Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Mol Cell ; 84(2): 386-400.e11, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38103558

ABSTRACT

The posttranslational modifier ubiquitin regulates most cellular processes. Its ability to form polymeric chains of distinct linkages is key to its diverse functionality. Yet, we still lack the experimental tools to induce linkage-specific polyubiquitylation of a protein of interest in cells. Here, we introduce a set of engineered ubiquitin protein ligases and matching ubiquitin acceptor tags for the rapid, inducible linear (M1-), K48-, or K63-linked polyubiquitylation of proteins in yeast and mammalian cells. By applying the so-called "Ubiquiton" system to proteasomal targeting and the endocytic pathway, we validate this tool for soluble cytoplasmic and nuclear as well as chromatin-associated and integral membrane proteins and demonstrate how it can be used to control the localization and stability of its targets. We expect that the Ubiquiton system will serve as a versatile, broadly applicable research tool to explore the signaling functions of polyubiquitin chains in many biological contexts.


Subject(s)
Ubiquitin-Protein Ligases , Ubiquitin , Animals , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Polyubiquitin/genetics , Polyubiquitin/metabolism , Signal Transduction , Proteasome Endopeptidase Complex/metabolism , Ubiquitination , Mammals/metabolism
2.
Mol Cell ; 83(23): 4272-4289.e10, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-37951215

ABSTRACT

Reactive aldehydes are produced by normal cellular metabolism or after alcohol consumption, and they accumulate in human tissues if aldehyde clearance mechanisms are impaired. Their toxicity has been attributed to the damage they cause to genomic DNA and the subsequent inhibition of transcription and replication. However, whether interference with other cellular processes contributes to aldehyde toxicity has not been investigated. We demonstrate that formaldehyde induces RNA-protein crosslinks (RPCs) that stall the ribosome and inhibit translation in human cells. RPCs in the messenger RNA (mRNA) are recognized by the translating ribosomes, marked by atypical K6-linked ubiquitylation catalyzed by the RING-in-between-RING (RBR) E3 ligase RNF14, and subsequently resolved by the ubiquitin- and ATP-dependent unfoldase VCP. Our findings uncover an evolutionary conserved formaldehyde-induced stress response pathway that protects cells against RPC accumulation in the cytoplasm, and they suggest that RPCs contribute to the cellular and tissue toxicity of reactive aldehydes.


Subject(s)
RNA , Ubiquitin-Protein Ligases , Humans , RNA/metabolism , Ubiquitination , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Formaldehyde/toxicity , Aldehydes/toxicity , RNA, Messenger/genetics , RNA, Messenger/metabolism
3.
Nucleic Acids Res ; 52(12): 6945-6963, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38783095

ABSTRACT

Cellular senescence, a major driver of aging, can be stimulated by DNA damage, and is counteracted by the DNA repair machinery. Here we show that in p16INK4a-deficient cells, senescence induction by the environmental genotoxin B[a]P or ionizing radiation (IR) completely depends on p21CIP1. Immunoprecipitation-based mass spectrometry interactomics data revealed that during senescence induction and maintenance, p21CIP1 specifically inhibits CDK4 and thereby activates the DREAM complex. Genome-wide transcriptomics revealed striking similarities in the response induced by B[a]P and IR. Among the top 100 repressed genes 78 were identical between B[a]P and IR and 76 were DREAM targets. The DREAM complex transcriptionally silences the main proliferation-associated transcription factors E2F1, FOXM1 and B-Myb as well as multiple DNA repair factors. Knockdown of p21CIP1, E2F4 or E2F5 diminished both, repression of these factors and senescence. The transcriptional profiles evoked by B[a]P and IR largely overlapped with the profile induced by pharmacological CDK4 inhibition, further illustrating the role of CDK4 inhibition in genotoxic stress-induced senescence. Moreover, data obtained by live-cell time-lapse microscopy suggest the inhibition of CDK4 by p21CIP1 is especially important for arresting cells which slip through mitosis. Overall, we identified the p21CIP1/CDK4/DREAM axis as a master regulator of genotoxic stress-induced senescence.


Subject(s)
Cellular Senescence , Cyclin-Dependent Kinase 4 , Cyclin-Dependent Kinase Inhibitor p21 , DNA Damage , Kv Channel-Interacting Proteins , Cellular Senescence/radiation effects , Cellular Senescence/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cyclin-Dependent Kinase 4/metabolism , Cyclin-Dependent Kinase 4/genetics , Humans , Kv Channel-Interacting Proteins/metabolism , Kv Channel-Interacting Proteins/genetics , Radiation, Ionizing , DNA Repair , Gene Expression Regulation/radiation effects , Repressor Proteins
4.
Nature ; 559(7713): 211-216, 2018 07.
Article in English | MEDLINE | ID: mdl-29973724

ABSTRACT

Liquid-liquid phase separation has been shown to underlie the formation and disassembly of membraneless organelles in cells, but the cellular mechanisms that control this phenomenon are poorly understood. A prominent example of regulated and reversible segregation of liquid phases may occur during mitosis, when membraneless organelles disappear upon nuclear-envelope breakdown and reappear as mitosis is completed. Here we show that the dual-specificity kinase DYRK3 acts as a central dissolvase of several types of membraneless organelle during mitosis. DYRK3 kinase activity is essential to prevent the unmixing of the mitotic cytoplasm into aberrant liquid-like hybrid organelles and the over-nucleation of spindle bodies. Our work supports a mechanism in which the dilution of phase-separating proteins during nuclear-envelope breakdown and the DYRK3-dependent degree of their solubility combine to allow cells to dissolve and condense several membraneless organelles during mitosis.


Subject(s)
Mitosis , Organelles/metabolism , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/metabolism , Anaphase-Promoting Complex-Cyclosome/metabolism , Cytoplasm/metabolism , Cytoplasmic Granules/metabolism , HEK293 Cells , HeLa Cells , Humans , Nuclear Envelope/metabolism , Poly(A)-Binding Protein I/metabolism , Protein Binding , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/biosynthesis , Protein Transport , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/biosynthesis , Solubility , Spindle Apparatus/metabolism , Stress, Physiological
5.
PLoS Genet ; 17(6): e1009600, 2021 06.
Article in English | MEDLINE | ID: mdl-34166401

ABSTRACT

Animals and plants need to defend themselves from pathogen attack. Their defences drive innovation in virulence mechanisms, leading to never-ending cycles of co-evolution in both hosts and pathogens. A full understanding of host immunity therefore requires examination of pathogen virulence strategies. Here, we take advantage of the well-studied innate immune system of Caenorhabditis elegans to dissect the action of two virulence factors from its natural fungal pathogen Drechmeria coniospora. We show that these two enterotoxins have strikingly different effects when expressed individually in the nematode epidermis. One is able to interfere with diverse aspects of host cell biology, altering vesicle trafficking and preventing the key STAT-like transcription factor STA-2 from activating defensive antimicrobial peptide gene expression. The second increases STA-2 levels in the nucleus, modifies the nucleolus, and, potentially as a consequence of a host surveillance mechanism, causes increased defence gene expression. Our results highlight the remarkably complex and potentially antagonistic mechanisms that come into play in the interaction between co-evolved hosts and pathogens.


Subject(s)
Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans/immunology , Enterotoxins/genetics , Hypocreales/pathogenicity , Immunity, Innate , STAT Transcription Factors/genetics , Spores, Fungal/pathogenicity , Animals , Antimicrobial Cationic Peptides/genetics , Antimicrobial Cationic Peptides/immunology , Biological Coevolution , Biological Transport , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/microbiology , Caenorhabditis elegans Proteins/immunology , Enterotoxins/metabolism , Epidermis/immunology , Epidermis/metabolism , Epidermis/microbiology , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Expression Regulation , Genes, Reporter , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Hypocreales/growth & development , Longevity/genetics , Longevity/immunology , STAT Transcription Factors/immunology , Signal Transduction , Spores, Fungal/growth & development , Transport Vesicles/metabolism , Virulence , Virulence Factors/genetics , Virulence Factors/metabolism
6.
EMBO J ; 38(14): e101082, 2019 07 15.
Article in English | MEDLINE | ID: mdl-31304626

ABSTRACT

Centrioles are core structural elements of both centrosomes and cilia. Although cytoplasmic granules called centriolar satellites have been observed around these structures, lack of a comprehensive inventory of satellite proteins impedes our understanding of their ancestry. To address this, we performed mass spectrometry (MS)-based proteome profiling of centriolar satellites obtained by affinity purification of their key constituent, PCM1, from sucrose gradient fractions. We defined an interactome consisting of 223 proteins, which showed striking enrichment in centrosome components. The proteome also contained new structural and regulatory factors with roles in ciliogenesis. Quantitative MS on whole-cell and centriolar satellite proteomes of acentriolar cells was performed to reveal dependencies of satellite composition on intact centrosomes. Although most components remained associated with PCM1 in acentriolar cells, reduced cytoplasmic and satellite levels were observed for a subset of centrosomal proteins. These results demonstrate that centriolar satellites and centrosomes form independently but share a substantial fraction of their proteomes. Dynamic exchange of proteins between these organelles could facilitate their adaptation to changing cellular environments during development, stress response and tissue homeostasis.


Subject(s)
Cell Cycle Proteins/metabolism , Centrioles/metabolism , Lymphocytes/metabolism , Animals , Autoantigens/metabolism , Chickens , HEK293 Cells , Homeostasis , Humans , Jurkat Cells , Lymphocytes/cytology , Proteomics
8.
PLoS Genet ; 14(7): e1007494, 2018 07.
Article in English | MEDLINE | ID: mdl-30036395

ABSTRACT

Eukaryotic gene expression requires the coordinated action of transcription factors, chromatin remodelling complexes and RNA polymerase. The conserved nuclear protein Akirin plays a central role in immune gene expression in insects and mammals, linking the SWI/SNF chromatin-remodelling complex with the transcription factor NFκB. Although nematodes lack NFκB, Akirin is also indispensable for the expression of defence genes in the epidermis of Caenorhabditis elegans following natural fungal infection. Through a combination of reverse genetics and biochemistry, we discovered that in C. elegans Akirin has conserved its role of bridging chromatin-remodellers and transcription factors, but that the identity of its functional partners is different since it forms a physical complex with NuRD proteins and the POU-class transcription factor CEH-18. In addition to providing a substantial step forward in our understanding of innate immune gene regulation in C. elegans, our results give insight into the molecular evolution of lineage-specific signalling pathways.


Subject(s)
Caenorhabditis elegans Proteins/immunology , Caenorhabditis elegans/immunology , Cell Cycle Proteins/immunology , Evolution, Molecular , Gene Expression Regulation/immunology , Immunity, Innate , Animals , Animals, Genetically Modified , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Chromatin/immunology , Chromatin/metabolism , Chromatin Assembly and Disassembly/immunology , Homeodomain Proteins/genetics , Homeodomain Proteins/immunology , Homeodomain Proteins/metabolism , Mi-2 Nucleosome Remodeling and Deacetylase Complex/immunology , Mi-2 Nucleosome Remodeling and Deacetylase Complex/metabolism , Protein Binding/immunology , Transcription Factors/immunology , Transcription Factors/metabolism
9.
Mol Cell Proteomics ; 15(5): 1642-57, 2016 05.
Article in English | MEDLINE | ID: mdl-26912668

ABSTRACT

Studying protein interactions in whole organisms is fundamental to understanding development. Here, we combine in vivo expressed GFP-tagged proteins with quantitative proteomics to identify protein-protein interactions of selected key proteins involved in early C. elegans embryogenesis. Co-affinity purification of interaction partners for eight bait proteins resulted in a pilot in vivo interaction map of proteins with a focus on early development. Our network reflects known biology and is highly enriched in functionally relevant interactions. To demonstrate the utility of the map, we looked for new regulators of P granule dynamics and found that GEI-12, a novel binding partner of the DYRK family kinase MBK-2, is a key regulator of P granule formation and germline maintenance. Our data corroborate a recently proposed model in which the phosphorylation state of GEI-12 controls P granule dynamics. In addition, we find that GEI-12 also induces granule formation in mammalian cells, suggesting a common regulatory mechanism in worms and humans. Our results show that in vivo interaction proteomics provides unique insights into animal development.


Subject(s)
Caenorhabditis elegans Proteins/analysis , Caenorhabditis elegans/embryology , Carrier Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/metabolism , Proteomics/methods , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Chromatography, Affinity , Cytoplasmic Granules/metabolism , Gene Expression Regulation, Developmental , Mass Spectrometry , Phosphorylation , Protein Interaction Maps , Dyrk Kinases
10.
PLoS Genet ; 10(3): e1004103, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24625543

ABSTRACT

Transposons are discrete segments of DNA that have the distinctive ability to move and replicate within genomes across the tree of life. 'Cut and paste' DNA transposition involves excision from a donor locus and reintegration into a new locus in the genome. We studied molecular events following the excision steps of two eukaryotic DNA transposons, Sleeping Beauty (SB) and piggyBac (PB) that are widely used for genome manipulation in vertebrate species. SB originates from fish and PB from insects; thus, by introducing these transposons to human cells we aimed to monitor the process of establishing a transposon-host relationship in a naïve cellular environment. Similarly to retroviruses, neither SB nor PB is capable of self-avoidance because a significant portion of the excised transposons integrated back into its own genome in a suicidal process called autointegration. Barrier-to-autointegration factor (BANF1), a cellular co-factor of certain retroviruses, inhibited transposon autointegration, and was detected in higher-order protein complexes containing the SB transposase. Increasing size sensitized transposition for autointegration, consistent with elevated vulnerability of larger transposons. Both SB and PB were affected similarly by the size of the transposon in three different assays: excision, autointegration and productive transposition. Prior to reintegration, SB is completely separated from the donor molecule and followed an unbiased autointegration pattern, not associated with local hopping. Self-disruptive autointegration occurred at similar frequency for both transposons, while aberrant, pseudo-transposition events were more frequently observed for PB.


Subject(s)
DNA Transposable Elements/genetics , Eukaryotic Cells/metabolism , Genome, Human , DNA-Binding Proteins/genetics , Genes, Transgenic, Suicide/genetics , HeLa Cells , Humans , Nuclear Proteins/genetics , Transposases/genetics
11.
Adv Sci (Weinh) ; 11(25): e2401641, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38666485

ABSTRACT

Genetic variants of GBA1 can cause the lysosomal storage disorder Gaucher disease and are among the highest genetic risk factors for Parkinson's disease (PD). GBA1 encodes the lysosomal enzyme beta-glucocerebrosidase (GCase), which orchestrates the degradation of glucosylceramide (GluCer) in the lysosome. Recent studies have shown that GluCer accelerates α-synuclein aggregation, exposing GCase deficiency as a major risk factor in PD pathology and as a promising target for treatment. This study investigates the interaction of GCase and three disease-associated variants (p.E326K, p.N370S, p.L444P) with their transporter, the lysosomal integral membrane protein 2 (LIMP-2). Overexpression of LIMP-2 in HEK 293T cells boosts lysosomal abundance of wt, E326K, and N370S GCase and increases/rescues enzymatic activity of the wt and E326K variant. Using a novel purification approach, co-purification of untagged wt, E326K, and N370S GCase in complex with His-tagged LIMP-2 from cell supernatant of HEK 293F cells is achieved, confirming functional binding and trafficking for these variants. Furthermore, a single helix in the LIMP-2 ectodomain is exploited to design a lysosome-targeted peptide that enhances lysosomal GCase activity in PD patient-derived and control fibroblasts. These findings reveal LIMP-2 as an allosteric activator of GCase, suggesting a possible therapeutic potential of targeting this interaction.


Subject(s)
Gaucher Disease , Glucosylceramidase , Parkinson Disease , Humans , Glucosylceramidase/genetics , Glucosylceramidase/metabolism , Parkinson Disease/genetics , Parkinson Disease/metabolism , Gaucher Disease/genetics , Gaucher Disease/metabolism , HEK293 Cells , Lysosomal Membrane Proteins/metabolism , Lysosomal Membrane Proteins/genetics , Lysosomes/metabolism , Receptors, Scavenger/genetics , Receptors, Scavenger/metabolism
12.
RSC Med Chem ; 14(11): 2365-2379, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37974966

ABSTRACT

Dengue virus (DENV) infection still lacks specific antiviral therapy, making the NS2B-NS3 protease an attractive target for drug development. However, allosteric inhibitors that bind to a site other than the active site still need to be better understood. In this study, we designed and synthesised tool compounds for photoaffinity labelling (PAL) to investigate the binding site of allosteric inhibitors on the DENV protease. These tool compounds contained an affinity moiety, a photoreactive group, and a reporter tag for detection. Upon irradiation, the photoreactive group formed a covalent bond with the protease, allowing for binding site identification. SDS-PAGE-based assays confirmed the qualitative binding of the designed inhibitors to the allosteric pocket, and pull-down experiments validated the interaction. Tryptic protein digestion following liquid chromatography/mass spectrometry analysis further supported the binding of the inhibitor to the proposed pocket revealing photo-attachment to an NS3 loop close to the C-terminus. These results enhance our understanding of allosteric inhibitors and their mechanism of action against the DENV protease. The developed tool compounds and PAL are potent tools for future drug discovery efforts and investigations targeting the DENV protease.

13.
Sci Data ; 10(1): 517, 2023 08 04.
Article in English | MEDLINE | ID: mdl-37542058

ABSTRACT

Human cytomegalovirus (HCMV) is a pathogen of high medical relevance. Subviral Dense Bodies (DB) were developed as a vaccine candidate to ameliorate the severe consequences of HCMV infection. Development of such a candidate vaccine for human application requires detailed knowledge of its interaction with the host. A comprehensive mass spectrometry (MS)- based analysis was performed regarding the changes in the proteome of cell culture cells, exposed to DB.


Subject(s)
Cytomegalovirus , Proteome , Humans , Endothelial Cells , Fibroblasts
14.
PNAS Nexus ; 2(4): pgad107, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37091541

ABSTRACT

The ability to assign cellular origin to low-abundance secreted factors in extracellular vesicles (EVs) would greatly facilitate the analysis of paracrine-mediated signaling. Here, we report a method, named selective isolation of extracellular vesicles (SIEVE), which uses cell type-specific proteome labeling via stochastic orthogonal recoding of translation (SORT) to install bioorthogonal reactive groups into the proteins derived from the cells targeted for labeling. We establish the native purification of intact EVs from a target cell, via a bioorthogonal tetrazine ligation, leading to copurification of the largely unlabeled EV proteome from the same cell. SIEVE enables capture of EV proteins at levels comparable with those obtained by antibody-based methods, which capture all EVs regardless of cellular origin, and at levels 20× higher than direct capture of SORT-labeled proteins. Using proteomic analysis, we analyze nonlabeled cargo proteins of EVs and show that the enhanced sensitivity of SIEVE allows for unbiased and comprehensive analysis of EV proteins from subpopulations of cells as well as for cell-specific EV proteomics in complex coculture systems. SIEVE can be applied with high efficiency in a diverse range of existing model systems for cell-cell communication and has direct applications for cell-of-origin EV analysis and for protein biomarker discovery.

15.
Mol Cell Proteomics ; 9(10): 2173-83, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20525996

ABSTRACT

Stable isotope labeling by amino acids in cell culture (SILAC) is widely used to quantify protein abundance in tissue culture cells. Until now, the only multicellular organism completely labeled at the amino acid level was the laboratory mouse. The fruit fly Drosophila melanogaster is one of the most widely used small animal models in biology. Here, we show that feeding flies with SILAC-labeled yeast leads to almost complete labeling in the first filial generation. We used these "SILAC flies" to investigate sexual dimorphism of protein abundance in D. melanogaster. Quantitative proteome comparison of adult male and female flies revealed distinct biological processes specific for each sex. Using a tudor mutant that is defective for germ cell generation allowed us to differentiate between sex-specific protein expression in the germ line and somatic tissue. We identified many proteins with known sex-specific expression bias. In addition, several new proteins with a potential role in sexual dimorphism were identified. Collectively, our data show that the SILAC fly can be used to accurately quantify protein abundance in vivo. The approach is simple, fast, and cost-effective, making SILAC flies an attractive model system for the emerging field of in vivo quantitative proteomics.


Subject(s)
Drosophila melanogaster/chemistry , Proteins/analysis , Animals , Chromatography, Liquid , Female , Lysine/chemistry , Male , Models, Animal , Peptide Mapping , Tandem Mass Spectrometry
16.
ACS Macro Lett ; 11(2): 173-178, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35574765

ABSTRACT

Monomer design plays an important role in the development of polymers with desired thermal properties and chemical recyclability. Here we prepared a class of seven-membered ring carbonates containing trans-cyclohexyl fused rings. These monomers showed excellent activity for ring-opening polymerization (ROP) with turnover frequency (TOF) up to 6 × 105 h-1 and catalyst loading down to 50 ppm, which yielded high-molecular-weight polycarbonates (Mn up to 673 kg/mol) with great thermostability (Td > 300 °C). Ultimately, the resulting polycarbonates can completely depolymerize into their corresponding cyclic dimers that can repolymerize to synthesize the starting polymers in moderate yields, demonstrating a potential route to achieve chemical recycling. Postfunctionalization of the unsaturated polycarbonate was conducted through cross-linking reaction and "click" reaction under UV irradiation.

17.
Sci Adv ; 8(49): eadd3189, 2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36490333

ABSTRACT

The nucleosomal landscape of chromatin depends on the concerted action of chromatin remodelers. The INO80 remodeler specifically places nucleosomes at the boundary of gene regulatory elements, which is proposed to be the result of an ATP-dependent nucleosome sliding activity that is regulated by extranucleosomal DNA features. Here, we use cryo-electron microscopy and functional assays to reveal how INO80 binds and is regulated by extranucleosomal DNA. Structures of the regulatory A-module bound to DNA clarify the mechanism of linker DNA binding. The A-module is connected to the motor unit via an HSA/post-HSA lever element to chemomechanically couple the motor and linker DNA sensing. Two notable sites of curved DNA recognition by coordinated action of the four actin/actin-related proteins and the motor suggest how sliding by INO80 can be regulated by extranucleosomal DNA features. Last, the structures clarify the recruitment of YY1/Ies4 subunits and reveal deep architectural similarities between the regulatory modules of INO80 and SWI/SNF complexes.

18.
Dalton Trans ; 51(30): 11295-11301, 2022 Aug 02.
Article in English | MEDLINE | ID: mdl-35819169

ABSTRACT

The incorporation of Sc3+ can stabilize calcite-phase LuBO3:Ce3+ to grow large-sized single crystals but leads to the significant degradation of scintillation performance. In the present work, alkali metal ion (A+ = Li+, Na+, K+)-incorporated (Lu, A, Sc)BO3:Ce was rapidly synthesized in batches via a high-throughput sol-gel method. The aliovalent substitution of Lu3+ with A+ is balanced by the generation of oxygen vacancies by forming complexes. Thanks to the increased oxygen vacancies, the luminescence and XEL intensity of (Lu, Li, Sc)BO3:Ce are significantly enhanced by 2.2 times and 1.9 times, respectively. Further, the incorporation of A+ is attributed to the improved transition efficiency of charge carriers. The prepared scintillation screen fabricated with LASBO:Ce and PMMA shows that the spatial resolution can reach 8.6 lp mm-1, indicating its potential application in efficient and low-cost non-destructive X-ray detection. This work is of great significance in improving the luminescence and scintillation performance of (Lu, Sc)BO3:Ce single crystals and thin films and their application in the scintillation field.

19.
Elife ; 112022 11 18.
Article in English | MEDLINE | ID: mdl-36399125

ABSTRACT

Cardiovascular disease is the leading cause of death worldwide due to the inability of adult heart to regenerate after injury. N6-methyladenosine (m6A) methylation catalyzed by the enzyme methyltransferase-like 3 (Mettl3) plays an important role in various physiological and pathological bioprocesses. However, the role of m6A in heart regeneration remains largely unclear. To study m6A function in heart regeneration, we modulated Mettl3 expression in vitro and in vivo. Knockdown of Mettl3 significantly increased the proliferation of cardiomyocytes and accelerated heart regeneration following heart injury in neonatal and adult mice. However, Mettl3 overexpression decreased cardiomyocyte proliferation and suppressed heart regeneration in postnatal mice. Conjoint analysis of methylated RNA immunoprecipitation sequencing (MeRIP-seq) and RNA-seq identified Fgf16 as a downstream target of Mettl3-mediated m6A modification during postnatal heart regeneration. RIP-qPCR and luciferase reporter assays revealed that Mettl3 negatively regulates Fgf16 mRNA expression in an m6A-Ythdf2-dependent manner. The silencing of Fgf16 suppressed the proliferation of cardiomyocytes. However, the overexpression of ΔFgf16, in which the m6A consensus sequence was mutated, significantly increased cardiomyocyte proliferation and accelerated heart regeneration in postnatal mice compared with wild-type Fgf16. Our data demonstrate that Mettl3 post-transcriptionally reduces Fgf16 mRNA levels through an m6A-Ythdf2-dependen pathway, thereby controlling cardiomyocyte proliferation and heart regeneration.


Cardiovascular diseases are one of the world's biggest killers. Even for patients who survive a heart attack, recovery can be difficult. This is because ­ unlike some amphibians and fish ­ humans lack the ability to produce enough new heart muscle cells to replace damaged tissue after a heart injury. In other words, the human heart cannot repair itself. Molecules known as messenger RNA (mRNA) carry the 'instructions' from the DNA inside the cell nucleus to its protein-making machinery in the cytoplasm of the cell. These messenger molecules can also be altered by different enzymes that attach or remove chemical groups. These modifications can change the stability of the mRNA, or even 'silence' it altogether by stopping it from interacting with the protein-making machinery, thus halting production of the protein it encodes. For example, a protein called Mettl3 can attach a methyl group to a specific part of the mRNA, causing a reversible mRNA modification known as m6A. This type of alteration has been shown to play a role in many conditions, including heart disease, but it has been unclear whether m6A could also be important for the regeneration of heart tissue. To find out more, Jiang, Liu, Chen et al. studied heart injury in mice of various ages. Newborn mice can regenerate their heart muscle for a short time, but adult mice lack this ability, which makes them a useful model to study heart disease. Analyses of the proteins and mRNAs in mouse heart cells confirmed that both Mettl3 and m6A-modified mRNAs were present. The amount of each also increased with age. Next, experiments in genetically manipulated mice revealed that removing Mettl3 greatly improved tissue repair after heart injury in both newborn and adult mice. In contrast, mouse hearts that produced abnormally high quantities of Mettl3 were unable to regenerate ­ even if the mice were young. Moreover, a detailed analysis of gene activity revealed that Mettl3 was suppressing heart regeneration by decreasing the production of a growth-promoting protein called FGF16. These results reveal a key biological mechanism controlling the heart's ability to repair itself after injury. In the future, Jiang et al. hope that Mettl3 can be harnessed for new, effective therapies to promote heart regeneration in patients suffering from heart disease.


Subject(s)
Methyltransferases , Myocytes, Cardiac , Mice , Animals , Myocytes, Cardiac/metabolism , Methyltransferases/genetics , Methyltransferases/metabolism , RNA, Messenger/metabolism , Methylation , Transcription Factors/metabolism , Cell Proliferation
20.
Org Lett ; 23(16): 6246-6251, 2021 Aug 20.
Article in English | MEDLINE | ID: mdl-34351170

ABSTRACT

Sodium tetrakis[3,5-bis(trifluoromethyl)-phenyl]borate (NaBArF) catalyzes the [2 + 2] cycloaddition of 1,4-disubstituted cyclopenta-1,3-dien-2-yl esters with nitrsobenzene in toluene, affording two isolable regioisomers of 6-oxa-7-azabicyclo[3.2.0] heptanes, which thermally rearrange into the same 4-aminocyclopent-1-en-3-ones. In the case of 4-substituted cyclopenta-1,3-dien-2-yl esters, their initial [2 + 2] cycloaddition intermediates undergo a rapid ring expansion to afford six-membered piperidone derivatives efficiently.

SELECTION OF CITATIONS
SEARCH DETAIL