genetics , Haploinsufficiency , Histone Chaperones/genetics , Neurodevelopmental Disorders/genetics , Neuronal Plasticity/genetics , Neurons/metabolism , Transcription Factors/genetics , Animals , Base Sequence , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/deficiency , Cell Cycle Proteins/metabolism , Child , Child, Preschool , Corpus Callosum/metabolism , Corpus Callosum/pathology , DiGeorge Syndrome/metabolism , DiGeorge Syndrome/pathology , Female , Fornix, Brain/metabolism , Fornix, Brain/pathology , Gene Expression , Heterozygote , Hippocampus/metabolism , Hippocampus/pathology , Histone Chaperones/antagonists & inhibitors , Histone Chaperones/deficiency , Histone Chaperones/metabolism , Humans , Mice , Neurodevelopmental Disorders/metabolism , Neurodevelopmental Disorders/pathology , Neurogenesis/genetics , Neurons/pathology , Primary Cell Culture , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Transcription Factors/antagonists & inhibitors , Transcription Factors/deficiency , Transcription Factors/metabolism
3.
Am J Med Genet A ; 127A(3): 313-7, 2004 Jun 15.
Article in English | MEDLINE | ID: mdl-15150787

ABSTRACT

Polymicrogyria is a brain malformation due to abnormal cortical organization. Two histological types, unlayered or four-layered can be distinguished. Polymicrogyria is a rare manifestation of chromosome 22q11 deletion syndrome. We report two boys with chromosome 22q11 deletion syndrome and polymicrogyria, and describe the neuropathological features of the malformation in one of them. Clinical examinations, EEG, brain MRI, chromosomal analysis with FISH, and neuropathological studies of surgically resected cortical tissue were performed. Both patients showed severe developmental delay with cardiovascular malformations and one of them had drug resistant epilepsy. Polymicrogyria was found in the frontal, parietal, and temporal areas, unilaterally in one patient and bilaterally in the other. Histology revealed four-layered polymicrogyria. The pathogenesis of polymicrogyria in 22q11 deletion syndrome is discussed.


Subject(s)
Brain/abnormalities , Chromosome Deletion , Chromosomes, Human, Pair 22 , Humans , In Situ Hybridization, Fluorescence , Infant, Newborn , Magnetic Resonance Imaging , Male
SELECTION OF CITATIONS
SEARCH DETAIL