Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 594
Filter
Add more filters

Publication year range
1.
Cell ; 184(10): 2618-2632.e17, 2021 05 13.
Article in English | MEDLINE | ID: mdl-33836156

ABSTRACT

The ongoing pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is currently affecting millions of lives worldwide. Large retrospective studies indicate that an elevated level of inflammatory cytokines and pro-inflammatory factors are associated with both increased disease severity and mortality. Here, using multidimensional epigenetic, transcriptional, in vitro, and in vivo analyses, we report that topoisomerase 1 (TOP1) inhibition suppresses lethal inflammation induced by SARS-CoV-2. Therapeutic treatment with two doses of topotecan (TPT), an FDA-approved TOP1 inhibitor, suppresses infection-induced inflammation in hamsters. TPT treatment as late as 4 days post-infection reduces morbidity and rescues mortality in a transgenic mouse model. These results support the potential of TOP1 inhibition as an effective host-directed therapy against severe SARS-CoV-2 infection. TPT and its derivatives are inexpensive clinical-grade inhibitors available in most countries. Clinical trials are needed to evaluate the efficacy of repurposing TOP1 inhibitors for severe coronavirus disease 2019 (COVID-19) in humans.


Subject(s)
COVID-19 Drug Treatment , DNA Topoisomerases, Type I/metabolism , SARS-CoV-2/metabolism , Topoisomerase I Inhibitors/pharmacology , Topotecan/pharmacology , Animals , COVID-19/enzymology , COVID-19/pathology , Chlorocebus aethiops , Humans , Inflammation/drug therapy , Inflammation/enzymology , Inflammation/pathology , Inflammation/virology , Mesocricetus , Mice , Mice, Transgenic , THP-1 Cells , Vero Cells
2.
Mol Cell ; 81(13): 2851-2867.e7, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34118193

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19). SARS-CoV-2 relies on cellular RNA-binding proteins (RBPs) to replicate and spread, although which RBPs control its life cycle remains largely unknown. Here, we employ a multi-omic approach to identify systematically and comprehensively the cellular and viral RBPs that are involved in SARS-CoV-2 infection. We reveal that SARS-CoV-2 infection profoundly remodels the cellular RNA-bound proteome, which includes wide-ranging effects on RNA metabolic pathways, non-canonical RBPs, and antiviral factors. Moreover, we apply a new method to identify the proteins that directly interact with viral RNA, uncovering dozens of cellular RBPs and six viral proteins. Among them are several components of the tRNA ligase complex, which we show regulate SARS-CoV-2 infection. Furthermore, we discover that available drugs targeting host RBPs that interact with SARS-CoV-2 RNA inhibit infection. Collectively, our results uncover a new universe of host-virus interactions with potential for new antiviral therapies against COVID-19.


Subject(s)
COVID-19/metabolism , Proteome/metabolism , RNA, Viral/metabolism , RNA-Binding Proteins/metabolism , SARS-CoV-2/physiology , Viral Proteins/metabolism , Virus Replication/physiology , A549 Cells , COVID-19/genetics , Humans , Proteome/genetics , RNA, Viral/genetics , RNA-Binding Proteins/genetics , Viral Proteins/genetics
3.
Nature ; 602(7898): 676-681, 2022 02.
Article in English | MEDLINE | ID: mdl-35016198

ABSTRACT

The B.1.1.529/Omicron variant of SARS-CoV-2 was only recently detected in southern Africa, but its subsequent spread has been extensive, both regionally and globally1. It is expected to become dominant in the coming weeks2, probably due to enhanced transmissibility. A striking feature of this variant is the large number of spike mutations3 that pose a threat to the efficacy of current COVID-19 vaccines and antibody therapies4. This concern is amplified by the findings of our study. Here we found that B.1.1.529 is markedly resistant to neutralization by serum not only from patients who recovered from COVID-19, but also from individuals who were vaccinated with one of the four widely used COVID-19 vaccines. Even serum from individuals who were vaccinated and received a booster dose of mRNA-based vaccines exhibited substantially diminished neutralizing activity against B.1.1.529. By evaluating a panel of monoclonal antibodies against all known epitope clusters on the spike protein, we noted that the activity of 17 out of the 19 antibodies tested were either abolished or impaired, including ones that are currently authorized or approved for use in patients. Moreover, we also identified four new spike mutations (S371L, N440K, G446S and Q493R) that confer greater antibody resistance on B.1.1.529. The Omicron variant presents a serious threat to many existing COVID-19 vaccines and therapies, compelling the development of new interventions that anticipate the evolutionary trajectory of SARS-CoV-2.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/virology , Immune Evasion/immunology , SARS-CoV-2/immunology , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/blood , COVID-19/immunology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , Cell Line , Convalescence , Evolution, Molecular , Humans , Immune Sera/immunology , Inhibitory Concentration 50 , Models, Molecular , Mutation , Neutralization Tests , SARS-CoV-2/chemistry , SARS-CoV-2/classification , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
4.
Nature ; 593(7859): 418-423, 2021 05.
Article in English | MEDLINE | ID: mdl-33727703

ABSTRACT

The COVID-19 pandemic is the third outbreak this century of a zoonotic disease caused by a coronavirus, following the emergence of severe acute respiratory syndrome (SARS) in 20031 and Middle East respiratory syndrome (MERS) in 20122. Treatment options for coronaviruses are limited. Here we show that clofazimine-an anti-leprosy drug with a favourable safety profile3-possesses inhibitory activity against several coronaviruses, and can antagonize the replication of SARS-CoV-2 and MERS-CoV in a range of in vitro systems. We found that this molecule, which has been approved by the US Food and Drug Administration, inhibits cell fusion mediated by the viral spike glycoprotein, as well as activity of the viral helicase. Prophylactic or therapeutic administration of clofazimine in a hamster model of SARS-CoV-2 pathogenesis led to reduced viral loads in the lung and viral shedding in faeces, and also alleviated the inflammation associated with viral infection. Combinations of clofazimine and remdesivir exhibited antiviral synergy in vitro and in vivo, and restricted viral shedding from the upper respiratory tract. Clofazimine, which is orally bioavailable and comparatively cheap to manufacture, is an attractive clinical candidate for the treatment of outpatients and-when combined with remdesivir-in therapy for hospitalized patients with COVID-19, particularly in contexts in which costs are an important factor or specialized medical facilities are limited. Our data provide evidence that clofazimine may have a role in the control of the current pandemic of COVID-19 and-possibly more importantly-in dealing with coronavirus diseases that may emerge in the future.


Subject(s)
Antiviral Agents/pharmacology , Clofazimine/pharmacology , Coronavirus/classification , Coronavirus/drug effects , SARS-CoV-2/drug effects , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Adenosine Monophosphate/therapeutic use , Alanine/analogs & derivatives , Alanine/pharmacology , Alanine/therapeutic use , Animals , Anti-Inflammatory Agents/pharmacokinetics , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Antiviral Agents/pharmacokinetics , Antiviral Agents/therapeutic use , Biological Availability , Cell Fusion , Cell Line , Clofazimine/pharmacokinetics , Clofazimine/therapeutic use , Coronavirus/growth & development , Coronavirus/pathogenicity , Cricetinae , DNA Helicases/antagonists & inhibitors , Drug Synergism , Female , Humans , Life Cycle Stages/drug effects , Male , Mesocricetus , Pre-Exposure Prophylaxis , SARS-CoV-2/growth & development , Species Specificity , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Transcription, Genetic/drug effects , Transcription, Genetic/genetics
5.
N Engl J Med ; 389(9): 808-819, 2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37646678

ABSTRACT

BACKGROUND: Population screening of asymptomatic persons with Epstein-Barr virus (EBV) DNA or antibodies has improved the diagnosis of nasopharyngeal carcinoma and survival among affected persons. However, the positive predictive value of current screening strategies is unsatisfactory even in areas where nasopharyngeal carcinoma is endemic. METHODS: We designed a peptide library representing highly ranked B-cell epitopes of EBV coding sequences to identify novel serologic biomarkers for nasopharyngeal carcinoma. After a retrospective case-control study, the performance of the novel biomarker anti-BNLF2b total antibody (P85-Ab) was validated through a large-scale prospective screening program and compared with that of the standard two-antibody-based screening method (EBV nuclear antigen 1 [EBNA1]-IgA and EBV-specific viral capsid antigen [VCA]-IgA). RESULTS: P85-Ab was the most promising biomarker for nasopharyngeal carcinoma screening, with high sensitivity (94.4%; 95% confidence interval [CI], 86.4 to 97.8) and specificity (99.6%; 95% CI, 97.8 to 99.9) in the retrospective case-control study. Among the 24,852 eligible participants in the prospective cohort, 47 cases of nasopharyngeal carcinoma (38 at an early stage) were identified. P85-Ab showed higher sensitivity than the two-antibody method (97.9% vs. 72.3%; ratio, 1.4 [95% CI, 1.1 to 1.6]), higher specificity (98.3% vs. 97.0%; ratio, 1.01 [95% CI, 1.01 to 1.02]), and a higher positive predictive value (10.0% vs. 4.3%; ratio, 2.3 [95% CI, 1.8 to 2.8]). The combination of P85-Ab and the two-antibody method markedly increased the positive predictive value to 44.6% (95% CI, 33.8 to 55.9), with sensitivity of 70.2% (95% CI, 56.0 to 81.4). CONCLUSIONS: Our results suggest that P85-Ab is a promising novel biomarker for nasopharyngeal carcinoma screening, with higher sensitivity, specificity, and positive predictive value than the standard two-antibody method. (Funded by the National Key Research and Development Program of China and others; ClinicalTrials.gov number, NCT04085900.).


Subject(s)
Antibodies, Viral , Early Detection of Cancer , Herpesvirus 4, Human , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , Viral Proteins , Humans , Antibodies, Viral/immunology , Case-Control Studies , Herpesvirus 4, Human/immunology , Immunoglobulin A , Mass Screening , Nasopharyngeal Carcinoma/diagnosis , Nasopharyngeal Carcinoma/immunology , Nasopharyngeal Carcinoma/virology , Nasopharyngeal Neoplasms/diagnosis , Nasopharyngeal Neoplasms/immunology , Nasopharyngeal Neoplasms/virology , Prospective Studies , Retrospective Studies , Biomarkers/analysis , Viral Proteins/immunology , Epitopes/immunology
6.
J Biol Chem ; 300(6): 107390, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38777146

ABSTRACT

SARS-CoV-2 entry into host cells is facilitated by the interaction between the receptor-binding domain of its spike protein (CoV2-RBD) and host cell receptor, ACE2, promoting viral membrane fusion. The virus also uses endocytic pathways for entry, but the mediating host factors remain largely unknown. It is also unknown whether mutations in the RBD of SARS-CoV-2 variants promote interactions with additional host factors to promote viral entry. Here, we used the GST pull-down approach to identify novel surface-located host factors that bind to CoV2-RBD. One of these factors, SH3BP4, regulates internalization of CoV2-RBD in an ACE2-independent but integrin- and clathrin-dependent manner and mediates SARS-CoV-2 pseudovirus entry, suggesting that SH3BP4 promotes viral entry via the endocytic route. Many of the identified factors, including SH3BP4, ADAM9, and TMEM2, show stronger affinity to CoV2-RBD than to RBD of the less infective SARS-CoV, suggesting SARS-CoV-2-specific utilization. We also found factors preferentially binding to the RBD of the SARS-CoV-2 Delta variant, potentially enhancing its entry. These data identify the repertoire of host cell surface factors that function in the events leading to the entry of SARS-CoV-2.


Subject(s)
Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Virus Internalization , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Humans , SARS-CoV-2/metabolism , SARS-CoV-2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/genetics , Protein Domains , HEK293 Cells , COVID-19/metabolism , COVID-19/virology , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/chemistry , Host-Pathogen Interactions
7.
Small ; : e2401796, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38966879

ABSTRACT

As a novel type of catalytic material, hollow nanoreactors are expected to bring new development opportunities in the field of persulfate-based advanced oxidation processes due to their peculiar void-confinement, spatial compartmentation, and size-sieving effects. For such materials, however, further clarification on basic concepts and construction strategies, as well as a discussion of the inherent correlation between structure and catalytic activity are still required. In this context, this review aims to provide a state-of-the-art overview of hollow nanoreactors for activating persulfate. Initially, hollow nanoreactors are classified according to the constituent components of the shell structure and their dimensionality. Subsequently, the different construction strategies of hollow nanoreactors are described in detail, while common synthesis methods for these construction strategies are outlined. Furthermore, the most representative advantages of hollow nanoreactors are summarized, and their intrinsic connections to the nanoreactor structure are elucidated. Finally, the challenges and future prospects of hollow nanoreactors are presented.

8.
Cell Commun Signal ; 22(1): 139, 2024 02 20.
Article in English | MEDLINE | ID: mdl-38378659

ABSTRACT

BACKGROUND: Malaria remains a global health burden, and the emergence and increasing spread of drug resistance to current antimalarials poses a major challenge to malaria control. There is an urgent need to find new drugs or strategies to alleviate this predicament. Celastrol (Cel) is an extensively studied natural bioactive compound that has shown potentially promising antimalarial activity, but its antimalarial mechanism remains largely elusive. METHODS: We first established the Plasmodium berghei ANKA-infected C57BL/6 mouse model and systematically evaluated the antimalarial effects of Cel in conjunction with in vitro culture of Plasmodium falciparum. The potential antimalarial targets of Cel were then identified using a Cel activity probe based on the activity-based protein profiling (ABPP) technology. Subsequently, the antimalarial mechanism was analyzed by integrating with proteomics and transcriptomics. The binding of Cel to the identified key target proteins was verified by a series of biochemical experiments and functional assays. RESULTS: The results of the pharmacodynamic assay showed that Cel has favorable antimalarial activity both in vivo and in vitro. The ABPP-based target profiling showed that Cel can bind to a number of proteins in the parasite. Among the 31 identified potential target proteins of Cel, PfSpdsyn and PfEGF1-α were verified to be two critical target proteins, suggesting the role of Cel in interfering with the de novo synthesis of spermidine and proteins of the parasite, thus exerting its antimalarial effects. CONCLUSIONS: In conclusion, this study reports for the first time the potential antimalarial targets and mechanism of action of Cel using the ABPP strategy. Our work not only support the expansion of Cel as a potential antimalarial agent or adjuvant, but also establishes the necessary theoretical basis for the development of potential antimalarial drugs with pentacyclic triterpenoid structures, as represented by Cel. Video Abstract.


Subject(s)
Antimalarials , Malaria , Animals , Mice , Antimalarials/pharmacology , Antimalarials/chemistry , Antimalarials/therapeutic use , Spermidine/pharmacology , Mice, Inbred C57BL , Malaria/drug therapy , Malaria/parasitology , Pentacyclic Triterpenes/therapeutic use
9.
J Pathol ; 259(2): 163-179, 2023 02.
Article in English | MEDLINE | ID: mdl-36420735

ABSTRACT

Invadopodia are actin-rich membrane protrusions that digest the matrix barrier during cancer metastasis. Since the discovery of invadopodia, they have been visualized as localized and dot-like structures in different types of cancer cells on top of a 2D matrix. In this investigation of Epstein-Barr virus (EBV)-associated nasopharyngeal carcinoma (NPC), a highly invasive cancer frequently accompanied by neck lymph node and distal organ metastases, we revealed a new form of invadopodium with mobilizing features. Integration of live-cell imaging and molecular assays revealed the interaction of macrophage-released TNFα and EBV-encoded latent membrane protein 1 (LMP1) in co-activating the EGFR/Src/ERK/cortactin and Cdc42/N-WASP signaling axes for mobilizing the invadopodia with lateral movements. This phenomenon endows the invadopodia with massive degradative power, visualized as a shift of focal dot-like digestion patterns on a 2D gelatin to a dendrite-like digestion pattern. Notably, single stimulation of either LMP1 or TNFα could only enhance the number of ordinary dot-like invadopodia, suggesting that the EBV infection sensitizes the NPC cells to form mobilizing invadopodia when encountering a TNFα-rich tumor microenvironment. This study unveils the interplay of EBV and stromal components in driving the invasive potential of NPC via unleashing the propulsion of invadopodia in overcoming matrix hurdles. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Epstein-Barr Virus Infections , Nasopharyngeal Neoplasms , Podosomes , Humans , Nasopharyngeal Carcinoma/pathology , Podosomes/metabolism , Podosomes/pathology , Herpesvirus 4, Human/metabolism , Nasopharyngeal Neoplasms/pathology , Tumor Necrosis Factor-alpha/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Membrane Proteins/metabolism , Viral Matrix Proteins/metabolism , Tumor Microenvironment
10.
Environ Sci Technol ; 58(4): 1921-1933, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38233045

ABSTRACT

Aeration accounts for 35-51% of the overall energy consumption in wastewater treatment processes and results in an annual energy consumption of 5-7.5 billion kWh. Herein, a solar-powered continuous-flow device was designed for aeration-free in situ Fenton-like reactions to treat wastewater. This system is based on the combination of TiO2-x/W18O49 featuring heterophase oxygen vacancy interactions with floating reduced graphene/polyurethane foam, which produces hydrogen peroxide in situ at the rates of up to 4.2 ppm h-1 with degradation rates of more than 90% for various antibiotics. The heterophase oxygen vacancies play an important role in the stretching of the O-O bond by regulating the d-band center of TiO2-x/W18O49, promoting the hydrogenation of *·O2- or *OOH by H+ enrichment, and accelerating the production of reactive oxygen species by spontaneous adsorption of hydrogen peroxide. Furthermore, the degradation mechanisms of antibiotics and the treatment of actual wastewater were thoroughly investigated. In short, the study provides a meaningful reference for potentially undertaking the "aeration-free" in situ Fenton reaction, which can help reduce or even completely eradicate the aeration costs and energy requirements during the treatment of wastewater.


Subject(s)
Iron , Oxygen , Iron/chemistry , Wastewater , Hydrogen Peroxide/chemistry , Adsorption , Anti-Bacterial Agents , Oxidation-Reduction
11.
J Adv Nurs ; 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38294134

ABSTRACT

AIMS: Diabetes has been indicated to be a risk factor for suicide. We aim to estimate the prevalence of suicide in patients with diabetes. DESIGN: A meta-analysis using PRISMA methodology was adopted to examine the incidence of suicide in diabetic patients. DATA SOURCES: From inception to October 2022, three online databases (PubMed, China National Knowledge Infrastructure and Web of Science) were used to search studies. REVIEW METHODS: We used random-effects model to analysis. And our primary outcome was the incidence of suicide death per 100 person-years, and other outcomes were prevalence of suicidal ideation and suicide attempt. To explore the sources of heterogeneity in our study, we performed subgroup and meta-regression analyses. RESULTS: The suicide death rate in diabetic patients was 0.027 per 100 person-years, with a higher rate for Type 1 Diabetes Mellitus compared to Type 2 Diabetes Mellitus. The prevalence of suicidal ideation in diabetes patients was 0.175, with a higher prevalence in Type 1 Diabetes Mellitus compared to Type 2 Diabetes Mellitus. The prevalence of suicide attempts in diabetes patients was 0.033, indicating a higher rate for Type 2 Diabetes Mellitus compared to Type 1 Diabetes Mellitus. CONCLUSIONS: The results indicate a high rate of suicide among people with diabetes, and this study identifies populations and regions at high risk for suicide. Our review emphasizes interventions in mental health and the improvement of suicide prevention programmes. IMPACT: The study investigated suicide death, suicidal ideation and suicide attempt in diabetic individuals. Suicide rates are elevated among diabetic patients, and various patient groups face distinct suicide risks. It is important to prioritize the mental well-being of diabetic individuals and enhance interventions, including personalized approaches, to inform public health efforts aimed at preventing and addressing suicide among diabetic patients. PATIENT OR PUBLIC CONTRIBUTION: No patient or public involvement.

12.
Death Stud ; : 1-10, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38270435

ABSTRACT

Despite growing interest in understanding the impact of childhood parental death, less is known about its long-term effects on older adults. We investigated the mediating role of poor health perception in the relationship between childhood parental loss and late life health. A cross-sectional study using data from the 2016 China Longitudinal Aging Social Survey was conducted. Our final sample featured 8,547 older adults. The prevalence of childhood parental death was 9.8%. Results indicated a significant direct impact of childhood parental death on depression and cognitive function. Mediating effects were observed, with older adults who experienced childhood parental loss perceiving their health status as significantly worse. This, in turn, predicted higher levels of objective physical impairment, greater depression, and lower levels of cognitive function. Our study offers the first empirical evidence of the enduring negative effects of childhood parental death as well as the pivotal mediating role of poor health perception.

13.
J Tissue Viability ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38886143

ABSTRACT

BACKGROUND: The association between underweight and pressure injuries (PIs) has been established in several studies. However, there is a lack of well-designed research investigating the connection between overweight and obesity with these injuries. OBJECTIVE: This meta-analysis aims to investigate the dose-response relationship between body mass index (BMI) and the risk of PIs in adult hospitalized patients. METHODS: PubMed, Web of Science, and MEDLINE Databases were searched from inception to May 2024. Observational articles with at least three BMI categories were included in the study. BMI was defined as underweight, normal weight, overweight, and morbid obesity for the meta-analysis. The non-linear relationship between BMI and the risk of PIs in hospitalized adults was investigated using restricted cubic spline models. Fractional polynomial modeling was used. RESULTS: Eleven articles reporting at least 3 categories of BMI met the inclusion criteria, including 31,389 participants. Compared to patients with normal weight, those with underweight, obesity, and morbid obesity exhibited an increased risk of PIs, with odds ratios of 1.70 (95%CI:1.50-1.91), 1.12 (95%CI:1.02-1.24), 1.70 (95%CI:1.13-2.55), respectively. A J-shaped dose-response model was established for the relationship between PI risk and BMI (Pnon-linearity < 0.001, Plinearity = 0.745). CONCLUSION: The J-shaped dose-response pattern revealed that underweight, obesity and morbid obesity heightened the risk of PIs in hospitalized adults. Lower and higher BMI values may signify an increased risk for PIs, particularly among the elderly with lower BMI, providing valuable guidance for medical staff.

14.
J Gerontol Soc Work ; : 1-20, 2024 May 19.
Article in English | MEDLINE | ID: mdl-38762891

ABSTRACT

Mild cognitive impairment (MCI) marks a critical phase in the progression to dementia. In our study, social workers utilized the Multicomponent Nonpharmacological Intervention Approach (MCNIA) to aid MCI participants (N = 52) and their caregivers, dividing into intervention and control groups. The intervention group underwent an additional regimen of non-pharmacological therapies besides pharmacological treatment. Our findings highlighted that: 1) MCNIA significantly enhanced cognitive and daily living abilities in the intervention group; 2) Caregivers experienced reduced burdens and improved social support; 3) Correlation analyses involving biomarkers indicated that MCNIA was particularly effective in alleviating depression in those with slightly more severe cognitive impairment.

15.
HIV Med ; 24(5): 521-532, 2023 05.
Article in English | MEDLINE | ID: mdl-36347514

ABSTRACT

OBJECTIVE: Although excess mortality, especially suicide, is a critical trait in people living with HIV, consensus about gender differences in these areas is lacking. We conducted meta-analyses to examine gender differences in suicidal ideation, suicide attempts, and suicide death among people living with HIV. METHODS: We systematically searched PubMed and Web of Science for studies written in English. In this review, suicide among people living with HIV includes suicide death, suicidal ideation, and suicide attempts. Studies reporting the suicide prevalence among males and females living with HIV were eligible for inclusion in our review. Odds ratios (ORs) and 95% confidence intervals (CIs) served as the effect size index. Fixed-effects or random-effects meta-analyses were chosen based on the size of the heterogeneity. RESULTS: A total of 27 studies comprising 801 017 participants from 11 countries were included in the meta-analysis. The overall prevalence of suicidal ideation was 18.0% (95% CI 13.3%-22.8%) in males and 20.8% (95% CI 16.4%-25.1%) in females, and there was a statistically significant higher risk of suicidal ideation in females living with HIV (OR 1.30; 95% CI 1.09-1.56; p < 0.05). The overall prevalence of suicide attempts was 16.8% (95% CI 9.0%-24.5%) in males and 24.7% (95% CI 12.4%-37.1%) in females, and there was a statistically significant higher risk of suicide attempts in females living with HIV (OR 1.34; 95% CI 1.02-1.75; p < 0.05). The pooled prevalence of suicide death was 1.2% (95% CI 0.5%-1.9%) among males and 0.2% (95% CI 0.1%-0.3%) among females, and the risk of suicide death between genders was not statistically significant (OR 0.78; 95% CI 0.50-1.24; p = 0.298). CONCLUSIONS: There were gender differences in suicidal ideation and suicide attempts among people living with HIV. Females living with HIV were more likely to experience suicidal ideation and make suicide attempts, but there were no statistically significant gender differences in suicide death. Appropriate initiatives to optimize the recognition, treatment, and management suicide behaviours of males and females living with HIV may narrow this gender gap.


Subject(s)
HIV Infections , Suicide, Attempted , Male , Female , Humans , Suicidal Ideation , Sex Factors , Prevalence
16.
Psychol Med ; 53(2): 351-361, 2023 01.
Article in English | MEDLINE | ID: mdl-33952359

ABSTRACT

BACKGROUND: People with serious mental illness are at great risk of suicide, but little is known about the suicide rates among this population. We aimed to quantify the suicide rates among people with serious mental illness (bipolar disorder, major depression, or schizophrenia). METHODS: PubMed and Web of Science were searched to identify studies published from 1 January 1975 to 10 December 2020. We assessed English-language studies for the suicide rates among people with serious mental illness. Random-effects meta-analysis was used. Changes in follow-up time and the suicide rates were presented by a locally weighted scatter-plot smoothing (LOESS) curve. Suicide rate ratio was estimated for assessments of difference in suicide rate by sex. RESULTS: Of 5014 identified studies, 41 were included in this analysis. The pooled suicide rate was 312.8 per 100 000 person-years (95% CI 230.3-406.8). Europe was reported to have the highest pooled suicide rate of 335.2 per 100 000 person-years (95% CI 261.5-417.6). Major depression had the highest suicide rate of 534.3 per 100 000 person-years (95% CI 30.4-1448.7). There is a downward trend in suicide rate estimates over follow-up time. Excess risk of suicide in males was found [1.90 (95% CI 1.60-2.25)]. The most common suicide method was poisoning [21.9 per 100 000 person-years (95% CI 3.7-50.4)]. CONCLUSIONS: The suicide rates among people with serious mental illness were high, highlighting the requirements for increasing psychological assessment and monitoring. Further study should focus on region and age differences in suicide among this population.


Subject(s)
Bipolar Disorder , Depressive Disorder, Major , Schizophrenia , Suicide , Male , Humans , Schizophrenia/epidemiology , Europe
17.
Pharm Res ; 40(4): 873-887, 2023 Apr.
Article in English | MEDLINE | ID: mdl-35352281

ABSTRACT

Exosomes are extracellular vesicles secreted by cells with a particle size of 30-150 nm in diameter. Exosomes can be used as natural drug carriers. The treatment of cancer with drug-loaded exosomes is an area of high interest. This review introduces the composition, function, isolation and characterization of exosomes, and briefly describes the selection of exosome donor cells and methods for drug loading. Through studies on therapies with drug-loaded exosomes in gastric cancer, lung cancer, brain cancer and other cancers, the advantages and disadvantages of drug-loaded exosomes have been analyzed.


Subject(s)
Brain Neoplasms , Exosomes , Lung Neoplasms , Humans , Drug Delivery Systems/methods , Drug Carriers/therapeutic use , Lung Neoplasms/drug therapy , Brain Neoplasms/drug therapy
18.
Wound Repair Regen ; 31(5): 713-722, 2023.
Article in English | MEDLINE | ID: mdl-37587087

ABSTRACT

Device-related pressure injuries (DRPIs) prevail in the intensive care unit (ICU) and have much to do with medical devices and patients' conditions. This meta-analysis aims to systematically assess the incidence, prevalence and risk factors related to DRPIs among adults in ICU. Web of Science, Cochrane Library, MEDLINE, PubMed and CINAHL were searched from inception to March 2023. Observational studies were included, and the Newcastle-Ottawa scale (NOS) was used to assess literature quality. The primary outcomes were the incidence, prevalence and risk factors regarding DRPIs among adults in ICU. The 19 studies conformed to the criteria for inclusion in the review. The estimated pooled incidence of DRPIs was 14.7% (95% CI: 9.7%-19.6%) in 10 studies (4866 participants). The estimated pooled prevalence of DRPIs was 19.0% (95% CI: 13.6%-24.3%) in 9 studies (5218 participants). The most significant risk factor for DRPIs was using mechanical ventilation. The pooled analysis of the four studies showed that DRPIs were more likely to occur in patients who required mechanical ventilation compared with patients who did not use mechanical ventilation (OR: 9.67, 95% CI: 5.03-18.61, p < 0.001) and using vasopressors, age, length of ICU stays, APACHE II score, Braden score, fever, sex, oedema, diabetes and number of medical devices, SOFA score was also related to pressure injuries risk. The incidence and prevalence of DRPIs in adult ICU were high, and the most significant risk factor for DRPIs was using mechanical ventilation. It is imminent to identify patients of increased risk with DRPIs early.


Subject(s)
Pressure Ulcer , Humans , Adult , Pressure Ulcer/epidemiology , Pressure Ulcer/etiology , Incidence , Prevalence , Wound Healing , Intensive Care Units , Risk Factors
19.
Fish Shellfish Immunol ; 143: 109215, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37951320

ABSTRACT

Marine lectins are a group of proteins that possess specific carbohydrate recognition and binding domains. They exhibit various activities, including antimicrobial, antitumor, antiviral, and immunomodulatory effects. In this study, a novel galectin-binding lectin gene named PFL-96 (GenBank: OQ561753.1) was cloned from Pinctada fucata. The PFL-96 gene has an open reading frame of 324 base pairs (bp) and encodes a protein comprising 107 amino acids. The protein has a molecular weight of 11.95 kDa and an isoelectric point of 9.27. It contains an N-terminal signal peptide and a galactose-binding lectin domain. The sequence identity to lectin proteins from fish, echinoderms, coelenterates, and shellfish ranges from 31.90 to 40.00 %. In the phylogenetic analysis, it was found that the PFL-96 protein is closely related to the lectin from Pteria penguin. The PFL-96 recombinant protein exhibited coagulation activity on 2 % rabbit red blood cells at a concentration of ≥8 µg/mL. Additionally, it showed significant hemolytic activity at a concentration of ≥32 µg/mL. The PFL-96 recombinant protein exhibited significant antibacterial activity against Bacillus subtilis, Staphylococcus aureus, Candida albicans, and Vibrio alginolyticus, with minimum inhibitory concentrations (MIC) of 4, 8, 16, and 16 µg/mL, respectively. The minimum bactericidal concentrations (MBC) were determined to be 8, 16, 32, and 32 µg/mL, respectively. Furthermore, the PFL-96 recombinant protein exhibited inhibitory effects on the proliferation of Hela tumor cells, HepG2 tumor cells, and C666-1 tumor cells, with IC50 values of 7.962, 8.007, and 9.502 µg/mL, respectively. These findings suggest that the recombinant protein PFL-96 exhibits significant bioactivity in vitro, contributing to a better understanding of the active compounds found in P. fucata. The present study establishes a fundamental basis for further investigation into the mechanism of action and structural optimization of the recombinant protein PFL-96. The aim is to develop potential candidates for antibacterial and anti-tumor agents.


Subject(s)
Pinctada , Animals , Rabbits , Pinctada/metabolism , Amino Acid Sequence , Phylogeny , Cloning, Molecular , Recombinant Proteins/genetics , Recombinant Proteins/pharmacology , Recombinant Proteins/metabolism , Galectins/genetics , Galectins/metabolism , Anti-Bacterial Agents/metabolism
20.
Environ Sci Technol ; 57(9): 4050-4059, 2023 03 07.
Article in English | MEDLINE | ID: mdl-36802506

ABSTRACT

Converting biomass into biochar (BC) as a functional biocatalyst to accelerate persulfate activation for water remediation has attracted much attention. However, due to the complex structure of BC and the difficulty in identifying the intrinsic active sites, it is essential to understand the link between various properties of BC and the corresponding mechanisms promoting nonradicals. Machine learning (ML) recently demonstrated significant potential for material design and property enhancement to help tackle this problem. Herein, ML techniques were applied to guide the rational design of BC for the targeted acceleration of nonradical pathways. The results showed a high specific surface area, and O% values can significantly enhance nonradical contribution. Furthermore, the two features can be regulated by simultaneously tuning the temperatures and biomass precursors for efficient directed nonradical degradation. Finally, two nonradical-enhanced BCs with different active sites were prepared based on the ML results. This work serves as a proof of concept for applying ML in the synthesis of tailored BC for persulfate activation, thereby revealing the remarkable capability of ML for accelerating bio-based catalyst development.


Subject(s)
Charcoal , Water Pollutants, Chemical , Oxidation-Reduction , Charcoal/chemistry , Catalysis , Temperature , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL