Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 175
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Am Chem Soc ; 146(9): 6037-6044, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38377954

ABSTRACT

Alkene hydroformylation is one of the largest industrial reactions on an industrial scale; however, the development of nonnoble heterogeneous catalysts is usually limited by their low activities and stabilities. Herein, we constructed a 1% Co2C/SiO2 catalyst featuring Co-Cvacancy-Co-C symmetry-breaking sites, which generated a polar surface exhibiting a moderate charge density gradient at the localized Co atoms. Comparatively, this catalyst exhibited notable enhancements in the adsorption and activation of the reactants, as well as in the polarity between intermediates. Significantly, the spatial distance between the adsorption sites of intermediates was reduced, thereby effectively decreasing the energy barrier of reaction processes. As the density of the symmetry-breaking sites increased, the turnover number for propene hydroformylation soared to 18 363, exceeding the activity of heterogeneous Co-based catalysts reported thus far by 1 or 2 orders of magnitude, and the catalyst exhibited high stability during the reaction. This study provides a methodology for constructing atomically active sites, which holds great potential for the design and development of highly efficient catalysts.

2.
Cancer Control ; 31: 10732748241251580, 2024.
Article in English | MEDLINE | ID: mdl-38712609

ABSTRACT

BACKGROUND: Immune-based therapies are commonly employed to combat hepatocellular carcinoma (HCC). However, the presence of immune-regulating elements, especially regulatory T cells (Tregs), can dramatically impact the treatment efficacy. A deeper examination of the immune-regulation mechanisms linked to these inhibitory factors and their impact on HCC patient outcomes is warranted. METHODS: We employed multicolor fluorescence immunohistochemistry (mIHC) to stain Foxp3, cytokeratin, and nuclei on an HCC tissue microarray (TMA). Leveraging liver cancer transcriptome data from TCGA, we built a prognostic model focused on Treg-associated gene sets and represented it with a nomogram. We then sourced liver cancer single-cell RNA sequencing data (GSE140228) from the GEO database, selectively focusing on Treg subsets, and conducted further analyses, including cell-to-cell communication and pseudo-time trajectory examination. RESULTS: Our mIHC results revealed a more substantial presence of Foxp3+Tregs in HCC samples than in adjacent normal tissue samples (P < .001). An increased presence of Foxp3+Tregs in HCC samples correlated with unfavorable patient outcomes (HR = 1.722, 95% CI:1.023-2.899, P = .041). The multi-factorial prognosis model we built from TCGA liver cancer data highlighted Tregs as a standalone risk determinant for predicting outcomes (HR = 3.84, 95% CI:2.52-5.83, P < .001). Re-analyzing the scRNA-seq dataset (GSE140228) showcased distinctive gene expression patterns in Tregs from varying tissues. Interactions between Tregs and other CD4+T cell types were predominantly governed by the CXCL13/CXCR3 signaling pathway. Communication pathways between Tregs and macrophages primarily involved MIF-CD74/CXCR4, LGALS9/CD45, and PTPRC/MRC1. Additionally, macrophages could influence Tregs via HLA-class II and CD4 interactions. CONCLUSION: An elevated presence of Tregs in HCC samples correlated with negative patient outcomes. Elucidating the interplay between Tregs and other immune cells in HCC could provide insights into the modulatory role of Tregs within HCC tissues.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , T-Lymphocytes, Regulatory , Humans , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/immunology , Liver Neoplasms/pathology , T-Lymphocytes, Regulatory/immunology , Prognosis , Forkhead Transcription Factors/metabolism , Male , Female
3.
World J Surg Oncol ; 22(1): 93, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38605359

ABSTRACT

OBJECTIVE: The clinical efficacy and safety of sorafenib in patients with advanced liver cancer (ALC) were evaluated based on transarterial chemoembolization (TACE). METHODS: 92 patients with ALC admitted to our hospital from May 2020 to August 2022 were randomly rolled into a control (Ctrl) group and an observation (Obs) group, with 46 patients in each. Patients in the Ctrl group received TACE treatment, while those in the Obs group received sorafenib molecular targeted therapy (SMTT) on the basis of the treatment strategy in the Ctrl group (400 mg/dose, twice daily, followed by a 4-week follow-up observation). Clinical efficacy, disease control rate (DCR), survival time (ST), immune indicators (CD3+, CD4+, CD4+/CD8+), and adverse reactions (ARs) (including mild fatigue, liver pain, hand-foot syndrome (HFS), diarrhea, and fever) were compared for patients in different groups after different treatments. RESULTS: the DCR in the Obs group (90%) was greatly higher to that in the Ctrl group (78%), showing an obvious difference (P < 0.05). The median ST in the Obs group was obviously longer and the median disease progression time (DPT) was shorter, exhibiting great differences with those in the Ctrl group (P < 0.05). Moreover, no great difference was observed in laboratory indicators between patients in various groups (P > 0.05). After treatment, the Obs group exhibited better levels in all indicators. Furthermore, the incidence of ARs in the Obs group was lower and exhibited a sharp difference with that in the Ctrl group (P < 0.05). CONCLUSION: SMTT had demonstrated good efficacy in patients with ALC, improving the DCR, enhancing the immune response of the body, and reducing the incidence of ARs, thereby promoting the disease outcome. Therefore, it was a treatment method worthy of promotion and application.


Subject(s)
Antineoplastic Agents , Carcinoma, Hepatocellular , Chemoembolization, Therapeutic , Liver Neoplasms , Humans , Sorafenib/therapeutic use , Carcinoma, Hepatocellular/drug therapy , Antineoplastic Agents/adverse effects , Chemoembolization, Therapeutic/methods , Niacinamide/adverse effects , Phenylurea Compounds/adverse effects , Treatment Outcome , Combined Modality Therapy
4.
Sensors (Basel) ; 24(8)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38676170

ABSTRACT

The Permanent Magnet Synchronous Motor (PMSM) is the power source maintaining the stable and efficient operation of various pieces of equipment; hence, its reliability is crucial to the safety of public equipment. Convolutional Neural Network (CNN) models face challenges in extracting features from PMSM current data. A new Discrete Wavelet Transform Convolutional Neural Networks (DW-CNN) feature with fusion weight updating Long Short-Term Memory (LSTM) anomaly detection is proposed in this paper. This approach combines Discrete Wavelet Transform (DWT) with high and low-frequency separation processing and LSTM. The anomaly detection method adopts DWT and CNN by separating high and low-frequency processing. Moreover, this method combines the hybrid attention mechanism to extract the multi-current signal features and detects anomalies based on weight updating the LSTM network. Experiments on the motor bearing real fault dataset and the PMSM stator fault dataset prove the method's strong capability in fusing current features and detecting anomalies.

5.
J Am Chem Soc ; 145(3): 1847-1854, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36635072

ABSTRACT

To solve the serious environmental problem and huge resource waste of plastic pollution, we report a tandem catalytic conversion of low-density polyethylene (LDPE) into naphtha, the key feedstock for renewable plastic production. Using ß zeolite and silicalite-1-encapsulated Pt nanoparticles (Pt@S-1), a naphtha yield of 89.5% is obtained with 96.8% selectivity of C5-C9 hydrocarbons at 250 °C. The acid sites crack long-chain LDPE into olefin intermediates, which diffuse within the channels of Pt@S-1 to encounter Pt nanoparticles. The hydrogenation over confined metal matches cracking steps by selectively shipping the olefins with right size, and the rapid diffusion boosts the formation of narrow-distributed alkanes. A conceptual upgrading indicates it is suitable for closing the plastic loop, with a significant energy saving of 15% and 30% reduced greenhouse gas emissions.

6.
Environ Res ; 218: 115023, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36502896

ABSTRACT

The effects of fine particulate matter (PM) on de novo hypertensive disorders of pregnancy (HDP) were inconsistent during the first and second trimesters. This study aimed to assess the trimester-specific effects of PM2.5 and PM1 prior to diagnosis of de novo HDP. The exposure of fine PM was predicted by satellite remote sensing data according to maternal residential addresses. De novo HDP was defined as gestational hypertension and preeclampsia during the current pregnancy. A logistic regression model was performed to assess the association of PM2.5 and PM1 with HDP during the first and early second trimesters (0-13 weeks and 14-20 weeks). The generalized estimating equation model was conducted to assess the effect of PM2.5 and PM1 on blood pressure. The present study included 22,821 pregnant women (mean age, 29.1 years) from 2013 to 2017. PM2.5 and PM1 were significantly associated with an increased risk of de novo HDP during the first trimester (OR = 1.070, 95% CI: 1.013-1.130; OR = 1.264, 95% CI: 1.058-1.511 for per 10 µg/m3) and early second trimester (OR = 1.045, 95% CI: 1.003-1.088; OR = 1.170, 95% CI: 1.002-1.366 for per 10 µg/m3). Significant trends of increased de novo HDP risk was also observed with the increment of PM (all P for trend <0.05). The stratified analyses demonstrated that the associations between exposure to fine PM and the risk of HDP were more pronounced among the pregnant women with maternal age above 35 and low maternal education level (all OR >1.047). Each 10 µg/m3 increase of PM1 and PM2.5 before diagnosis of de novo HDP elevated 0.204 (95% CI: 0.098-0.310) and 0.058 (95%CI: 0.033-0.083) mmHg of systolic blood pressure. Exposure to PM2.5 and PM1 during the first and early second trimester were positively associated with the risk of de novo HDP. The fine PM before diagnosis of de novo HDP elevated the systolic blood pressure.


Subject(s)
Air Pollutants , Air Pollution , Hypertension, Pregnancy-Induced , Pre-Eclampsia , Female , Humans , Pregnancy , Adult , Particulate Matter/toxicity , Particulate Matter/analysis , Hypertension, Pregnancy-Induced/chemically induced , Air Pollutants/toxicity , Air Pollutants/analysis , Blood Pressure , Pre-Eclampsia/chemically induced , Pre-Eclampsia/epidemiology , Maternal Exposure , Air Pollution/adverse effects , Air Pollution/analysis , China , Environmental Exposure/analysis
7.
Oral Dis ; 29(8): 3372-3380, 2023 Nov.
Article in English | MEDLINE | ID: mdl-36151914

ABSTRACT

OBJECTIVES: Innate lymphoid cells (ILCs) are vital innate immune cells cooperating with T cells. While their phenotypes and functions in oral mucosa kept unclear yet. In the present study, the relative proportions and distribution of different ILC subsets in oral mucosa of oral lichen planus (OLP), oral lichenoid lesions (OLL), and controls were compared. SUBJECTS AND METHODS: Oral mucosal samples were collected from control (n = 29), OLP (n = 20), and OLL (n = 22) donors. ILCs subsets were characterized in single-cell suspensions by flow cytometry. Immunohistochemistry was performed to locate the CD127+ cells in situ. RESULTS: ILCs were present in healthy and increased infiltration in OLP/OLL (p = 0.0092, p = 0.0216). Infiltration of ILC1 increased in OLP/OLL mucosa (p = 0.0225, p = 0.0399), as did the infiltration of ILC3 increase in OLL mucosa (p = 0.0128). The ILC2/ILCs ratio was significantly reduced in OLP and OLL (p = 0.0124, p = 0.0346). CD127+ cells were mainly located closely at the basement membrane. CONCLUSIONS: The results of increased ILC1, decreased ILC2, and increased ILC3 suggested that changes of ILC distributions in oral mucosa may be relevant to persistent inflammation in local tissues, by promoting immune factors and weakening repair capacity.


Subject(s)
Lichen Planus, Oral , Lichenoid Eruptions , Mouth Neoplasms , Humans , Lichen Planus, Oral/pathology , Mouth Neoplasms/pathology , Immunity, Innate , Lymphocytes/pathology
8.
World J Surg Oncol ; 21(1): 124, 2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37024870

ABSTRACT

BACKGROUND: Tissue-resident CD8+T cells (CD103+CD8+T cells) are the essential effector cell population of anti-tumor immune response in tissue regional immunity. And we have reported that IL-33 can promote the proliferation and effector function of tissue-resident CD103+CD8+T cells. As of now, the immunolocalization and the prognostic values of tissue-resident CD8+T cells in human hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC) still remain to be illustrated. METHODS: In our present study, we used the tissue microarrays of HCC and ICC, the multicolor immunohistochemistry (mIHC), and imaging analysis to characterize the tissue-resident CD8+T cells in HCC and ICC tissues. The prognostic values and clinical associations were also analyzed. We also studied the biological functions and the cell-cell communication between tumor-infiltrating CD103+CD8+T cells and other cell types in HCC and ICC based on the published single-cell RNA sequencing (scRNA-seq) data. RESULTS: Our work unveiled the expressions of CD8 and CD103 and immunolocalization of tissue-resident CD8+T cells in human HCC and ICC. Elevated CD8+T cells indicated a better overall survival (OS) rate, implying that tumor-infiltrating CD8+T cells in HCC and ICC could serve as an independent prognostic factor. Moreover, the number of CD103+CD8+T cells was increased in HCC and ICC tissues compared with adjacent normal tissues. HCC patients defined as CD8highCD103high had a better OS, and the CD8lowCD103low group tended to have a poorer prognosis in ICC. Evaluation of the CD103+CD8+T-cell ratio in CD8+T cells could also be a prognostic predictor for HCC and ICC patients. A higher ratio of CD103+CD8+T cells over total CD8+T cells in HCC tissues was negatively and significantly associated with the advanced pathological stage. The percentage of higher numbers of CD103+CD8+T cells in ICC tissues was negatively and significantly associated with the advanced pathological stage. In contrast, the higher ratio of CD103+CD8+T cells over total CD8+T cells in ICC tissues was negatively and significantly associated with the advanced pathological stage. In addition, single-cell transcriptomics revealed that CD103+CD8+T cells were enriched in genes associated with T-cell activation, proliferation, cytokine function, and T-cell exhaustion. CONCLUSION: The CD103+ tumor-specific T cells signified an important prognostic marker with improved OS, and the evaluation of the tissue-resident CD103+CD8+T cells might be helpful in assessing the on-treatment response of liver cancer.


Subject(s)
Bile Duct Neoplasms , Carcinoma, Hepatocellular , Cholangiocarcinoma , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/pathology , Prognosis , Liver Neoplasms/pathology , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/pathology , Cholangiocarcinoma/pathology , Bile Duct Neoplasms/pathology , Bile Ducts, Intrahepatic/pathology , Lymphocytes, Tumor-Infiltrating
9.
Zhongguo Zhong Yao Za Zhi ; 48(8): 2222-2232, 2023 Apr.
Article in Zh | MEDLINE | ID: mdl-37282910

ABSTRACT

The present study aimed to explore the main active components and underlying mechanisms of Marsdenia tenacissima in the treatment of ovarian cancer(OC) through network pharmacology, molecular docking, and in vitro cell experiments. The active components of M. tenacissima were obtained from the literature search, and their potential targets were obtained from SwissTargetPrediction. The OC-related targets were retrieved from Therapeutic Target Database(TTD), Online Mendelian Inheritance in Man(OMIM), GeneCards, and PharmGKB. The common targets of the drug and the disease were screened out by Venn diagram. Cytoscape was used to construct an "active component-target-disease" network, and the core components were screened out according to the node degree. The protein-protein interaction(PPI) network of the common targets was constructed by STRING and Cytoscape, and the core targets were screened out according to the node degree. GO and KEGG enrichment analyses of potential therapeutic targets were carried out with DAVID database. Molecular docking was used to determine the binding activity of some active components to key targets by AutoDock. Finally, the anti-OC activity of M. tenacissima extract was verified based on SKOV3 cells in vitro. The PI3K/AKT signaling pathway was selected for in vitro experimental verification according to the results of GO function and KEGG pathway analyses. Network pharmacology results showed that 39 active components, such as kaempferol, 11α-O-benzoyl-12ß-O-acetyltenacigenin B, and drevogenin Q, were screened out, involving 25 core targets such as AKT1, VEGFA, and EGFR, and the PI3K-AKT signaling pathway was the main pathway of target protein enrichment. The results of molecular docking also showed that the top ten core components showed good binding affinity to the top ten core targets. The results of in vitro experiments showed that M. tenacissima extract could significantly inhibit the proliferation of OC cells, induce apoptosis of OC cells through the mitochondrial pathway, and down-regulate the expression of proteins related to the PI3K/AKT signaling pathway. This study shows that M. tenacissima has the characteristics of multi-component, multi-target, and multi-pathway synergistic effect in the treatment of OC, which provides a theoretical basis for in-depth research on the material basis, mechanism, and clinical application.


Subject(s)
Drugs, Chinese Herbal , Marsdenia , Ovarian Neoplasms , Humans , Female , Molecular Docking Simulation , Network Pharmacology , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Databases, Genetic , Plant Extracts , Drugs, Chinese Herbal/pharmacology
10.
J Transl Med ; 20(1): 298, 2022 07 06.
Article in English | MEDLINE | ID: mdl-35794583

ABSTRACT

BACKGROUND: As an important N6-methyladenosine (m6A) regulator, abnormal expression of methyltransferase-like protein 3 (METTL3) has been reported in certain human cancers. Although some data have shown that METTL3 plays an essential role in the progression of clear-cell renal cell carcinoma RCC (ccRCC), the detailed mechanism still remains largely undetermined. METHODS: Immunohistochemistry (IHC) assay was used to examine the expression of METTL3 and its clinical implications in human ccRCC by using tissue-microarray (TMA). The cellular models based on ccRCC cell lines such as 786-O and ACHN, were established by operating METTL3 and HHLA2 via knockdown or overexpression, followed by in vitro cellular function studies and in vivo subcutaneous transplantation tumor model. RESULTS: We found that METTL3 expression in ccRCC tissues was significantly higher compared with adjacent normal tissues. We also found the overall survival (OS) of the patients with low METTL3 expression was significantly better compared with the patients with high METTL3 expression. Furthermore, HHLA2highMETTL3high could serve as a better prognostic predictor for ccRCC patients. Depletion of METTL3 could significantly inhibit the cell viability, migration, and invasion abilities in ccRCC cell lines. Cellular studies further revealed that METTL3 could regulate HHLA2 expression via m6A modification of HHLA2 mRNA. In vitro studies revealed that HHLA2 overexpression could reverse the inhibition of cellular functions mediated by METTL3 depletion. The subcutaneous transplantation tumor model confirmed that HHLA2 overexpression could reverse the inhibition of tumor growth mediated by METTL3 depletion. CONCLUSION: Our study indicated that METTL3 served as an important prognostic predictor for ccRCC patients, and we demonstrated a novel regulatory mechanism of HHLA2 by mRNA epigenetic modification via METTL3. Moreover, we found that the METTL3/HHLA2 axis could promote tumorigenesis of ccRCC. Collectively, our current findings provided new insights into the therapeutic strategy against this malignancy targeting METTL3.


Subject(s)
Carcinoma, Renal Cell , Immunoglobulins , Kidney Neoplasms , Methyltransferases , RNA, Messenger , Adenosine/analogs & derivatives , Adenosine/genetics , Adenosine/metabolism , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/pathology , Cell Transformation, Neoplastic , Humans , Immunoglobulins/genetics , Immunoglobulins/metabolism , Kidney Neoplasms/genetics , Kidney Neoplasms/metabolism , Kidney Neoplasms/pathology , Methyltransferases/genetics , Methyltransferases/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
11.
J Transl Med ; 20(1): 433, 2022 09 30.
Article in English | MEDLINE | ID: mdl-36180876

ABSTRACT

BACKGROUND: The immune checkpoint inhibitors (ICIs) combined with other therapeutic strategies have shown exciting results in various malignancies, and ICIs have now become the gold standard for current cancer treatment. In several preclinical and clinical investigations, ablation coupled with immunotherapy has proved to be quite effective. Our previous studies have shown that ablation coupled with ICI is a potential anti-cancer regimen for colorectal cancer liver metastases (CRLM). Furthermore, we have reported that following microwave ablation (MWA), the expression of LAG3 is up-regulated in tumor microenvironment (TME), indicating that LAG3 is implicated in the regulation of immunosuppressive immune response, and combination therapy of MWA and LAG3 blockade can serve as a promising therapeutic strategy against cancer. METHODS: The expression of LAG3 was investigated in this study utilizing a preclinical mouse model treated with MWA. Moreover, we monitored the tumor development and survival in mice to assess the anti-cancer effects of MWA alone or in combination with LAG3 blockade. Flow cytometry was also used to phenotype the tumor-infiltrating lymphocytes (TILs) and CD8+ T cell effector molecules. We finally analyzed the single-cell RNA sequencing (scRNA-seq) data of infiltrating CD45+ immune cells in the tumors from the MWA alone and MWA combined with LAG3 blockade groups. RESULTS: After MWA, the expression of LAG3 was up-regulated on sub-populations of TILs, and introducing LAG3 blockade to MWA postponed tumor development and extended survival in the MC38 tumor model. Flow cytometry and scRNA-seq revealed that LAG3 blockade in combination with MWA markedly boosted the proliferation and the function of CD8+ TILs, leading to altered myeloid cells in the TME. CONCLUSION: Combination therapy of LAG3 blockade and MWA was a unique therapeutic regimen for some solid tumors, and such combination therapy might reprogram the TME to an anti-tumor manner.


Subject(s)
Liver Neoplasms , Microwaves , Animals , CD8-Positive T-Lymphocytes , Immune Checkpoint Inhibitors , Lymphocytes, Tumor-Infiltrating , Mice , Microwaves/therapeutic use , Tumor Microenvironment
12.
Bioorg Med Chem Lett ; 58: 128518, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34979256

ABSTRACT

Hepatitis B virus (HBV) core protein, the building block of the HBV capsid, plays multiple roles in viral replication, and is an attractive target for development of antiviral agents with a new mechanism of action. In addition to the heteroaryldihydropyrimidines (HAPs), sulfamoylbenzamides (SBAs), dibenzothiazepine derivatives (DBTs), and sulfamoylpyrrolamides (SPAs) that inhibit HBV replication by modulation of viral capsid assembly and are currently under clinical trials for the treatment of chronic hepatitis B (CHB), other chemical structures with activity to modulate HBV capsid assembly have also been explored. Here we describe our continued optimization of a benzamide originating from our high throughput screening. A new bicyclic carboxamide lead featuring an electron deficient non-planar core structure was discovered. Evaluations of its ADMET (absorption, distribution, metabolism, excretion and toxicity) and pharmacokinetic (PK) profiles demonstrate improved metabolic stability and good bioavailability.


Subject(s)
Antiviral Agents/pharmacology , Hepatitis B virus/drug effects , Quinolines/pharmacology , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Dose-Response Relationship, Drug , Humans , Mice , Microbial Sensitivity Tests , Microsomes, Liver/chemistry , Microsomes, Liver/metabolism , Molecular Structure , Quinolines/chemical synthesis , Quinolines/chemistry , Structure-Activity Relationship , Viral Core Proteins , Virus Replication/drug effects
13.
Int J Clin Pract ; 2022: 6926510, 2022.
Article in English | MEDLINE | ID: mdl-36683600

ABSTRACT

Background: Soluble suppression of tumorigenicity 2 protein (sST2) and tissue inhibitor of matrix metalloproteinase (TIMP)-1 are involved in multiple pathogenic pathways, including cardiac remodeling, which is the main pathology of atrial fibrillation (AF). This study aims to investigate the previously unexplored relationship between the serum levels of sST2, TIMP-1, and AF. Methods: This was a prospective cross-sectional study conducted at the Capital Medical University Affiliated Beijing Anzhen Hospital between June 2019 and July 2020, with a total of 359 participants. The clinical characteristics and laboratory results of the patients were compared, and multivariable ordinal logistic regression was used to evaluate the relationship between serum sST2, TIMP-1, and AF. Results: The participants included 110 patients with sinus rhythm (SR), 113 with paroxysmal AF (the paroxysmal AF group), and 136 with persistent AF (the persistent AF group). It was found that the sST2 levels gradually increased in these three groups, from 9.1 (6.7-12.4 pg/ml) in the SR group to 14.0 (10.4-20.8 pg/ml) in the paroxysmal AF group and to 19.0 (13.1-27.8) pg/ml) in the persistent AF group (p < 0.001). The multivariable ordinal logistic regression model for sST2 and TIMP-1 demonstrated that sST2 had an area under the receiver operating characteristic (ROC) curve (AUC) of 0.797 (95% confidence interval (CI) 0.749-0.846, p < 0.001) and TIMP-1 had an AUC of 0.795 (95% CI 0.750-0.841, p=0.000). The multivariable ordinal logistic regression model for sST2 and TIMP-1 showed good discrimination between SR and AF, with an AUC of 0.846, and the addition of clinical factors, such as brain natriuretic peptide (BNP), left atrial diameter, age, and gender, to the biomarker model improved the detection of SR and AF (AUC 0.901). Conclusions: In this cohort study, sST2 and TIMP-1 were associated with AF progression, independent of clinical characteristics and biomarkers. Soluble ST2 and TIMP-1 combined with age, elevated N-terminal-pro hormone BNP(NT-BNP), and an enlarged left atrium were able to demonstrate the progression of AF reliably.


Subject(s)
Atrial Fibrillation , Interleukin-1 Receptor-Like 1 Protein , Tissue Inhibitor of Metalloproteinase-1 , Humans , Atrial Fibrillation/blood , Atrial Fibrillation/diagnosis , Biomarkers/blood , Cohort Studies , Cross-Sectional Studies , Natriuretic Peptide, Brain/blood , Prospective Studies , Tissue Inhibitor of Metalloproteinase-1/blood , Interleukin-1 Receptor-Like 1 Protein/blood
14.
BMC Anesthesiol ; 22(1): 137, 2022 05 04.
Article in English | MEDLINE | ID: mdl-35508962

ABSTRACT

BACKGROUND: The prediction accuracy of pulse pressure variation (PPV) for fluid responsiveness was proposed to be unreliable in low tidal volume (Vt) ventilation. It was suggested that changes in PPV obtained by transiently increasing Vt to 8 ml/kg accurately predicted fluid responsiveness even in subjects receiving low Vt. We assessed whether the changes in PPV induced by a Vt challenge predicted fluid responsiveness in our critically ill subjects ventilated with low Vt 6 ml/kg. METHODS: This study is a prospective single-center study. PPV and other parameters were measured at a Vt of 6 mL/kg, 8 mL/kg, and after volume expansion. The prediction accuracy of PPV and other parameters for fluid responsiveness before and after tidal volume challenge was also analyzed using receiver operating characteristic (ROC) curves. RESULTS: Thirty-one of the 76 subjects enrolled in the study were responders (41%). Respiratory system compliance of all subjects decreased significantly (26 ± 4.3). The PPV values were significantly higher in the responder group than the non-responder group before (8.8 ± 2.7 vs 6.8 ± 3.1) or after (13.0 ± 1.7 vs 8.5 ± 3.0) Vt challenge. In the receiver operating characteristic curve (ROC) analysis, PPV6 showed unsatisfactory predictive capability with an area under the curve (AUC) of 0.69 (95%CI, 0.57-0.79, p = 0.002) at a Vt of 6 mL/kg. PPV8 andΔPPV6-8 showed good predictive capability with an AUC of 0.90 (95% CI, 0.81-0.96, p < 0.001) and 0.90 (95% CI, 0.80-0.95, P < 0.001) respectively. The corresponding cutoff values were 11% for PPV8 and 2% for ΔPPV6-8. CONCLUSIONS: PPV shows a poor operative performance as a predictor of fluid responsiveness in critically ill subjects ventilated with a tidal volume of 6 mL/ kg. Vt challenge could improve the predictive accuracy of PPV to a good but not excellent extent when respiratory system compliance decreased significantly.


Subject(s)
Critical Illness , Respiration, Artificial , Blood Pressure , Critical Illness/therapy , Fluid Therapy , Hemodynamics , Humans , Lung , Prospective Studies , ROC Curve , Reproducibility of Results , Stroke Volume , Tidal Volume
15.
World J Surg Oncol ; 20(1): 283, 2022 Sep 05.
Article in English | MEDLINE | ID: mdl-36058919

