Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
J Colloid Interface Sci ; 668: 190-201, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38677208

ABSTRACT

The recycling of spent lithium-ion batteries (LIBs) has received increasing attention for environment and resource reclamation. Converting LIBs wastes into high-efficiency catalysts is a win-win strategy for realizing resource reclamation and addressing sustainable energy challenges. Herein, we developed a simple method to upcycle spent-LIBs cathode powder into Co-doped NiFe carbonate hydroxide hydrate (Co/NFCH-FF) as a low-cost and efficient oxygen evolution reaction (OER) electrocatalyst. The optimized Co/NFCH-FF electrode appears very competitive OER performances with low overpotentials of 201 and 249 mV at 10 and 100 mA cm-2, respectively, a small Tafel slope of 48.4 mV dec-1, and a high long-term stability. Moreover, we reveal that the existence of Co atoms leads to the formation of a crystalline/amorphous (c/a) interface at the Co/NFCH nanosheet edge, inducing the nanosheets possess a unique edge effect to enhance electric fields and accumulate hydroxide ions (OH-) at the edge during the OER process. Benefiting from edge effect, Co/NFCH-FF shows outstanding intrinsic activity. Furthermore, Co atoms as dopants stabilize the electronic structure of Co/NFCH-FF, enabling Co/NFCH-FF to exhibit excellent catalytic stability. This work provides an effective strategy for converting the end-life LIBs to high-performance multicomponent OER electrocatalysts and proposes new insights into the mechanism of enhanced catalytic activity of Co/NFCH.

2.
Nanoscale ; 14(21): 7768-7777, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35603980

ABSTRACT

Development of a composite electrolyte with high ionic conductivity, excellent electrochemical stability and preeminent mechanical strength is beneficial for suppressing Li-dendrite penetration and unstable interfacial reactions in solid-state Li-metal batteries. Herein, a novel composite electrolyte material comprising perovskite Li0.485La0.505TiO3 (LLTO), poly(ethylene oxide) (PEO), and a barium titanate (BTO)-polyimide (PI) composite matrix has been successfully fabricated. Benefiting from the well-defined ion channels, the resulting BTO-PI@LLTO-PEO-FEC-LiTFSI (BP@LPFL) exhibits excellent cycling stability, low interfacial resistance, enhanced mechanical strength, and high ionic conductivity. Particularly, BP@LPFL possesses an excellent ionic conductivity of 3.0 × 10-4 S cm-1 at room temperature and achieves a wide electrochemical window of 5.2 V (vs. Li+/Li). For Li-LiFePO4 batteries, such an ingenious structure yields a discharge capacity of 124 mA h g-1 at 0.1 C after 200 cycles at room temperature and delivers a discharge capacity of 165 mA h g-1 at 0.1 C after 110 cycles at 60 °C. Additionally, the symmetric Li cell remains stable after 700 h at a current density of 0.5 mA cm-2. Furthermore, ex situ X-ray photoelectron spectroscopy and ex situ scanning electron microscopy were used to verify the interface evolution. Besides, a flexible full battery is fabricated, which exhibits impressive performance. These properties presented here provide support for BP@LPFL as a feasible candidate electrolyte for solid-state lithium batteries.

3.
Nanoscale ; 13(47): 20041-20051, 2021 Dec 13.
Article in English | MEDLINE | ID: mdl-34842886

ABSTRACT

Metal sulfides are promising lithium-ion battery anode materials with high specific capacities, but there has been little in-depth discussion on the reaction mechanism of metal sulfides. In this study, a robust bimetallic sulfide heterogeneous material (Sb2S3-Co9S8/NC) based on a metal-organic framework was designed. The combination of in situ X-ray diffraction and ex situ transmission electron microscopy revealed the phase evolution behavior during the first cycle. During the lithiation process, Sb2S3 undergoes lithium insertion, conversion and alloying reactions to form crystalline Li2S, Li3Sb and metallic Sb. Co9S8 undergoes lithium insertion and transformation to form metallic Co and Li2S. Lithium ions are extracted from the nanocrystalline phase and transformed into the original Sb2S3 and Co9S8 phases. The Sb2S3-Co9S8/NC anode exhibits excellent cycle stability (616 mA h g-1 at 2 A g-1 after 900 cycles) and fast lithium ion transfer kinetics. These results demonstrate the lithiation/delithiation mechanism of the Sb2S3-based anode and provide a new path for the development of high-performance LIB anodes based on bimetallic sulfides.

4.
Nanoscale ; 13(6): 3782-3789, 2021 Feb 18.
Article in English | MEDLINE | ID: mdl-33564809

ABSTRACT

SnTe exhibits a layered crystal structure, which enables fast Li-ion diffusion and easy storage, and is considered to be a promising candidate for an advanced anode material. However, its applications are hindered by the large volume variation caused by intercalation/deintercalation during the electrochemical reaction processes. Herein, topological insulator SnTe and carbon nanotubes (CNTs) supported on a graphite (G) carbon framework (SnTe-CNT-G) were prepared as a new, active and robust anode material for high-rate lithium-ion batteries by a scalable ball-milling method. Remarkably, the SnTe-CNT-G composite used as a lithium-ion battery anode offered an excellent reversible capacity of 840 mA h g-1 at 200 mA g-1 after 100 cycles and high initial coulombic efficiencies of 76.0%, and achieved a long-term cycling stability of 669 mA h g-1 at 2 A g-1 after 1400 cycles. The superior electrochemical performance of SnTe-CNT-G is attributed to the stable design of its electrode structure and interesting topological transition of SnTe, combined with multistep conversion and alloying processes. Furthermore, in situ X-ray diffraction and ex situ X-ray photoelectron spectroscopy were employed to study the reaction mechanism. The results presented here provide new insights to design and reveal the reaction mechanisms of transition metal telluride materials in various energy-storage materials.

5.
Braz J Med Biol Res ; 54(4): e9850, 2021.
Article in English | MEDLINE | ID: mdl-33656056

ABSTRACT

Respiratory syncytial virus (RSV) infection is the main cause of lower respiratory tract infection in children. However, there is no effective treatment for RSV infection. Here, we aimed to identify potential biomarkers to aid in the treatment of RSV infection. Children in the acute and convalescence phases of RSV infection were recruited and proteomic analysis was performed to identify differentially expressed proteins (DEPs). Subsequently, promising candidate proteins were determined by functional enrichment and protein-protein interaction network analysis, and underwent further validation by western blot both in clinical and mouse model samples. Among the 79 DEPs identified in RSV patient samples, 4 proteins (BPGM, TPI1, PRDX2, and CFL1) were confirmed to be significantly upregulated during RSV infection. Functional analysis showed that BPGM and TPI1 were mainly involved in glycolysis, indicating an association between RSV infection and the glycolysis metabolic pathway. Our findings provide insights into the proteomic profile during RSV infection and indicated that BPGM, TPI1, PRDX2, and CFL1 may be potential therapeutic biomarkers or targets for the treatment of RSV infection.


Subject(s)
Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Biomarkers , Child , Humans , Proteomics
6.
ACS Omega ; 5(21): 12495-12500, 2020 Jun 02.
Article in English | MEDLINE | ID: mdl-32548434

ABSTRACT

Enterovirus 71 (EV71) is the principal pathogen leading to severe cases of hand, foot, and mouth disease (HFMD). Specific drugs for EV71 are not discovered currently. Small interfering RNA (siRNA) provides a promising antiviral treatment pathway, but it is difficult to cross cell membranes and is easy to degrade. Nanoparticles are promising for their carrying capacity currently. In this study, the siRNA targeting EV71 VP1 gene was loaded with selenium nanoparticles (SeNPs) and surface decorated with polyethylenimine (PEI) (Se@PEI@siRNA). Se@PEI@siRNA showed a remarkable interference efficiency in the nerve cell line SK-N-SH and prevented the cells to be infected. The mechanism study revealed that Se@PEI@siRNA could lighten the extent of SK-N-SH cells for staying in the sub-G1 phase. Activation of Bax apoptosis signaling was restrained either. Taken together, this study demonstrated that Se@PEI@siRNA is a promising drug against EV71 virus.

7.
Nanoscale ; 11(45): 22134, 2019 Dec 07.
Article in English | MEDLINE | ID: mdl-31701986

ABSTRACT

Correction for 'MoS2 nanoflowers encapsulated into carbon nanofibers containing amorphous SnO2 as an anode for lithium-ion batteries' by Huanhui Chen et al., Nanoscale, 2019, 11, 16253-16261.

8.
Nanoscale ; 11(35): 16253-16261, 2019 Sep 21.
Article in English | MEDLINE | ID: mdl-31454008

ABSTRACT

SnO2 with high abundance, large theoretical capacity, and nontoxicity is considered to be a promising candidate for use as advanced electrodes. However, the poor electronic conductivity and large volume variations hinder the practical applications of SnO2-based electrodes for use in lithium-ion batteries (LIBs). Herein, the MoS2-SnO2 heterostructures were encapsulated into carbon nanofibers (CNFs) via facile solvothermal and electrospinning methods. Remarkably, when the binder-free and robust MoS2-SnO2@CNF is employed as the anode for LIBs, such a clever structure yields a discharge capacity of 983 mA h g-1 at a current density of 200 mA g-1 after 100 cycles and a capacity of 710 mA h g-1 after 800 cycles at a current density of 2000 mA g-1. Moreover, full cells and flexible full cells were constructed, which exhibited high flexibility and delivered a high reversible capacity of 463 mA h g-1 after 100 cycles at 500 mA g-1. The exceptional performance of MoS2-SnO2@CNF could be attributed to the rational design of the electrode structure. On one hand, the robust structure of the amorphous SnO2 and MoS2 nanoflowers in the conductive carbon network not only provides direct current pathways, but also enhances electron transfer. On the other hand, the abundance of p-n heterogeneous interfaces considerably reduces the charge transfer resistance and enhances the surface reaction kinetics. This work proposes a feasible strategy to enhance the capacity and stability of SnO2-based electrodes and opens up a new avenue for the potential applications of SnO2 anode materials.

9.
Braz. j. med. biol. res ; 54(4): e9850, 2021. tab, graf
Article in English | LILACS | ID: biblio-1153545

ABSTRACT

Respiratory syncytial virus (RSV) infection is the main cause of lower respiratory tract infection in children. However, there is no effective treatment for RSV infection. Here, we aimed to identify potential biomarkers to aid in the treatment of RSV infection. Children in the acute and convalescence phases of RSV infection were recruited and proteomic analysis was performed to identify differentially expressed proteins (DEPs). Subsequently, promising candidate proteins were determined by functional enrichment and protein-protein interaction network analysis, and underwent further validation by western blot both in clinical and mouse model samples. Among the 79 DEPs identified in RSV patient samples, 4 proteins (BPGM, TPI1, PRDX2, and CFL1) were confirmed to be significantly upregulated during RSV infection. Functional analysis showed that BPGM and TPI1 were mainly involved in glycolysis, indicating an association between RSV infection and the glycolysis metabolic pathway. Our findings provide insights into the proteomic profile during RSV infection and indicated that BPGM, TPI1, PRDX2, and CFL1 may be potential therapeutic biomarkers or targets for the treatment of RSV infection.


Subject(s)
Humans , Child , Respiratory Syncytial Virus, Human , Respiratory Syncytial Virus Infections , Biomarkers , Proteomics
10.
Sci Rep ; 4: 6475, 2014 Sep 30.
Article in English | MEDLINE | ID: mdl-25267260

ABSTRACT

Acid-base bifunctional organic polymeric catalysts were synthesized with tunable structures. we demonstrated two synthesis approaches for structural fine-tune. In the first case, the framework flexibility was tuned by changing the ratio of rigid blocks to flexible blocks within the polymer framework. In the second case, we precisely adjusted the acid-base distance by distributing basic monomers to be adjacent to acidic monomers, and by changing the chain length of acidic monomers. In a standard test reaction for the aldol condensation of 4-nitrobenzaldehyde with acetone, the catalysts showed good reusability upon recycling and maintained relatively high conversion percentage.

11.
Zhonghua Er Ke Za Zhi ; 46(8): 613-7, 2008 Aug.
Article in Zh | MEDLINE | ID: mdl-19099836

ABSTRACT

OBJECTIVE: To investigate the prevalence of influenza virus infections in children in 2006 using the real-time PCR method. METHODS: (1) Consulting the most conserved sequence NP gene of influenza virus, after comparing with the NP gene sequences of influenza virus in GenBank, one pair of specific primers and one TaqMan probe were designed for each subtype of influenza virus by the software Primer Express. The sensitivity of influenza was evaluated by testing known positive samples which had been two-fold diluted. The specificity of real-time PCR for influenza virus detection was assessed by cross testing 60 isolates of influenza A, 16 isolates of influenza B, and by testing a variety of other respiratory viruses positive samples; (2) 281 nasopharyngeal aspirate samples were detected by real-time PCR and virus isolation; (3) the 12 301 specimens from the patients of Guangzhou Children's Hospital were tested by using the real-time PCR method. Furthermore, the real-time PCR reagent was evaluated by comparing with the result of virus isolation. RESULTS: (1) The sensitivity of real-time PCR developed in this study for influenza A detection was 1:2(22) and for influenza B was 1:2(20) in two-fold serially diluted way. (2) No positive results were found in cross testing of other viruses positive specimens. (3) Influenza virus was detected from 1687 cases (13.71%) out of the 12 301 cases, including 773 cases (45.8%) positive for subtype A and 914 cases (54.2%) positive for subtype B; 455 out of 525 (86.7%) of influenza B positive specimens and 70 out of 525 (13.3%) of influenza A (H1N1) positive specimens were from patients seen during January to April; 419 out of 1118 (37.5%) specimens positive for influenza B and 699 out of 1118 (62.5%) specimens positive for influenza A (H1N1) were from patients seen from May to August. Influenza virus could be identified from 1380 samples by the methods of virus isolation, accounting for 81.80% of the 1687 positive samples detected by real-time PCR. All the influenza virus subtype A was H1N1. CONCLUSION: The real-time PCR method developed in this study was sensitive and specific for detecting influenza A and B in clinical specimens. During 2006, influenza A and influenza B co-circulated. The predominant virus was influenza B from January to April, peaking in April. Influenza A (H1N1) prevailed from May to August, with the peak in June.


Subject(s)
Influenza, Human/epidemiology , Polymerase Chain Reaction/methods , Child , China/epidemiology , Epidemics , Humans , Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza, Human/virology , Prevalence , RNA, Viral/isolation & purification , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL