Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
J Biol Chem ; 299(6): 104812, 2023 06.
Article in English | MEDLINE | ID: mdl-37172724

ABSTRACT

T-cell acute lymphoblastic leukemia (T-ALL) is one of the deadliest and most aggressive hematological malignancies, but its pathological mechanism in controlling cell survival is not fully understood. Oculocerebrorenal syndrome of Lowe is a rare X-linked recessive disorder characterized by cataracts, intellectual disability, and proteinuria. This disease has been shown to be caused by mutation of oculocerebrorenal syndrome of Lowe 1 (OCRL1; OCRL), encoding a phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] 5-phosphatase involved in regulating membrane trafficking; however, its function in cancer cells is unclear. Here, we uncovered that OCRL1 is overexpressed in T-ALL cells, and knockdown of OCRL1 results in cell death, indicating the essential role of OCRL in controlling T-ALL cell survival. We show OCRL is primarily localized in the Golgi and can translocate to plasma membrane (PM) upon ligand stimulation. We found OCRL interacts with oxysterol-binding protein-related protein 4L, which facilitates OCRL translocation from the Golgi to the PM upon cluster of differentiation 3 stimulation. Thus, OCRL represses the activity of oxysterol-binding protein-related protein 4L to prevent excessive PI(4,5)P2 hydrolysis by phosphoinositide phospholipase C ß3 and uncontrolled Ca2+ release from the endoplasmic reticulum. We propose OCRL1 deletion leads to accumulation of PI(4,5)P2 in the PM, disrupting the normal Ca2+ oscillation pattern in the cytosol and leading to mitochondrial Ca2+ overloading, ultimately causing T-ALL cell mitochondrial dysfunction and cell death. These results highlight a critical role for OCRL in maintaining moderate PI(4,5)P2 availability in T-ALL cells. Our findings also raise the possibility of targeting OCRL1 to treat T-ALL disease.


Subject(s)
Cell Membrane , Phosphatidylinositol 4,5-Diphosphate , Phosphoric Monoester Hydrolases , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , T-Lymphocytes , Humans , Cell Membrane/metabolism , Cell Survival , Hydrolysis , Oculocerebrorenal Syndrome/enzymology , Oculocerebrorenal Syndrome/genetics , Phosphatidylinositol 4,5-Diphosphate/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/immunology , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , T-Lymphocytes/cytology , T-Lymphocytes/immunology , Phosphoric Monoester Hydrolases/biosynthesis , Phosphoric Monoester Hydrolases/deficiency , Phosphoric Monoester Hydrolases/genetics , Phosphoric Monoester Hydrolases/metabolism , Golgi Apparatus/metabolism , Ligands , Protein Transport , Calcium Signaling , Mitochondria/metabolism , Mitochondria/pathology , Cytosol/metabolism
2.
Sci Transl Med ; 14(629): eabh2548, 2022 01 26.
Article in English | MEDLINE | ID: mdl-35080912

ABSTRACT

Leukemia stem cells (LSCs) propagate leukemia and are responsible for the high frequency of relapse of treated patients. The ability to target LSCs remains elusive, indicating a need to understand the underlying mechanism of LSC formation. Here, we report that miR-31-5p is reduced or undetectable in human LSCs compared to hematopoietic stem progenitor cells (HSPCs). Inhibition of miR-31-5p in HSPCs promotes the expression of its target gene FIH, encoding FIH [factor inhibiting hypoxia-inducing factor 1α (HIF-1α)], to suppress HIF-1α signaling. Increased FIH resulted in a switch from glycolysis to oxidative phosphorylation (OXPHOS) as the predominant mode of energy metabolism and increased the abundance of the oncometabolite fumarate. Increased fumarate promoted the conversion of HSPCs to LSCs and initiated myeloid leukemia-like disease in NOD-Prkdcscid IL2rgtm1/Bcgen (B-NDG) mice. We further demonstrated that miR-31-5p inhibited long- and short-term hematopoietic stem cells with a high frequency of LSCs. In combination with the chemotherapeutic agent Ara-C (cytosine arabinoside), restoration of miR-31-5p using G7 poly (amidoamine) nanosized dendriplex encapsulating miR-31-5p eliminated LSCs and inhibited acute myeloid leukemia (AML) progression in patient-derived xenograft mouse models. These results demonstrated a mechanism of HSC malignant transformation through altered energy metabolism and provided a potential therapeutic strategy to treat patients with AML.


Subject(s)
Leukemia, Myeloid, Acute , MicroRNAs , Animals , Fumarates , Hematopoietic Stem Cells/metabolism , Humans , Leukemia, Myeloid, Acute/drug therapy , Mice , Mice, Inbred NOD , MicroRNAs/genetics , MicroRNAs/metabolism , Neoplastic Stem Cells/pathology
3.
Nat Commun ; 13(1): 4390, 2022 07 29.
Article in English | MEDLINE | ID: mdl-35906240

ABSTRACT

Lipid remodeling is crucial for malignant cell transformation and tumorigenesis, but the precise molecular processes involved and direct evidences for these in vivo remain elusive. Here, we report that oxysterol-binding protein (OSBP)-related protein 4 L (ORP4L) is expressed in adult T-cell leukemia (ATL) cells but not normal T-cells. In ORP4L knock-in T-cells, ORP4L dimerizes with OSBP to control the shuttling of OSBP between the Golgi apparatus and the plasma membrane (PM) as an exchanger of phosphatidylinositol 4-phosphate [PI(4)P]/cholesterol. The PI(4)P arriving at the PM via this transport machinery replenishes phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and phosphatidylinositol (3,4,5) trisphosphate [PI(3,4,5)P3] biosynthesis, thus contributing to PI3K/AKT hyperactivation and T-cell deterioration in vitro and in vivo. Disruption of ORP4L and OSBP dimerization disables PI(4)P transport and T-cell leukemogenesis. In summary, we identify a non-vesicular lipid transport machinery between Golgi and PM maintaining the oncogenic signaling competence initiating T-cell deterioration and leukemogenesis.


Subject(s)
Phosphatidylinositol 3-Kinases , Receptors, Steroid , Carcinogenesis , Humans , Phosphatidylinositol 4,5-Diphosphate , Phosphatidylinositol Phosphates/metabolism , Phosphatidylinositols , Receptors, Steroid/metabolism , T-Lymphocytes/metabolism
4.
Cell Rep ; 26(8): 2166-2177.e9, 2019 02 19.
Article in English | MEDLINE | ID: mdl-30784597

ABSTRACT

Leukemia stem cells (LSCs) are a rare subpopulation of abnormal hematopoietic stem cells (HSCs) that propagates leukemia and are responsible for the high frequency of relapse in therapies. Detailed insights into LSCs' survival will facilitate the identification of targets for therapeutic approaches. Here, we develop an inhibitor, LYZ-81, which targets ORP4L with high affinity and specificity and selectively eradicates LCSs in vitro and in vivo. ORP4L is expressed in LSCs but not in normal HSCs and is essential for LSC bioenergetics and survival. It extracts PIP2 from the plasma membrane and presents it to PLCß3, enabling IP3 generation and subsequent Ca2+-dependent bioenergetics. LYZ-81 binds ORP4L competitively with PIP2 and blocks PIP2 hydrolysis, resulting in defective Ca2+ signaling. The results provide evidence that LSCs can be eradicated through the inhibition of ORP4L by LYZ-81, which may serve as a starting point of drug development for the elimination of LSCs to eventually cure leukemia.


Subject(s)
Hematopoietic Stem Cells/drug effects , Leukemia/metabolism , Neoplastic Stem Cells/drug effects , Phosphatidylinositol 4,5-Diphosphate/metabolism , Receptors, Steroid/metabolism , Animals , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Membrane/metabolism , Hematopoietic Stem Cells/metabolism , Humans , Leukemia/blood , Mice , Mice, Inbred NOD , Mice, SCID , Neoplastic Stem Cells/metabolism , Phospholipase C beta/metabolism , Receptors, Steroid/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL