Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.539
Filter
Add more filters

Publication year range
1.
Cell ; 185(23): 4361-4375.e19, 2022 11 10.
Article in English | MEDLINE | ID: mdl-36368306

ABSTRACT

Morphine and fentanyl are among the most used opioid drugs that confer analgesia and unwanted side effects through both G protein and arrestin signaling pathways of µ-opioid receptor (µOR). Here, we report structures of the human µOR-G protein complexes bound to morphine and fentanyl, which uncover key differences in how they bind the receptor. We also report structures of µOR bound to TRV130, PZM21, and SR17018, which reveal preferential interactions of these agonists with TM3 side of the ligand-binding pocket rather than TM6/7 side. In contrast, morphine and fentanyl form dual interactions with both TM3 and TM6/7 regions. Mutations at the TM6/7 interface abolish arrestin recruitment of µOR promoted by morphine and fentanyl. Ligands designed to reduce TM6/7 interactions display preferential G protein signaling. Our results provide crucial insights into fentanyl recognition and signaling of µOR, which may facilitate rational design of next-generation analgesics.


Subject(s)
Fentanyl , Morphine , Humans , Analgesics, Opioid/pharmacology , Arrestin/metabolism , Fentanyl/pharmacology , GTP-Binding Proteins/metabolism , Morphine/pharmacology , Receptors, Opioid, mu
2.
Cell ; 185(7): 1157-1171.e22, 2022 03 31.
Article in English | MEDLINE | ID: mdl-35259335

ABSTRACT

Enterococci are a part of human microbiota and a leading cause of multidrug resistant infections. Here, we identify a family of Enterococcus pore-forming toxins (Epxs) in E. faecalis, E. faecium, and E. hirae strains isolated across the globe. Structural studies reveal that Epxs form a branch of ß-barrel pore-forming toxins with a ß-barrel protrusion (designated the top domain) sitting atop the cap domain. Through a genome-wide CRISPR-Cas9 screen, we identify human leukocyte antigen class I (HLA-I) complex as a receptor for two members (Epx2 and Epx3), which preferentially recognize human HLA-I and homologous MHC-I of equine, bovine, and porcine, but not murine, origin. Interferon exposure, which stimulates MHC-I expression, sensitizes human cells and intestinal organoids to Epx2 and Epx3 toxicity. Co-culture with Epx2-harboring E. faecium damages human peripheral blood mononuclear cells and intestinal organoids, and this toxicity is neutralized by an Epx2 antibody, demonstrating the toxin-mediated virulence of Epx-carrying Enterococcus.


Subject(s)
Bacterial Toxins/metabolism , Enterococcus , Leukocytes, Mononuclear , Virulence Factors/metabolism , Animals , Cattle , Enterococcus/metabolism , Enterococcus/pathogenicity , Horses , Mice , Microbial Sensitivity Tests , Swine
3.
Cell ; 169(6): 1090-1104.e13, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28552346

ABSTRACT

Genetic studies have elucidated critical roles of Piwi proteins in germline development in animals, but whether Piwi is an actual disease gene in human infertility remains unknown. We report germline mutations in human Piwi (Hiwi) in patients with azoospermia that prevent its ubiquitination and degradation. By modeling such mutations in Piwi (Miwi) knockin mice, we demonstrate that the genetic defects are directly responsible for male infertility. Mechanistically, we show that MIWI binds the histone ubiquitin ligase RNF8 in a Piwi-interacting RNA (piRNA)-independent manner, and MIWI stabilization sequesters RNF8 in the cytoplasm of late spermatids. The resulting aberrant sperm show histone retention, abnormal morphology, and severely compromised activity, which can be functionally rescued via blocking RNF8-MIWI interaction in spermatids with an RNF8-N peptide. Collectively, our findings identify Piwi as a factor in human infertility and reveal its role in regulating the histone-to-protamine exchange during spermiogenesis.


Subject(s)
Argonaute Proteins/genetics , Argonaute Proteins/metabolism , Azoospermia/genetics , Mutation , Animals , Azoospermia/metabolism , Chromatin/metabolism , DNA Mutational Analysis , DNA-Binding Proteins/metabolism , Disease Models, Animal , Female , Gene Knock-In Techniques , Histones/metabolism , Humans , Introns , Male , Mice , Pedigree , Protamines/metabolism , Proteolysis , Spermatogenesis , Ubiquitin-Protein Ligases , Ubiquitination
4.
Nature ; 634(8032): 220-227, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39198649

ABSTRACT

Fertilization introduces parental genetic information into the zygote to guide embryogenesis. Parental contributions to postfertilization development have been discussed for decades, and the data available show that both parents contribute to the zygotic transcriptome, suggesting a paternal role in early embryogenesis1-6. However, because the specific paternal effects on postfertilization development and the molecular pathways underpinning these effects remain poorly understood, paternal contribution to early embryogenesis and plant development has not yet been adequately demonstrated7. Here our research shows that TREE1 and its homologue DAZ3 are expressed exclusively in Arabidopsis sperm. Despite presenting no evident defects in sperm development and fertilization, tree1 daz3 unexpectedly led to aberrant differentiation of the embryo root stem cell niche. This defect persisted in seedlings and disrupted root tip regeneration, comparable to congenital defects in animals. TREE1 and DAZ3 function by suppression of maternal RKD2 transcription, thus mitigating the detrimental maternal effects from RKD2 on root stem cell niche. Therefore, our findings illuminate how genetic deficiencies in sperm can exert enduring paternal effects on specific plant organ differentiation and how parental-of-origin genes interact to ensure normal embryogenesis. This work also provides a new concept of how gamete quality or genetic deficiency can affect specific plant organ formation.


Subject(s)
Arabidopsis , Cell Differentiation , Paternal Inheritance , Plant Roots , Stem Cell Niche , Arabidopsis/cytology , Arabidopsis/embryology , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Cell Differentiation/genetics , Fertilization , Gene Expression Regulation, Plant , Plant Roots/cytology , Plant Roots/embryology , Plant Roots/genetics , Regeneration/genetics , Seedlings/genetics , Seedlings/growth & development , Animals , Seeds/cytology , Seeds/embryology , Seeds/genetics , Transcription, Genetic , Paternal Inheritance/genetics
5.
Nature ; 631(8019): 199-206, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38898276

ABSTRACT

The vast majority of glycosidases characterized to date follow one of the variations of the 'Koshland' mechanisms1 to hydrolyse glycosidic bonds through substitution reactions. Here we describe a large-scale screen of a human gut microbiome metagenomic library using an assay that selectively identifies non-Koshland glycosidase activities2. Using this, we identify a cluster of enzymes with extremely broad substrate specificities and thoroughly characterize these, mechanistically and structurally. These enzymes not only break glycosidic linkages of both α and ß stereochemistry and multiple connectivities, but also cleave substrates that are not hydrolysed by standard glycosidases. These include thioglycosides, such as the glucosinolates from plants, and pseudoglycosidic bonds of pharmaceuticals such as acarbose. This is achieved through a distinct mechanism of hydrolysis that involves oxidation/reduction and elimination/hydration steps, each catalysed by enzyme modules that are in many cases interchangeable between organisms and substrate classes. Homologues of these enzymes occur in both Gram-positive and Gram-negative bacteria associated with the gut microbiome and other body parts, as well as other environments, such as soil and sea. Such alternative step-wise mechanisms appear to constitute largely unrecognized but abundant pathways for glycan degradation as part of the metabolism of carbohydrates in bacteria.


Subject(s)
Bacteria , Gastrointestinal Microbiome , Glycoside Hydrolases , Polysaccharides , Humans , Acarbose/chemistry , Acarbose/metabolism , Bacteria/enzymology , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/metabolism , Biocatalysis , Glucosinolates/metabolism , Glucosinolates/chemistry , Glycoside Hydrolases/metabolism , Glycoside Hydrolases/chemistry , Hydrolysis , Metagenome , Oxidation-Reduction , Plants/chemistry , Polysaccharides/metabolism , Polysaccharides/chemistry , Seawater/microbiology , Soil Microbiology , Substrate Specificity , Male
6.
Nature ; 624(7992): 663-671, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37935377

ABSTRACT

Trace amine-associated receptor 1 (TAAR1), the founding member of a nine-member family of trace amine receptors, is responsible for recognizing a range of biogenic amines in the brain, including the endogenous ß-phenylethylamine (ß-PEA)1 as well as methamphetamine2, an abused substance that has posed a severe threat to human health and society3. Given its unique physiological role in the brain, TAAR1 is also an emerging target for a range of neurological disorders including schizophrenia, depression and drug addiction2,4,5. Here we report structures of human TAAR1-G-protein complexes bound to methamphetamine and ß-PEA as well as complexes bound to RO5256390, a TAAR1-selective agonist, and SEP-363856, a clinical-stage dual agonist for TAAR1 and serotonin receptor 5-HT1AR (refs. 6,7). Together with systematic mutagenesis and functional studies, the structures reveal the molecular basis of methamphetamine recognition and underlying mechanisms of ligand selectivity and polypharmacology between TAAR1 and other monoamine receptors. We identify a lid-like extracellular loop 2 helix/loop structure and a hydrogen-bonding network in the ligand-binding pockets, which may contribute to the ligand recognition in TAAR1. These findings shed light on the ligand recognition mode and activation mechanism for TAAR1 and should guide the development of next-generation therapeutics for drug addiction and various neurological disorders.


Subject(s)
Methamphetamine , Phenethylamines , Receptors, G-Protein-Coupled , Humans , Ligands , Methamphetamine/metabolism , Nervous System Diseases/metabolism , Phenethylamines/metabolism , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/metabolism , Substance-Related Disorders/metabolism , Heterotrimeric GTP-Binding Proteins/metabolism , Polypharmacology , Hydrogen Bonding
7.
Development ; 2024 Oct 29.
Article in English | MEDLINE | ID: mdl-39470100

ABSTRACT

Lymphatic vessels grow through active sprouting and mature into a vascular complex including lymphatic capillaries and collecting vessels that ensure fluid transport. However, the signaling cues that direct lymphatic sprouting and patterning remains unclear. In this study, we demonstrated the chemokine signaling, specifically through CXCL12/CXCR4 plays critical roles in regulating lymphatic development. We showed that LEC specific CXCR4 deficient embryos and CXCL12 mutant embryos exhibited server defects in lymphatic sprouting, migration, and lymphatic valve formation. We also discovered that CXCL12, originating from peripheral nerves, directs the migration of dermal lymphatic vessels to align with nerves in developing skin. Deletion CXCR4 or blockage of CXCL12/CXCR4 activity results in reduced VEGFR3 levels on the LEC surface. This, in turn, impairs VEGFC mediated VEGFR3 signaling and downstream PI3K/AKT activities. Taken together, these data identify previously unknown chemokine signaling originating from peripheral nerves that guides dermal lymphatic sprouting and patterning. Our work identifies for the first time a neuro-lymphatics communications during mouse development and reveals a novel mechanism by which CXCR4 modulates VEGFC/VEGFR3/AKT signaling.

8.
Plant Cell ; 36(9): 3770-3786, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-38963880

ABSTRACT

Nucleus-encoded chloroplast proteins can be transported via the secretory pathway. The molecular mechanisms underlying the trafficking of chloroplast proteins between the intracellular compartments are largely unclear, and a cargo sorting receptor has not previously been identified in the secretory pathway. Here, we report a cargo sorting receptor that is specifically present in Viridiplantae and mediates the transport of cargo proteins to the chloroplast. Using a forward genetic analysis, we identified a gene encoding a transmembrane protein (MtTP930) in barrel medic (Medicago truncatula). Mutation of MtTP930 resulted in impaired chloroplast function and a dwarf phenotype. MtTP930 is highly expressed in the aerial parts of the plant and is localized to the endoplasmic reticulum (ER) exit sites and Golgi. MtTP930 contains typical cargo sorting receptor motifs, interacts with Sar1, Sec12, and Sec24, and participates in coat protein complex II vesicular transport. Importantly, MtTP930 can recognize the cargo proteins plastidial N-glycosylated nucleotide pyrophosphatase/phosphodiesterase (MtNPP) and α-carbonic anhydrase (MtCAH) in the ER and then transport them to the chloroplast via the secretory pathway. Mutation of a homolog of MtTP930 in Arabidopsis (Arabidopsis thaliana) resulted in a similar dwarf phenotype. Furthermore, MtNPP-GFP failed to localize to chloroplasts when transgenically expressed in Attp930 protoplasts, implying that these cargo sorting receptors are conserved in plants. These findings fill a gap in our understanding of the mechanism by which chloroplast proteins are sorted and transported via the secretory pathway.


Subject(s)
Chloroplasts , Endoplasmic Reticulum , Protein Transport , Secretory Pathway , Chloroplasts/metabolism , Endoplasmic Reticulum/metabolism , Medicago truncatula/metabolism , Medicago truncatula/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Chloroplast Proteins/metabolism , Chloroplast Proteins/genetics , Golgi Apparatus/metabolism , Mutation , Arabidopsis/metabolism , Arabidopsis/genetics , Gene Expression Regulation, Plant
9.
Nature ; 592(7854): 433-437, 2021 04.
Article in English | MEDLINE | ID: mdl-33790463

ABSTRACT

Upon gamete fusion, animal egg cells secrete proteases from cortical granules to establish a fertilization envelope as a block to polyspermy1-4. Fertilization in flowering plants is more complex and involves the delivery of two non-motile sperm cells by pollen tubes5,6. Simultaneous penetration of ovules by multiple pollen tubes (polytubey) is usually avoided, thus indirectly preventing polyspermy7,8. How plant egg cells regulate the rejection of extra tubes after successful fertilization is not known. Here we report that the aspartic endopeptidases ECS1 and ECS2 are secreted to the extracellular space from a cortical network located at the apical domain of the Arabidopsis egg cell. This reaction is triggered only after successful fertilization. ECS1 and ECS2 are exclusively expressed in the egg cell and transcripts are degraded immediately after gamete fusion. ECS1 and ESC2 specifically cleave the pollen tube attractor LURE1. As a consequence, polytubey is frequent in ecs1 ecs2 double mutants. Ectopic secretion of these endopeptidases from synergid cells led to a decrease in the levels of LURE1 and reduced the rate of pollen tube attraction. Together, these findings demonstrate that plant egg cells sense successful fertilization and elucidate a mechanism as to how a relatively fast post-fertilization block to polytubey is established by fertilization-induced degradation of attraction factors.


Subject(s)
Arabidopsis/metabolism , Endopeptidases/metabolism , Fertilization , Ovule/metabolism , Pollen Tube/metabolism , Pollen/metabolism , Arabidopsis/cytology , Arabidopsis/enzymology , Arabidopsis Proteins/metabolism , Cell Fusion , Ovule/enzymology , Pollen/enzymology
10.
Proc Natl Acad Sci U S A ; 121(26): e2402200121, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38885384

ABSTRACT

Advancing our understanding of brain function and developing treatments for neurological diseases hinge on the ability to modulate neuronal groups in specific brain areas without invasive techniques. Here, we introduce Airy-beam holographic sonogenetics (AhSonogenetics) as an implant-free, cell type-specific, spatially precise, and flexible neuromodulation approach in freely moving mice. AhSonogenetics utilizes wearable ultrasound devices manufactured using 3D-printed Airy-beam holographic metasurfaces. These devices are designed to manipulate neurons genetically engineered to express ultrasound-sensitive ion channels, enabling precise modulation of specific neuronal populations. By dynamically steering the focus of Airy beams through ultrasound frequency tuning, AhSonogenetics is capable of modulating neuronal populations within specific subregions of the striatum. One notable feature of AhSonogenetics is its ability to flexibly stimulate either the left or right striatum in a single mouse. This flexibility is achieved by simply switching the acoustic metasurface in the wearable ultrasound device, eliminating the need for multiple implants or interventions. AhSonogentocs also integrates seamlessly with in vivo calcium recording via fiber photometry, showcasing its compatibility with optical modalities without cross talk. Moreover, AhSonogenetics can generate double foci for bilateral stimulation and alleviate motor deficits in Parkinson's disease mice. This advancement is significant since many neurological disorders, including Parkinson's disease, involve dysfunction in multiple brain regions. By enabling precise and flexible cell type-specific neuromodulation without invasive procedures, AhSonogenetics provides a powerful tool for investigating intact neural circuits and offers promising interventions for neurological disorders.


Subject(s)
Holography , Neurons , Animals , Holography/methods , Mice , Neurons/physiology , Wearable Electronic Devices , Ultrasonic Waves , Corpus Striatum/physiology , Brain/physiology
11.
Proc Natl Acad Sci U S A ; 121(28): e2403143121, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38959041

ABSTRACT

Currently, the nanofluidic synapse can only perform basic neuromorphic pulse patterns. One immediate problem that needs to be addressed to further its capability of brain-like computing is the realization of a nanofluidic spiking device. Here, we report the use of a poly(3,4-ethylenedioxythiophene) polystyrene sulfonate membrane to achieve bionic ionic current-induced spiking. In addition to the simulation of various electrical pulse patterns, our synapse could produce transmembrane ionic current-induced spiking, which is highly analogous to biological action potentials with similar phases and excitability. Moreover, the spiking properties could be modulated by ions and neurochemicals. We expect that this work could contribute to biomimetic spiking computing in solution.


Subject(s)
Action Potentials , Polystyrenes , Synapses , Action Potentials/physiology , Synapses/physiology , Polystyrenes/chemistry , Nanotechnology/methods , Nanotechnology/instrumentation
12.
Proc Natl Acad Sci U S A ; 121(43): e2414741121, 2024 Oct 22.
Article in English | MEDLINE | ID: mdl-39423243

ABSTRACT

The insatiable demand for lithium in portable energy storage necessitates a sustainable and low-carbon approach to its recovery. Conventional hydrometallurgical and pyrometallurgical methods heavily involve hazardous chemicals and significant CO2 emissions. Herein, by integrating electrode oxidation with electrolyte oxidation, we establish a photovoltaic-driven "dual-oxidation" seawater electrolyzer system for low-carbon footprint and high lithium recovery. A 98.96% lithium leaching rate with 99.60% product purity was demonstrated for lithium recovery from spent LiFePO4 cathode materials. In-depth mechanism studies reveal that the electric field-driven electrode oxidation and in situ generated oxidative electrolyte synergetically contributes to lithium ions leaching via a structural framework elements oxidation and particle corrosion splitting synergy. This dual-oxidation mechanism facilitates rapid and efficient lithium extraction with broad universality, offering significant economic and environmental benefits. Our work showcases a promising strategy for integrating dual oxidation within a photovoltaic-driven seawater electrolyzer, paving the way for low-carbon lithium recovery from diverse solid wastes and minerals within a sustainable circular economy.

13.
Proc Natl Acad Sci U S A ; 121(7): e2318024121, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38330014

ABSTRACT

Lipid synthesis is regulated by the actions of Scap, a polytopic membrane protein that binds cholesterol in membranes of the endoplasmic reticulum (ER). When ER cholesterol levels are low, Scap activates SREBPs, transcription factors that upregulate genes for synthesis of cholesterol, fatty acids, and triglycerides. When ER cholesterol levels rise, the sterol binds to Scap, triggering conformational changes that prevent activation of SREBPs and halting synthesis of lipids. To achieve a molecular understanding of how cholesterol regulates the Scap/SREBP machine and to identify therapeutics for dysregulated lipid metabolism, cholesterol-mimetic compounds that specifically bind and inhibit Scap are needed. To accomplish this goal, we focused on Anthrolysin O (ALO), a pore-forming bacterial toxin that binds cholesterol with a specificity and sensitivity that is uncannily similar to Scap. We reasoned that a small molecule that would bind and inhibit ALO might also inhibit Scap. High-throughput screening of a ~300,000-compound library for ALO-binding unearthed one molecule, termed UT-59, which binds to Scap's cholesterol-binding site. Upon binding, UT-59 triggers the same conformation changes in Scap as those induced by cholesterol and blocks activation of SREBPs and lipogenesis in cultured cells. UT-59 also inhibits SREBP activation in the mouse liver. Unlike five previously reported inhibitors of SREBP activation, UT-59 is the only one that acts specifically by binding to Scap's cholesterol-binding site. Our approach to identify specific Scap inhibitors such as UT-59 holds great promise in developing therapeutic leads for human diseases stemming from elevated SREBP activation, such as fatty liver and certain cancers.


Subject(s)
Bacterial Toxins , Lipogenesis , Animals , Mice , Humans , Sterol Regulatory Element Binding Protein 1/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Cholesterol/metabolism , Bacterial Toxins/metabolism
14.
Proc Natl Acad Sci U S A ; 121(42): e2411321121, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39383000

ABSTRACT

Profound functional switch of key regulatory factors may play a major role in homeostasis and disease. Dysregulation of circadian rhythm (CR) is strongly implicated in cancer with mechanisms poorly understood. We report here that the function of REV-ERBα, a major CR regulator of the orphan nuclear receptor subfamily, is dramatically altered in tumors in both its genome binding and functional mode. Loss of CR is linked to a functional inversion of REV-ERBα from a repressor in control of CR and metabolic gene programs in normal tissues to a strong activator in different cancers. Through changing its association from NCoR/HDAC3 corepressor complex to BRD4/p300 coactivators, REV-ERBα directly activates thousands of genes including tumorigenic programs such as MAPK and PI3K-Akt signaling. Functioning as a master transcriptional activator, REV-ERBα partners with pioneer factor FOXA1 and directly stimulates a large number of signaling genes, including multiple growth factors, receptor tyrosine kinases, RASs, AKTs, and MAPKs. Moreover, elevated REV-ERBα reprograms FOXA1 to bind new targets through a BRD4-mediated increase in local chromatin accessibility. Pharmacological targeting with SR8278 diminishes the function of both REV-ERBα and FOXA1 and synergizes with BRD4 inhibitor in effective suppression of tumorigenic programs and tumor growth. Thus, our study revealed a functional inversion by a CR regulator in driving gene reprogramming as an unexpected paradigm of tumorigenesis mechanism and demonstrated a high effectiveness of therapeutic targeting such switch.


Subject(s)
Carcinogenesis , Circadian Rhythm , Nuclear Receptor Subfamily 1, Group D, Member 1 , Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism , Nuclear Receptor Subfamily 1, Group D, Member 1/genetics , Humans , Animals , Circadian Rhythm/genetics , Circadian Rhythm/physiology , Carcinogenesis/genetics , Mice , Gene Expression Regulation, Neoplastic , Transcription Factors/metabolism , Transcription Factors/genetics , Hepatocyte Nuclear Factor 3-alpha/metabolism , Hepatocyte Nuclear Factor 3-alpha/genetics , Signal Transduction , Cell Line, Tumor , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Nuclear Receptor Co-Repressor 1/metabolism , Nuclear Receptor Co-Repressor 1/genetics , Bromodomain Containing Proteins
15.
Proc Natl Acad Sci U S A ; 121(20): e2320674121, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38684007

ABSTRACT

Identifying and protecting hotspots of endemism and species richness is crucial for mitigating the global biodiversity crisis. However, our understanding of spatial diversity patterns is far from complete, which severely limits our ability to conserve biodiversity hotspots. Here, we report a comprehensive analysis of amphibian species diversity in China, one of the most species-rich countries on Earth. Our study combines 20 y of field surveys with new molecular analyses of 521 described species and also identifies 100 potential cryptic species. We identify 10 hotspots of amphibian diversity in China, each with exceptional species richness and endemism and with exceptional phylogenetic diversity and phylogenetic endemism (based on a new time-calibrated, species-level phylogeny for Chinese amphibians). These 10 hotspots encompass 59.6% of China's described amphibian species, 49.0% of cryptic species, and 55.6% of species endemic to China. Only four of these 10 hotspots correspond to previously recognized biodiversity hotspots. The six new hotspots include the Nanling Mountains and other mountain ranges in South China. Among the 186 species in the six new hotspots, only 9.7% are well covered by protected areas and most (88.2%) are exposed to high human impacts. Five of the six new hotspots are under very high human pressure and are in urgent need of protection. We also find that patterns of richness in cryptic species are significantly related to those in described species but are not identical.


Subject(s)
Amphibians , Biodiversity , Phylogeny , Animals , Amphibians/classification , China , Conservation of Natural Resources
16.
PLoS Biol ; 21(11): e3002353, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37943878

ABSTRACT

Wnt signaling pathways are transmitted via 10 homologous frizzled receptors (FZD1-10) in humans. Reagents broadly inhibiting Wnt signaling pathways reduce growth and metastasis of many tumors, but their therapeutic development has been hampered by the side effect. Inhibitors targeting specific Wnt-FZD pair(s) enriched in cancer cells may reduce side effect, but the therapeutic effect of narrow-spectrum Wnt-FZD inhibitors remains to be established in vivo. Here, we developed a fragment of C. difficile toxin B (TcdBFBD), which recognizes and inhibits a subclass of FZDs, FZD1/2/7, and examined whether targeting this FZD subgroup may offer therapeutic benefits for treating breast cancer models in mice. Utilizing 2 basal-like and 1 luminal-like breast cancer models, we found that TcdBFBD reduces tumor-initiating cells and attenuates growth of basal-like mammary tumor organoids and xenografted tumors, without damaging Wnt-sensitive tissues such as bones in vivo. Furthermore, FZD1/2/7-positive cells are enriched in chemotherapy-resistant cells in both basal-like and luminal mammary tumors treated with cisplatin, and TcdBFBD synergizes strongly with cisplatin in inhibiting both tumor types. These data demonstrate the therapeutic value of narrow-spectrum Wnt signaling inhibitor in treating breast cancers.


Subject(s)
Bacterial Toxins , Breast Neoplasms , Clostridioides difficile , Mammary Neoplasms, Animal , Humans , Animals , Mice , Female , Wnt Signaling Pathway , Breast Neoplasms/metabolism , Bacterial Toxins/metabolism , Clostridioides difficile/metabolism , Cisplatin
17.
Nature ; 583(7815): 249-252, 2020 07.
Article in English | MEDLINE | ID: mdl-32528177

ABSTRACT

The phylum of annelids is one of the most disparate animal phyla and encompasses ambush predators, suspension feeders and terrestrial earthworms1. The early evolution of annelids remains obscure or controversial2,3, partly owing to discordance between molecular phylogenies and fossils2,4. Annelid fossils from the Cambrian period have morphologies that indicate epibenthic lifestyles, whereas phylogenomics recovers sessile, infaunal and tubicolous taxa as an early diverging grade5. Magelonidae and Oweniidae (Palaeoannelida1) are the sister group of all other annelids but contrast with Cambrian taxa in both lifestyle and gross morphology2,6. Here we describe a new fossil polychaete (bristle worm) from the early Cambrian Canglangpu formation7 that we name Dannychaeta tucolus, which is preserved within delicate, dwelling tubes that were originally organic. The head has a well-defined spade-shaped prostomium with elongated ventrolateral palps. The body has a wide, stout thorax and elongated abdomen with biramous parapodia with parapodial lamellae. This character combination is shared with extant Magelonidae, and phylogenetic analyses recover Dannychaeta within Palaeoannelida. To our knowledge, Dannychaeta is the oldest polychaete that unambiguously belongs to crown annelids, providing a constraint on the tempo of annelid evolution and revealing unrecognized ecological and morphological diversity in ancient annelids.


Subject(s)
Fossils , Phylogeny , Polychaeta/classification , Abdomen/anatomy & histology , Animals , China , Head/anatomy & histology , Polychaeta/anatomy & histology
18.
Nucleic Acids Res ; 52(9): 4969-4984, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38452206

ABSTRACT

Proteasome-mediated degradation of chromatin-bound NF-κB is critical in terminating the transcription of pro-inflammatory genes and can be triggered by Set9-mediated lysine methylation of the RelA subunit. However, the E3 ligase targeting methylated RelA remains unknown. Here, we find that two structurally similar substrate-recognizing components of Cullin-RING E3 ligases, WSB1 and WSB2, can recognize chromatin-bound methylated RelA for polyubiquitination and proteasomal degradation. We showed that WSB1/2 negatively regulated a subset of NF-κB target genes via associating with chromatin where they targeted methylated RelA for ubiquitination, facilitating the termination of NF-κB-dependent transcription. WSB1/2 specifically interacted with methylated lysines (K) 314 and 315 of RelA via their N-terminal WD-40 repeat (WDR) domains, thereby promoting ubiquitination of RelA. Computational modeling further revealed that a conserved aspartic acid (D) at position 158 within the WDR domain of WSB2 coordinates K314/K315 of RelA, with a higher affinity when either of the lysines is methylated. Mutation of D158 abolished WSB2's ability to bind to and promote ubiquitination of methylated RelA. Together, our study identifies a novel function and the underlying mechanism for WSB1/2 in degrading chromatin-bound methylated RelA and preventing sustained NF-κB activation, providing potential new targets for therapeutic intervention of NF-κB-mediated inflammatory diseases.


Subject(s)
Chromatin , Proteasome Endopeptidase Complex , Transcription Factor RelA , Ubiquitination , Humans , Chromatin/metabolism , HEK293 Cells , Lysine/metabolism , Methylation , NF-kappa B/metabolism , Proteasome Endopeptidase Complex/metabolism , Protein Binding , Proteolysis , Transcription Factor RelA/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics
19.
Proc Natl Acad Sci U S A ; 120(21): e2212933120, 2023 05 23.
Article in English | MEDLINE | ID: mdl-37186852

ABSTRACT

The glymphatic system is a perivascular fluid transport system for waste clearance. Glymphatic transport is believed to be driven by the perivascular pumping effect created by the pulsation of the arterial wall caused by the cardiac cycle. Ultrasound sonication of circulating microbubbles (MBs) in the cerebral vasculature induces volumetric expansion and contraction of MBs that push and pull on the vessel wall to generate a MB pumping effect. The objective of this study was to evaluate whether glymphatic transport can be mechanically manipulated by focused ultrasound (FUS) sonication of MBs. The glymphatic pathway in intact mouse brains was studied using intranasal administration of fluorescently labeled albumin as fluid tracers, followed by FUS sonication at a deep brain target (thalamus) in the presence of intravenously injected MBs. Intracisternal magna injection, the conventional technique used in studying glymphatic transport, was employed to provide a comparative reference. Three-dimensional confocal microscopy imaging of optically cleared brain tissue revealed that FUS sonication enhanced the transport of fluorescently labeled albumin tracer in the perivascular space (PVS) along microvessels, primarily the arterioles. We also obtained evidence of FUS-enhanced penetration of the albumin tracer from the PVS into the interstitial space. This study revealed that ultrasound combined with circulating MBs could mechanically enhance glymphatic transport in the brain.


Subject(s)
Glymphatic System , Microbubbles , Mice , Animals , Brain/diagnostic imaging , Brain/metabolism , Glymphatic System/diagnostic imaging , Glymphatic System/metabolism , Ultrasonography , Albumins/metabolism
20.
Proc Natl Acad Sci U S A ; 120(39): e2306288120, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37729198

ABSTRACT

Nonsmall cell lung cancer (NSCLC) is highly malignant with limited treatment options, platinum-based chemotherapy is a standard treatment for NSCLC with resistance commonly seen. NSCLC cells exploit enhanced antioxidant defense system to counteract excessive reactive oxygen species (ROS), which contributes largely to tumor progression and resistance to chemotherapy, yet the mechanisms are not fully understood. Recent studies have suggested the involvement of histones in tumor progression and cellular antioxidant response; however, whether a major histone variant H1.2 (H1C) plays roles in the development of NSCLC remains unclear. Herein, we demonstrated that H1.2 was increasingly expressed in NSCLC tumors, and its expression was correlated with worse survival. When crossing the H1c knockout allele with a mouse NSCLC model (KrasLSL-G12D/+), H1.2 deletion suppressed NSCLC progression and enhanced oxidative stress and significantly decreased the levels of key antioxidant glutathione (GSH) and GCLC, the catalytic subunit of rate-limiting enzyme for GSH synthesis. Moreover, high H1.2 was correlated with the IC50 of multiple chemotherapeutic drugs and with worse prognosis in NSCLC patients receiving chemotherapy; H1.2-deficient NSCLC cells presented reduced survival and increased ROS levels upon cisplatin treatment, while ROS scavenger eliminated the survival inhibition. Mechanistically, H1.2 interacted with NRF2, a master regulator of antioxidative response; H1.2 enhanced the nuclear level and stability of NRF2 and, thus, promoted NRF2 binding to GCLC promoter and the consequent transcription; while NRF2 also transcriptionally up-regulated H1.2. Collectively, these results uncovered a tumor-driving role of H1.2 in NSCLC and indicate an "H1.2-NRF2" antioxidant feedforward cycle that promotes tumor progression and chemoresistance.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Animals , Mice , Humans , Histones/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Antioxidants , NF-E2-Related Factor 2/genetics , Reactive Oxygen Species , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Glutathione , Disease Models, Animal
SELECTION OF CITATIONS
SEARCH DETAIL