Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Molecules ; 29(2)2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38257342

ABSTRACT

Resveratrol (RSV), obtained from dietary sources, has been shown to reduce trimethylamine oxide (TMAO) levels in humans, and much research indicates that TMAO is recognized as a risk factor for cardiovascular disease. Therefore, this study investigated the effects of RSV and RSV-butyrate esters (RBE) on the proliferation of co-cultured bacteria and HepG2 cell lines, respectively, and also investigated the changes in trimethylamine (TMA) and TMOA content in the medium and flavin-containing monooxygenase-3 (FMO3) gene expression. This study revealed that 50 µg/mL of RBE could increase the population percentage of Bifidobacterium longum at a rate of 53%, while the rate was 48% for Clostridium asparagiforme. In contrast, co-cultivation of the two bacterial strains effectively reduced TMA levels from 561 ppm to 449 ppm. In addition, regarding TMA-induced HepG2 cell lines, treatment with 50 µM each of RBE, 3,4'-di-O-butanoylresveratrol (ED2), and 3-O-butanoylresveratrol (ED4) significantly reduced FMO3 gene expression from 2.13 to 0.40-1.40, which would also contribute to the reduction of TMAO content. This study demonstrated the potential of RBE, ED2, and ED4 for regulating TMA metabolism in microbial co-cultures and cell line cultures, which also suggests that the resveratrol derivative might be a daily dietary supplement that will be beneficial for health promotion in the future.


Subject(s)
Butyrates , Esters , Methylamines , Humans , Butyrates/pharmacology , Feasibility Studies , Resveratrol/pharmacology
2.
Sheng Li Ke Xue Jin Zhan ; 46(6): 408-14, 2015 Dec.
Article in Zh | MEDLINE | ID: mdl-27089684

ABSTRACT

As an immediate early gene, c-fos plays a critical role in stimulating the synthesis and release of pituitary FSH via GnRH. To better understanding the mechanism how c-fos works in the transcription of FSHbeta under different frequency of pulsatile GnRH stimulation, this paper reviewed the signal trans- ductions initiated by c-fos in pituitary, which include cAMP pathway, MAPK pathway, Ca2+ /calmodulin-dependent kinases pathway and nuclear factor of activated T-cells (NFAT) pathway. It will be helpful for research in molecular targeted immunotherapy and eventually effective treatment to the infertility which resulted from defection or mutation of c-fos and c-fos related signal pathway elements.


Subject(s)
Signal Transduction , Follicle Stimulating Hormone , Genes, fos
3.
Article in English | MEDLINE | ID: mdl-38875081

ABSTRACT

Zebrafish has been considered as an essential small-animal model for investigating the mechanism of heart regeneration. Due to the small size of zebrafish heart, high-frequency ultrasound (HFUS) imaging is often required for in vivo evaluations of its dynamic functions. Although commercial HFUS systems are available for myocardial velocity and strain measurement, only the outer myocardial region can be quantified due to the complex structure of zebrafish heart. In this study, a high-resolution 2D myocardial tissue Doppler and strain imaging based on ultrafast HFUS imaging was developed for zebrafish heart imaging during heart regeneration. The cardiac flow region was first extracted to recognize the myocardial region, and the myocardial velocity and strain were then determined through vector Doppler estimation. Adult AB-line zebrafish were used for in vivo experiments, and cryoinjury was induced in the apical region of the heart. Both the myocardial velocity and strain of the whole ventricle after cryoinjury were directly visualized over 28 days. Myocardial velocity (during later diastolic motion) and strain, respectively, were significantly decreased (anterior wall: -2.0 mm/s and -3.3%; apical region: -2.0 mm/s and -4.5%; posterior wall: -1.7 mm/s and -4.3%) at the first 3 days after cryoinjury, which indicates weak myocardial beating due to heart injury. However, these all returned to the baseline values at 14 days after cryoinjury. All of the experimental results indicate that the proposed method is a useful tool for heart regeneration studies in adult zebrafish. In particular, it allows for the noninvasive evaluation of regional dynamic heart function.

4.
FEBS Open Bio ; 14(3): 358-379, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38151750

ABSTRACT

Overall diet, lifestyle choices, genetic predisposition, and other underlying health conditions may contribute to higher trimethylamine N-oxide (TMAO) levels and increased cardiovascular risk. This review explores the potential therapeutic ability of RSV to protect against cardiovascular diseases (CVD) and affect TMAO levels. This review considers recent studies on the association of TMAO with CVD. It also examines the sources, mechanisms, and metabolism of TMAO along with TMAO-induced cardiovascular events. Plant polyphenolic compounds, including resveratrol (RSV), and their cardioprotective mechanism of regulating TMAO levels and modifying gut microbiota are also discussed here. RSV's salient features and bioactive properties in reducing CVD have been evaluated. The close relationship between TMAO and CVD is clearly understood from currently available data, making it a potent biomarker for CVD. Precise investigation, including clinical trials, must be performed to understand RSV's mechanism, dose, effects, and derivatives as a cardioprotectant agent.


Subject(s)
Cardiovascular Diseases , Methylamines , Humans , Resveratrol/pharmacology , Cardiovascular Diseases/drug therapy , Risk Factors , Diet , Heart Disease Risk Factors
5.
Front Nutr ; 10: 1109109, 2023.
Article in English | MEDLINE | ID: mdl-36937349

ABSTRACT

Hops provide the characteristic bitter taste and attractive aroma to beer; in this study, hops were replaced by jasmine tea extract (JTE) during late-hopping. The addition of JTE improved the beer foam stability 1.52-fold, and increased the polyphenol and organic acid contents. Linalool was the most important aroma compound in hopped (HOPB) and jasmine tea beer (JTB), but other flavor components were markedly different, including dimeric catechins, flavone/flavonol glycosides, and bitter acids and derivatives. Sensory evaluation indicated that addition of JTE increased the floral and fresh-scent aromas, reduced bitterness and improved the organoleptic quality of the beer. The antioxidant capacity of JTB was much higher than that of HOPB. The inhibition of amylase activity by JTB was 30.5% higher than that of HOPB. Functional properties to beer were added by substituting jasmine tea extract for hops during late hopping.

6.
Front Nutr ; 10: 1110803, 2023.
Article in English | MEDLINE | ID: mdl-36824171

ABSTRACT

Introduction: Tea is the main raw material for preparing tea wine. Methods: In this research, four types of tea wine were prepared using different categories of tea leaves, including green tea, oolong tea, black tea, and dark tea, and the comparative study looking their physicochemical, sensorial, and antioxidant profiles were carried out. Results: The dynamic changes of total soluble solids, amino acids and ethanol concentrations, and pH were similar in four tea wines. The green tea wine (GTW) showed the highest consumption of total soluble solids and amino acids, and produced the highest concentrations of alcohol, malic, succinic, and lactic acid among all tea wines. The analysis of volatile components indicated the number and concentration of esters and alcohols increased significantly after fermentation of tea wines. GTW presented the highest volatile concentration, while oolong tea wine (OTW) showed the highest number of volatile compounds. GTW had the highest total catechins concentration of 404 mg/L and the highest ABTS value (1.63 mmol TEAC/mL), while OTW showed the highest DPPH value (1.00 mmol TEAC/mL). Moreover, OTW showed the highest score of sensory properties. Discussion: Therefore, the types of tea leaves used in the tea wine production interfere in its bioactive composition, sensorial, and antioxidant properties.

7.
Adv Sci (Weinh) ; 10(35): e2302345, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37964413

ABSTRACT

Although the relationships of cerebrovascular hemodynamic dysfunction with neurodegenerative diseases remain unclear, many studies have indicated that poor cerebral perfusion accelerates the progression of neurodegenerative diseases, such as Alzheimer's disease (AD). Small animal models are widely used in AD research. However, providing an imaging modality with a high spatiotemporal resolution and sufficiently large field of view to assess cerebrovascular hemodynamics in vivo remains a challenge. The present study proposes a novel technique for high-spatiotemporal-resolution vector micro-Doppler imaging (HVµDI) based on contrast-free ultrafast high frequency ultrasound imaging to visualize the cerebrovascular hemodynamics of the mouse, with a data acquisition time of 0.4 s, a minimal detectable vessel size of 38 µm, and a temporal resolution of 500 Hz. In vivo experiments are conducted on wild-type and AD mice. Cerebrovascular hemodynamics are quantified using the cerebral vascular density, diameter, velocity, tortuosity, cortical flow pulsatility, and instant flow direction variations. Results reveal that AD significantly change the cerebrovascular hemodynamics. HVµDI offers new opportunities for in vivo analysis of cerebrovascular hemodynamics in neurodegenerative pathologies in preclinical animal research.


Subject(s)
Alzheimer Disease , Mice , Animals , Alzheimer Disease/diagnostic imaging , Hemodynamics , Disease Models, Animal , Ultrasonography
8.
Ultrasonics ; 131: 106949, 2023 May.
Article in English | MEDLINE | ID: mdl-36773481

ABSTRACT

The meningeal lymphatic system drains the cerebrospinal fluid from the subarachnoid space to the cervical lymphatic system, primarily to the deep cervical lymph nodes. Perturbations of the meningeal lymphatic system have been linked to various neurologic disorders. A method to specifically monitor the flow of meningeal lymphatic system in real time is unavailable. In the present study, we adopted the high-frequency ultrasound (HFUS) with 1,1'diocatadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI)-loaded microbubble and FePt@PLGA nanoparticle contrast agents to evaluate the flow of the meningeal lymphatic system in 2-month-old mice. Statistical analysis was performed to identify changes of HFUS signals among the microbubbles, FePt@PLGA nanoparticles, and saline control groups. Approximately 15 min from the start of intracerebroventricular injection of contrast agents, their signals were evident at the deep cervical lymph nodes and lasted for at least 60 min. These signals were validated on the basis of the presence of DiI and Fe signals in the deep cervical lymph nodes. Ligation of afferent lymphatic vessels to the deep cervical lymph nodes eliminated the HFUS signals. Moreover, ablation of lymphatic vessels near the confluence of sinuses decreased the HFUS signals in the deep cervical lymph nodes. Glioma-bearing mice that exhibited reduced lymphatic vessel immunostaining signals near the confluence of sinuses had lowered HFUS signals in the deep cervical lymph nodes within 60 min. The proposed method provides a minimally invasive approach to monitor the qualities of the meningeal lymphatic system in real time as well as the progression of the meningeal lymphatic system in various brain disease animal models.


Subject(s)
Lymph Nodes , Lymphatic Vessels , Mice , Animals , Lymph Nodes/pathology , Contrast Media , Lymphatic System/diagnostic imaging , Lymphatic Vessels/diagnostic imaging , Ultrasonography
SELECTION OF CITATIONS
SEARCH DETAIL