ABSTRACT

BACKGROUND: Methyltransferase-like 3 (METTL3) expression could be found in various normal and cancerous tissues. As of now, the clinical significance of METTL3 expression in human pancreatic cancer (PC) tissues still remains to be understood. Our present study aims to investigate the prognostic value and clinical implications of METTL3 expression in PC tissues. METHODS: The TCGA, GTEx, and GEO public databases were used to study the mRNA expression level of the m6A family members and its relationship among PC tissues and normal pancreatic tissue. The immunohistochemistry was used to analyze the difference of METTL3 expression between cancer tissues and adjacent normal tissues. The prognostic value was evaluated by using the Log-rank survival analysis and Cox model analysis. PAAD samples from TCGA and GEO databases were used to perform the immune infiltration analysis and gene set enrichment analysis based on the genes that were highly correlated with METTL3. RESULTS: Based on the analysis of TCGA, GTEx, and GEO public database, we found that the m6A family members showed a higher correlation in PC tissues compared to normal pancreatic tissues, and the mRNA expression level of the m6A family members showed a significant difference between PC tissues and adjacent normal tissues. Moreover, scRNA-seq data indicated that METTL3 showed a higher expression level in malignant epithelial cells. Our immunohistochemistry results also confirmed that the intensity of METTL3 immunostaining in PC tissues was significantly higher than that in adjacent normal tissues (P = 0.015). The overall survival (OS) of PC patients with high expression of METTL3 protein were significantly poorer than those with low expression of METTL3 protein (HR = 1.788, 95% CI 1.071-2.984, P = 0.026). Further analysis of PC data from the database showed that METTL3 expression was associated with a variety of tumor-infiltrating immune cells and was involved in m6A modification and metabolism in PC tissues. CONCLUSION: Increased METTL3 expression at the protein level could be found in PC tissues, suggesting that the METTL3 expression was involved in the progression of PC and could serve as an important marker for prognostic prediction of this malignancy.


Subject(s)
Gene Expression Regulation, Neoplastic , Pancreatic Neoplasms , Humans , Methyltransferases/genetics , Methyltransferases/metabolism , Pancreatic Neoplasms/genetics , RNA, Messenger/genetics , Pancreatic Neoplasms
16.
Int J Mol Sci ; 23(11)2022 May 24.
Article in English | MEDLINE | ID: mdl-35682565

ABSTRACT

Sallow and/or dull skin appearance is greatly attributable to the yellow components of skin tone. Bilirubin is a yellow chromophore known to be made in the liver and/or spleen and is transported throughout the body via the blood stream. Recent publications suggest bilirubin may be synthesized in other cells/organs, including the skin. We found human keratinocytes express the transcripts involved in bilirubin biosynthesis. In parallel, we also found human keratinocytes could indeed synthesize bilirubin in monolayer keratinocytes and in a 3D human skin-equivalent model. The synthesized amount was substantial enough to contribute to skin yellowness. In addition, oxidative stress enhanced bilirubin production. Using UnaG, a protein that forms a fluorescent species upon binding to bilirubin, we also visualized the intracellular expression of bilirubin in keratinocytes. Finally, we screened a compound library and discovered that the sucrose laurate/dilaurate (SDL) combination significantly reduced bilirubin levels, as well as bilirubin-mediated yellowness. In conclusion, bilirubin is indeed synthesized in epidermal keratinocytes and can be upregulated by oxidative stress, which could contribute to chronic or transient yellow skin tone appearance. Application of SDL diminishes bilirubin generation and may be a potential solution to mitigate yellowish and/or dull skin appearance.


Subject(s)
Bilirubin , Keratinocytes , Bilirubin/metabolism , Bilirubin/pharmacology , Epidermis/metabolism , Humans , Keratinocytes/metabolism , Skin/metabolism , Sucrose/analogs & derivatives
17.
Biochem Biophys Res Commun ; 537: 109-117, 2021 01 22.
Article in English | MEDLINE | ID: mdl-33388413

ABSTRACT

Dissipating energy by activating thermogenic adipose to combating obesity attracts many interests. Ski-interacting protein (Skip) has been known to play an important role in cell proliferation and differentiation, but whether it participates in energy metabolism is not known. Our previous study revealed that BTM-0512 could induce beige adipose formation, accompanying with up-regulation of Skip, but the role of Skip in metabolism was unknown. In this study, we mainly investigated whether Skip was involved in beige remodeling of subcutaneous white preadipocytes as well as in lipid metabolism of differentiated beige adipocytes. The results showed that in high fat diet-induced obesity mice, the protein levels of Skip in subcutaneous and visceral white adipose as well as in brown adipose were all down-regulated, especially in subcutaneous white adipose. Then we cultured subcutaneous adipose derived-stem cells (ADSCs) and found knock-down of Skip (siSkip) inhibited the expressions of thermogenic adipose specific genes including PRDM16 and UCP1 in both undifferentiated ADSCs and differentiated beige adipocytes, which could abolish the effects of BTM-0512 on beige remodeling. We further observed that siSkip affected multiple rate-limiting enzymes in lipid metabolism. The expressions of ACC, GPAT-1, HSL and ATGL were down-regulated, while CPT1α expression was up-regulated by siSkip. The expression of AMPK was also decreased by siSkip. In conclusion, our study demonstrated that Skip might play an important role in the beige remodeling of white adipocytes as well as lipid metabolism of beige adipose.


Subject(s)
Adipose Tissue, Beige/metabolism , Lipid Metabolism , Phosphoric Monoester Hydrolases/metabolism , Sirtuin 1/metabolism , Stilbenes/pharmacology , Adipose Tissue, Beige/drug effects , Animals , Cell Differentiation/drug effects , Cell Differentiation/genetics , Diet , Down-Regulation/drug effects , Down-Regulation/genetics , Lipid Metabolism/drug effects , Lipid Metabolism/genetics , Male , Mice, Inbred C57BL , Obesity/genetics , Phosphoric Monoester Hydrolases/genetics , Stem Cells/cytology , Stem Cells/drug effects , Stem Cells/metabolism , Thermogenesis/drug effects , Thermogenesis/genetics , Uncoupling Protein 1/metabolism
18.
Cancer Cell Int ; 21(1): 102, 2021 Feb 12.
Article in English | MEDLINE | ID: mdl-33579282

ABSTRACT

BACKGROUND: Glioblastoma is the most common primary malignant brain tumor. Because of the limited understanding of its pathogenesis, the prognosis of glioblastoma remains poor. This study was conducted to explore potential competing endogenous RNA (ceRNA) network chains and biomarkers in glioblastoma by performing integrated bioinformatics analysis. METHODS: Transcriptome expression data from The Cancer Genome Atlas database and Gene Expression Omnibus were analyzed to identify differentially expressed genes between glioblastoma and normal tissues. Biological pathways potentially associated with the differentially expressed genes were explored by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis, and a protein-protein interaction network was established using the STRING database and Cytoscape. Survival analysis using Gene Expression Profiling Interactive Analysis was based on the Kaplan-Meier curve method. A ceRNA network chain was established using the intersection method to align data from four databases (miRTarBase, miRcode, TargetScan, and lncBace2.0), and expression differences and correlations were verified by quantitative reverse-transcription polymerase chain reaction analysis and by determining the Pearson correlation coefficient. Additionally, an MTS assay and the wound-healing and transwell assays were performed to evaluate the effects of complement C1s (C1S) on the viability and migration and invasion abilities of glioblastoma cells, respectively. RESULTS: We detected 2842 differentially expressed (DE) mRNAs, 2577 DE long non-coding RNAs (lncRNAs), and 309 DE microRNAs (miRNAs) that were dysregulated in glioblastoma. The final ceRNA network consisted of six specific lncRNAs, four miRNAs, and four mRNAs. Among them, four DE mRNAs and one DE lncRNA were correlated with overall survival (p < 0.05). C1S was significantly correlated with overall survival (p= 0.015). In functional assays, knockdown of C1S inhibited the proliferation and invasion of glioblastoma cell lines. CONCLUSIONS: We established four ceRNA networks that may influence the occurrence and development of glioblastoma. Among them, the MIR155HG/has-miR-129-5p/C1S axis is a potential marker and therapeutic target for glioblastoma. Knockdown of C1S inhibited the proliferation, migration, and invasion of glioblastoma cells. These findings clarify the role of the ceRNA regulatory network in glioblastoma and provide a foundation for further research.

19.
Chemistry ; 27(38): 9919-9924, 2021 Jul 07.
Article in English | MEDLINE | ID: mdl-33904616

ABSTRACT

Performing carbonylation without the use of carbon monoxide for high-value-added products is an attractive yet challenging topic in sustainable chemistry. Herein, effective methods for producing linear aldehydes or alcohols selectively with formic acid as both carbon monoxide and hydrogen source have been described. Linear-selective hydroformylation of alkenes proceeds smoothly with up to 88 % yield and >30 regioselectivity in the presence of single Rh catalyst. Strikingly, introducing Ru into the system, the dual Rh/Ru catalysts accomplish efficient and regioselective hydroxymethylation in one pot. The present processes utilizing formic acid as syngas surrogate operate simply under mild condition, which opens a sustainable way for production of linear aldehydes and alcohols without the need for gas cylinders and autoclaves. As formic acid can be readily produced via CO2 hydrogenation, the protocols represent indirect approaches for chemical valorization of CO2 .

20.
Nat Chem Biol ; 15(3): 241-249, 2019 03.
Article in English | MEDLINE | ID: mdl-30692683

ABSTRACT

There is a challenge for metalloenzymes to acquire their correct metals because some inorganic elements form more stable complexes with proteins than do others. These preferences can be overcome provided some metals are more available than others. However, while the total amount of cellular metal can be readily measured, the available levels of each metal have been more difficult to define. Metal-sensing transcriptional regulators are tuned to the intracellular availabilities of their cognate ions. Here we have determined the standard free energy for metal complex formation to which each sensor, in a set of bacterial metal sensors, is attuned: the less competitive the metal, the less favorable the free energy and hence the greater availability to which the cognate allosteric mechanism is tuned. Comparing these free energies with values derived from the metal affinities of a metalloprotein reveals the mechanism of correct metalation exemplified here by a cobalt chelatase for vitamin B12.


Subject(s)
Energy Transfer/physiology , Metalloproteins/metabolism , Metals/metabolism , Affinity Labels/metabolism , Bacteria/enzymology , Bacteria/metabolism , Bacterial Physiological Phenomena , Bacterial Proteins/metabolism , Bacterial Proteins/physiology , Metalloproteins/physiology , Salmonella/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL