Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Proc Natl Acad Sci U S A ; 119(29): e2113180119, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35858356

ABSTRACT

The mutant form of the guanosine triphosphatase (GTPase) KRAS is a key driver in human tumors but remains a challenging therapeutic target, making KRASMUT cancers a highly unmet clinical need. Here, we report a class of bottlebrush polyethylene glycol (PEG)-conjugated antisense oligonucleotides (ASOs) for potent in vivo KRAS depletion. Owing to their highly branched architecture, these molecular nanoconstructs suppress nearly all side effects associated with DNA-protein interactions and substantially enhance the pharmacological properties of the ASO, such as plasma pharmacokinetics and tumor uptake. Systemic delivery to mice bearing human non-small-cell lung carcinoma xenografts results in a significant reduction in both KRAS levels and tumor growth, and the antitumor performance well exceeds that of current popular ASO paradigms, such as chemically modified oligonucleotides and PEGylation using linear or slightly branched PEG. Importantly, these conjugates relax the requirement on the ASO chemistry, allowing unmodified, natural phosphodiester ASOs to achieve efficacy comparable to that of chemically modified ones. Both the bottlebrush polymer and its ASO conjugates appear to be safe and well tolerated in mice. Together, these data indicate that the molecular brush-ASO conjugate is a promising therapeutic platform for the treatment of KRAS-driven human cancers and warrant further preclinical and clinical development.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Molecular Targeted Therapy , Oligonucleotides, Antisense , Proto-Oncogene Proteins p21(ras) , Animals , Carcinoma, Non-Small-Cell Lung/therapy , Humans , Lung Neoplasms/therapy , Mice , Oligonucleotides, Antisense/chemistry , Oligonucleotides, Antisense/therapeutic use , Polyethylene Glycols , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Xenograft Model Antitumor Assays
2.
Vet Res ; 54(1): 76, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37705063

ABSTRACT

Due to the increase in bacterial resistance, improving the anti-infectious immunity of the host is rapidly becoming a new strategy for the prevention and treatment of bacterial pneumonia. However, the specific lung immune responses and key immune cell subsets involved in bacterial infection are obscure. Actinobacillus pleuropneumoniae (APP) can cause porcine pleuropneumonia, a highly contagious respiratory disease that has caused severe economic losses in the swine industry. Here, using high-dimensional mass cytometry, the major immune cell repertoire in the lungs of mice with APP infection was profiled. Various phenotypically distinct neutrophil subsets and Ly-6C+ inflammatory monocytes/macrophages accumulated post-infection. Moreover, a linear differentiation trajectory from inactivated to activated to apoptotic neutrophils corresponded with the stages of uninfected, onset, and recovery of APP infection. CD14+ neutrophils, which mainly increased in number during the recovery stage of infection, were revealed to have a stronger ability to produce cytokines, especially IL-10 and IL-21, than their CD14- counterparts. Importantly, MHC-II+ neutrophils with antigen-presenting cell features were identified, and their numbers increased in the lung after APP infection. Similar results were further confirmed in the lungs of piglets infected with APP and Klebsiella pneumoniae infection by using a single-cell RNA-seq technique. Additionally, a correlation analysis between cluster composition and the infection process yielded a dynamic and temporally associated immune landscape where key immune clusters, including previously unrecognized ones, marked various stages of infection. Thus, these results reveal the characteristics of key neutrophil clusters and provide a detailed understanding of the immune response to bacterial pneumonia.


Subject(s)
Actinobacillus Infections , Actinobacillus pleuropneumoniae , Ascomycota , Mycoplasma Infections , Pleuropneumonia , Pneumonia , Swine Diseases , Animals , Mice , Swine , Neutrophils , Pneumonia/veterinary , Pleuropneumonia/veterinary , Mycoplasma Infections/veterinary , Actinobacillus Infections/veterinary , Lung
3.
Nano Lett ; 22(10): 4058-4066, 2022 05 25.
Article in English | MEDLINE | ID: mdl-35522597

ABSTRACT

Nucleic-acid-based immune adjuvants have been extensively investigated for the design of cancer vaccines. However, nucleic acids often require the assistance of a carrier system to improve cellular uptake. Yet, such systems are prone to carrier-associated adaptive immunity, leading to difficulties in a multidose treatment regimen. Here, we demonstrate that a spherical nucleic acid (SNA)-based self-adjuvanting system consisting of phosphodiester oligonucleotides and vitamin E can function as a potent anticancer vaccine without a carrier. The two functional modules work synergistically, serving as each other's delivery vector to enhance toll-like receptor 9 activation. The vaccine rapidly enters cells carrying OVA model antigens, which enables efficient activation of adaptive immunity in vitro and in vivo. In OVA-expressing tumor allograft models, both prophylactic and therapeutic vaccinations significantly retard tumor growth and prolong animal survival. Furthermore, the vaccinations were also able to reduce lung metastasis in a B16F10-OVA model.


Subject(s)
Cancer Vaccines , Immunotherapy , Neoplasms , Nucleic Acids , Toll-Like Receptor 9 , Adjuvants, Immunologic/therapeutic use , Animals , Immunotherapy/methods , Mice , Mice, Inbred C57BL , Neoplasms/drug therapy , Nucleic Acids/therapeutic use , Toll-Like Receptor 9/genetics , Toll-Like Receptor 9/therapeutic use
4.
Int J Mol Sci ; 23(8)2022 Apr 11.
Article in English | MEDLINE | ID: mdl-35457035

ABSTRACT

Osteocytes function as the master orchestrator of bone remodeling activity in the telophase of osseointegration. However, most contemporary studies focus on the manipulation of osteoblast and/or osteoclast functionality via implant surface engineering, which neglects the pivotal role of osteocytes in de novo bone formation. It is confirmative that osteocyte processes extend directly to the implant surface, but whether the surface physicochemical properties can affect the functionality of osteocytes and determine the fate of the osseointegration in the final remodeling stage remains to be determined. Titania nanotube arrays (NTAs) with distinct diameters were fabricated to investigate the relationship between the nanoscale topography and the functionality of osteocytes. In vitro results pinpointed that NTA with a diameter of 15 nm (NTA-15) significantly promote osteogenesis of osteocytes via the enhancement of spreading, proliferation, and mineralization. The osteocyte transcriptome of each group further revealed that the TGF-ß signaling pathway plays a pivotal role in osteocyte-mediated osteogenesis. The in vivo study definitely mirrored the aforementioned results, that NTA-15 significantly promotes bone formation around the implant. Consequently, nanoscaled topography-induced osteocyte functionality is important in late osseointegration. This suggests that surface designs targeting osteocytes may, therefore, be a potential approach to solving the aseptic loosening of the implant, and thus strengthen osseointegration.


Subject(s)
Osteocytes , Osteogenesis , Osteoblasts/metabolism , Osteocytes/metabolism , Signal Transduction , Transforming Growth Factor beta/metabolism
5.
Angew Chem Int Ed Engl ; 61(41): e202204576, 2022 10 10.
Article in English | MEDLINE | ID: mdl-35979844

ABSTRACT

Aptamers face challenges for use outside the ideal conditions in which they are developed. These difficulties are most palpable in vivo due to nuclease activities, rapid clearance, and off-target binding. Herein, we demonstrate that a polyphosphodiester-backboned molecular brush can suppress enzymatic digestion, reduce non-specific cell uptake, enable long blood circulation, and rescue the bioactivity of a conjugated aptamer in vivo. The backbone along with the aptamer is assembled via solid-phase synthesis, followed by installation of poly(ethylene glycol) (PEG) side chains using a two-step process with near-quantitative efficiency. The synthesis allows for precise control over polymer size and architecture. Consisting entirely of building blocks that are generally recognized as safe for therapeutics, this novel molecular brush is expected to provide a highly translatable route for aptamer-based therapeutics.


Subject(s)
Aptamers, Nucleotide , Oligonucleotides , Aptamers, Nucleotide/chemistry , Oligonucleotides/chemistry , Polyethylene Glycols/chemistry
6.
J Proteome Res ; 20(2): 1328-1340, 2021 02 05.
Article in English | MEDLINE | ID: mdl-33443437

ABSTRACT

Proteomics approaches designed to catalogue all open reading frames (ORFs) under a defined set of growth conditions of an organism have flourished in recent years. However, no proteome has been sequenced completely so far. Here, we generate the largest yeast proteome data set, including 5610 identified proteins, using a strategy based on optimized sample preparation and high-resolution mass spectrometry. Among the 5610 identified proteins, 94.1% are core proteins, which achieves near-complete coverage of the yeast ORFs. Comprehensive analysis of missing proteins showed that proteins are missed mainly due to physical properties. A review of protein abundance shows that our proteome encompasses a uniquely broad dynamic range. Additionally, these values highly correlate with mRNA abundance, implying a high level of accuracy, sensitivity, and precision. We present examples of how the data could be used, including reannotating gene localization, providing expression evidence of pseudogenes. Our near-complete yeast proteome data set will be a useful and important resource for further systematic studies.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Mass Spectrometry , Proteome/genetics , Proteomics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
7.
J Am Chem Soc ; 143(3): 1296-1300, 2021 01 27.
Article in English | MEDLINE | ID: mdl-33433203

ABSTRACT

Oligonucleotide-based materials such as spherical nucleic acid (SNA) have been reported to exhibit improved penetration through the epidermis and the dermis of the skin upon topical application. Herein, we report a self-assembled, skin-depigmenting SNA structure, which is based upon a bifunctional oligonucleotide amphiphile containing an antisense oligonucleotide and a tyrosinase inhibitor prodrug. The two components work synergistically to increase oligonucleotide cellular uptake, enhance drug solubility, and promote skin penetration. The particles were shown to reduce melanin content in B16F10 melanoma cells and exhibited a potent antimelanogenic effect in an ultraviolet B-induced hyperpigmentation mouse model.


Subject(s)
Benzhydryl Compounds/therapeutic use , Enzyme Inhibitors/therapeutic use , Hyperpigmentation/drug therapy , Oligonucleotides, Antisense/therapeutic use , Resorcinols/therapeutic use , Skin Lightening Preparations/therapeutic use , Animals , Cell Line, Tumor , Down-Regulation , Female , Hyperpigmentation/pathology , Melanins/metabolism , Mice, Inbred C57BL , Monophenol Monooxygenase/antagonists & inhibitors , Oligonucleotides, Antisense/genetics , Prodrugs/therapeutic use , Receptor, Melanocortin, Type 1/genetics , Receptor, Melanocortin, Type 1/metabolism , Skin/pathology , Ultraviolet Rays
8.
Small ; 17(4): e2006287, 2021 01.
Article in English | MEDLINE | ID: mdl-33377275

ABSTRACT

Blood coagulation and inflammation are the earliest biological responses to implant surfaces. Implant nano-surfaces can significantly impact the osseointegration through the influence on the early phase of bone regeneration. However, the interplay between blood clot property and inflammatory reaction on nanosurfaces is rarely understood. Herein, titania nanotube arrays (TNAs) with different diameters are fabricated on titanium. In vitro evaluation with the whole blood indicates that TNA with a diameter of 15 nm (TNA 15) enables noteworthy platelet activation resulting in distinct clot features compared with that of pure Ti and TNA with a diameter of 120 nm (TNA 120). Further co-culture with macrophages on the clot or in the clot-conditioned medium shows that the clot on TNA 15 downregulates the inflammation and manipulates a favorable osteoimmunomodulatory environment for osteogenesis. In vivo studies further demonstrate that TNA 15 could downregulate the inflammation-related genes while upregulating growth metabolism-related genes in an early healing hematoma. Additionally, TNA 15 promotes de novo bone formation with improved extending of osteocyte dendrites, demonstrating the desired osseointegration. These findings indicate that surface nano-dimensions can significantly influence clot formation and appropriate clot features can manipulate a favorable osteoimmunomodulatory environment for bone regeneration and osseointegration.


Subject(s)
Nanotubes , Osseointegration , Osteogenesis , Surface Properties , Titanium
9.
J Proteome Res ; 19(4): 1556-1564, 2020 04 03.
Article in English | MEDLINE | ID: mdl-32155069

ABSTRACT

As a hepadnavirus, hepatitis B virus (HBV) can cause damage to extrahepatic organs. The kidney is one of the organs that is more susceptible to damage. Research studies on HBV-associated glomerulonephritis (HBV-GN) have been going on for decades. However, the underlying molecular mechanism remains obscure. Here, we applied a tandem mass tag (TMT) isobaric labeling-based method to quantitatively profile the kidney proteome of HBV transgenic mice to illustrate the pathological mechanisms of HBV-GN. Weighted correlation network analysis, a clustering method for gene expression, is used to cluster proteins. Totally, we identified 127 proteins that were highly associated with HBV expression out of a total of 5169 quantified proteins. Among them, the downregulated solute carrier (SLC) family proteins are involved in the process of HBV-GN. We also found that IL1B was upregulated in the kidney tissue of HBV transgenic mice. These findings suggest that HBV disrupts the small molecule transport network of the kidney, which contributes to the occurrence of HBV-GN. The transporter, particularly SLC family 7 member 7 (SLC7A7), is involved in this process, which might serve as an intervention target for HBV-GN. All MS data have been deposited to the ProteomeXchange Consortium via the iProX partner repository with the data set identifier PXD016450.


Subject(s)
Glomerulonephritis , Hepatitis B , Amino Acid Transport System y+L , Animals , Down-Regulation , Glomerulonephritis/genetics , Hepatitis B/complications , Hepatitis B virus , Kidney , Mice , Proteomics
10.
Biomacromolecules ; 21(7): 2714-2725, 2020 07 13.
Article in English | MEDLINE | ID: mdl-32459090

ABSTRACT

Immobilizing zwitterionic molecules on material surfaces has been a promising strategy for creating antifouling surfaces. Herein, we show the ability to surface derivatize an allyl-ether-functionalized thermoplastic polyurethane (TPU) with a zwitterionic thiol in a radically induced thiol-ene reaction. The thermoplastic polyurethane was synthesized to have an allyl-ether side functionality using a modified chain extender molecule. The zwitterion surface functionalization was achieved via thiol-ene reaction in aqueous conditions. The presence of chemically tethered zwitterion moieties on the TPU surface was confirmed using X-ray photoelectron spectroscopy (XPS). Protein adsorption experiments via quartz crystal microbalance (QCM) show reduced fibrinogen attachment for the zwitterion-derivatized TPU when compared to its nonfunctionalized controls. The Zwitterion-TPU also showed a log scale reduction in bacterial adherence. For Pseudomonas aeruginosa and Staphylococcus epidermidis, the Zwitterion-TPU resulted in around a 40 and 50% lower bacterial biomass accumulation, respectively, over the time scale of the experiment. The fibroblast cell viability of TPU remained unaffected by functionalization with zwitterion thiol. The results from our model experiments suggest that a zwitterion-modified TPU is a promising candidate for antifouling catheters.


Subject(s)
Biofouling , Polyurethanes , Adsorption , Biofouling/prevention & control , Catheters , Surface Properties
11.
BMC Neurosci ; 19(1): 72, 2018 Nov 09.
Article in English | MEDLINE | ID: mdl-30413143

ABSTRACT

BACKGROUND: Glycine receptors (GlyRs) are involved in the development of spinal pain sensitization. The GlyRα3 subunit has recently emerged as a key factor in inflammatory pain pathways in the spinal cord dorsal horn (DH). Our study is to identify the extent of location and cell types expressing different GlyR subunits in spinal cord and dorsal root ganglion (DRGs). To tease out the possible actions of GlyRs on pain transmission, we investigate the effects produced by GlyRs on acute inflammatory pain by behavioral testing using prostaglandin E2 (PGE2) intrathecal injection models. Furthermore, we investigate the changes of GlyR expression in DRGs and spinal cord in rats after the induction of acute inflammatory pain. RESULTS: Compared to the vehicle administration, the PGE2 intrathecal injection model produced significantly higher hyperalgesia, which started 3 h after PGE2 injection and lasted more than 5 h. PGE2 intrathecal injection significantly decreased GlyRα1 and GlyRα3 protein expressions in the L5 DH at 1 h and lasted to 5 h, and similar results were observed in the L5 DRG at 5 h. Confocal microscopic images showed the co-existence of punctate gephyrin and GlyRα3 immunoreactivity (IR) throughout the gray matter of the spinal cord, mainly in DH laminae I-III neurons and in ventral horn neurons. It also showed the co-existence of punctate gephyrin and GlyRα3 IR in DRG neurons. CONCLUSIONS: In this study, PGE2 intrathecal injection significantly decreased protein expression of gephyrin, GlyRα1 and GlyRα3 in spinal cord DH and DRG. The gephyrin and GlyRα3 were localized on neuron cells both in the DH and DRG.


Subject(s)
Acute Pain/metabolism , Ganglia, Spinal/metabolism , Inflammation/metabolism , Receptors, Glycine/metabolism , Spinal Cord/metabolism , Animals , Dinoprostone , Hyperalgesia/metabolism , Injections, Spinal , Male , Rats, Sprague-Dawley
12.
Ecotoxicol Environ Saf ; 163: 331-339, 2018 Nov 15.
Article in English | MEDLINE | ID: mdl-30059877

ABSTRACT

Cadmium (Cd) is one of the most toxic metals released into the environment. Here, we investigated the protective role of Zn2+ and/or N-acetyl-L-cysteine (NAC) against Cd cytotoxicity in the erythrocytes of Arbor Acres (AA) broiler chickens. Four hundred one-day-old AA chickens were divided into 12 groups for in vitro and in vivo studies. Zn2+ and/or NAC was given to the Cd exposed AA chickens to assess their protective roles. This was accomplished by investigating nuclear morphological abnormalities, oxidative stress (SOD, CAT, GPx, GSH and T-AOC), cell apoptosis, ROS accumulation and mitochondrial membrane potential (MMP). Results showed that Cd led to dose- and time-dependent cytotoxicity in the erythrocytes of AA chickens characterized by morphological abnormalities, nucleus damage, increased apoptosis rate and antioxidants depletion. Zn2+ or NAC significantly decreased the erythrocyte apoptosis, ROS production and mitochondrial membrane depolarization caused by Cd. SOD, CAT, GPx, GSH and T-AOC activities significantly decreased both in serum and erythrocytes of Cd exposed AA chickens. The supplementation with Zn2+ or NAC alleviated Cd induced oxidative stress through promoting SOD or GPx/GSH activities respectively. NAC presented a better role in reducing apoptosis, improving antioxidant activities more than Zn2+ in vitro. The combined use of Zn2+ and NAC enhanced cytoprotection in Cd exposed erythrocytes of AA chickens compared to Zn2+ or NAC alone. In conclusion, Zn2+ and NAC exerted remarkable protective roles in Cd exposed erythrocytes of AA chickens by inhibiting cell apoptosis and oxidative stress, and this provides a promising approach to antagonize Cd poisoning in poultry.


Subject(s)
Acetylcysteine/pharmacology , Antioxidants/pharmacology , Cadmium/toxicity , Erythrocytes/drug effects , Zinc/pharmacology , Animals , Apoptosis/drug effects , Chickens , Oxidative Stress/drug effects
13.
Langmuir ; 33(51): 14657-14662, 2017 12 26.
Article in English | MEDLINE | ID: mdl-29191017

ABSTRACT

Antifouling surfaces that are resistant to protein adsorption and cell adhesion are desirable for many biomedical devices, such as diagnostic devices, biosensors, and implants. In this study, we developed an antifouling hyperbranched polyglycerol (hPG) surface on hydroxyl poly-p-xylylene (PPX-OH). PPX-OH was deposited via chemical vapor deposition (CVD), and an hPG film was then developed via the ring-opening reaction of glycidol. The hPG film greatly reduced the adhesion of L929 cells and platelets as well as protein adsorption. The addition of alkenyl groups in the hPG layer allows the conjugation of biomolecules, such as peptides and biotin, and elicits specific biological interactions. Since the CVD deposition of PPX-OH could be applied to most types of materials, our approach makes it possible to decorate an antifouling hPG film on most types of materials. Our method could be applied to biosensors, diagnostics, and biomedical devices in the future.

14.
BMC Neurol ; 16(1): 215, 2016 Nov 08.
Article in English | MEDLINE | ID: mdl-27821089

ABSTRACT

BACKGROUND: Posterior reversible encephalopathy syndrome (PRES) has been associated with Guillain-Barre syndrome in rare cases. Here we report a patient in whom PRES was the presenting manifestation of Bickerstaff's brainstem encephalitis. CASE PRESENTATION: A 75-year-old woman presented with acute onset of hypertension, headache, blurred vision, and left eyelid drooping. Magnetic resonance imaging of the brain showed characteristic PRES lesions involving the parietal and occipital lobes bilaterally. On the 6th day after symptom onset, the patient developed complete ptosis and external ophthalmoplegia of both eyes, progressive ataxia, and bilateral lower limb weakness. Cerebrospinal fluid analyses revealed albuminocytological dissociation (protein: 66.6 mg/dL, WBC: 0/µl), and nerve conduction studies showed demyelinating sensorimotor polyneuropathy. The patient developed somnolence and a left extensor plantar response on the 8th day. A diagnosis of Bickerstaff's brainstem encephalitis was made. Treatment with plasmapheresis led to a rapid improvement of clinical symptoms. To date, only five similar cases have been reported, but this is the only case in which PRES developed prior to treatment. CONCLUSIONS: PRES can be a comorbid condition with Bickerstaff's brainstem encephalitis, either preceding or following treatment; caution should be used in patients with either syndrome who exhibit atypical presentations.


Subject(s)
Brain Stem , Encephalitis/diagnosis , Posterior Leukoencephalopathy Syndrome/etiology , Aged , Brain Stem/pathology , Diagnosis, Differential , Encephalitis/complications , Encephalitis/diagnostic imaging , Encephalitis/physiopathology , Female , Humans , Magnetic Resonance Imaging , Neurologic Examination
15.
BMC Musculoskelet Disord ; 15: 238, 2014 Jul 15.
Article in English | MEDLINE | ID: mdl-25022571

ABSTRACT

BACKGROUND: Estradiol plays an important role in the regulation of collagen metabolism. Deficiency of estradiol has been reported to be associated with the degeneration of many connective tissues. However, the association of estradiol and hypertrophy of the ligamentum flavum was seldom explored. Therefore, we studied the effects of estradiol on cultured cells from the ligamentum flavum. METHODS: Primary cultures of human ligamentum flavum cells obtained from surgical specimens of 14 patients undergoing spinal surgery were used to investigate the effect of estradiol on cell proliferation and the expression of collagen, elastin, and matrix metalloproteinases. Downstream pathways of estrogen receptor underlying the regulation of metalloproteinases were also investigated. RESULTS: In our study, we revealed the existence of estrogen receptors on both female and male ligamentum flavum cells with a gender difference. 17ß-estradiol increased early (24 hours) proliferation of ligamentum flavum cells in a dose dependent manner and the effect could not be seen when the cell density increased. Estradiol with a concentration of 10(-9) M decreased collagen levels and increased the expression of MMP-13. Adding an antagonist of PI3K downstream pathway could reverse the expression of MMP-13 caused by estradiol. CONCLUSIONS: The results implied estradiol regulated the expression of MMP-13 via PI3K pathway and contributed to the homeostasis of extracellular matrix in the ligamentum flavum.


Subject(s)
Cell Proliferation/drug effects , Collagen/metabolism , Estradiol/pharmacology , Ligamentum Flavum/drug effects , Aged , Cells, Cultured , Collagen/genetics , Dose-Response Relationship, Drug , Female , Humans , Ligamentum Flavum/metabolism , Ligamentum Flavum/pathology , Male , Matrix Metalloproteinase 13/genetics , Matrix Metalloproteinase 13/metabolism , Middle Aged , Phosphatidylinositol 3-Kinase/metabolism , Phosphoinositide-3 Kinase Inhibitors , Protein Kinase Inhibitors/pharmacology , Proteolysis , Receptors, Estrogen/drug effects , Receptors, Estrogen/metabolism , Signal Transduction/drug effects , Time Factors
16.
Curr Opin Biotechnol ; 85: 103023, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38007984

ABSTRACT

Carbon dioxide (CO2) is the node of alleviating global climate change and supporting living organisms on Earth. Currently, the warming climate and the growing population demand enhanced CO2 fixation for a sustainable future, which stimulates innovations in biotechnology to tackle these challenges. To this endeavor, synthetic biology and metabolic engineering are enabling a promising approach to engineer synthetic carbon fixation in heterotrophic organisms combining the advantages of both autotrophs and heterotrophs. Here, we review the current advances in constructing synthetic CO2 fixation pathways and discuss the underlying design principles with confronting challenges. Moreover, we highlight the application scenarios of these designs at different concentrations of CO2, and how sustainable bioproduction can be improved. We also foresee the future of engineering synthetic carbon fixation pathways for carbon recycling.


Subject(s)
Carbon Dioxide , Metabolic Engineering , Carbon Dioxide/metabolism , Heterotrophic Processes , Carbon Cycle , Biotechnology
17.
J Control Release ; 366: 44-51, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38145661

ABSTRACT

Oligonucleotide therapeutics have the unique ability to address traditionally undruggable targets through various target engagement pathways. However, despite advances in chemically modified oligonucleotides and carrier-assisted delivery systems such as lipid nanoparticles and protein/peptide conjugates, the development of oligonucleotide drugs is still plagued with lackluster potency, narrow therapeutic window, poor delivery to non-liver target sites, and/or high potential for toxicity and unwanted immune system activation. In this perspective, we discuss an unconventional delivery solution based upon bottlebrush polymers, which overcomes many key challenges in oligonucleotide drug development. We address the molecular basis of the polymer's ability to enhance tissue bioavailability and drug potency, reduce side effects, and suppress anti-carrier immunity. Furthermore, we discuss the potential of the technology in advancing oligonucleotide-based therapies for non-liver targets.


Subject(s)
Drug Development , Oligonucleotides , Biological Availability , Polymers , Technology
18.
Biochem Pharmacol ; 225: 116308, 2024 07.
Article in English | MEDLINE | ID: mdl-38788961

ABSTRACT

A high risk of glucometabolic disorder severely disturbs compliance and limits the clinical application of olanzapine. MicroRNAs (miRNAs) in extracellular vesicles (EVs) have been reported as emerging biomarkers in glucolipid metabolic disorders. A total of 81 individuals with continuous olanzapine treatment over 3 months were recruited in this study, and plasma EVs from these individuals were isolated and injected into rats via the tail vein to investigate the glucose-regulating function in vivo. Moreover, we performed a miRNA profiling assay by high through-put sequencing to clarify the differentiated miRNA profiles between two groups of patients who were either susceptible or not susceptible to olanzapine-induced insulin resistance (IR). Finally, we administered antagomir and cocultured them with adipocytes to explore the mechanism in vitro. The results showed that individual insulin sensitivity varied in those patients and in olanzapine-administered rats. Furthermore, treatment with circulating EVs from patients with olanzapine-induced IR led to the development of metabolic abnormalities in rats and adipocytes in vitro through the AKT-GLUT4 pathway. Deep sequencing illustrated that the miRNAs of plasma EVs from patients showed a clear difference based on susceptibility to olanzapine-induced IR, and miR-486-5p was identified as a notable gene. The adipocyte data indicated that miR-486-5p silencing partially reversed the impaired cellular insulin sensitivity. Collectively, this study confirmed the function of plasma EVs in the interindividual differences in olanzapine-induced insulin sensitivity.


Subject(s)
Extracellular Vesicles , Insulin Resistance , MicroRNAs , Olanzapine , Rats, Sprague-Dawley , Olanzapine/adverse effects , Olanzapine/toxicity , Olanzapine/pharmacology , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , Insulin Resistance/physiology , Extracellular Vesicles/metabolism , Extracellular Vesicles/drug effects , Humans , Male , Rats , Female , Adult , Antipsychotic Agents/adverse effects , Antipsychotic Agents/pharmacology , Glucose/metabolism , Middle Aged , Adipocytes/drug effects , Adipocytes/metabolism , Blood Glucose/metabolism , Blood Glucose/drug effects , 3T3-L1 Cells
19.
Life Sci ; 336: 122340, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38092143

ABSTRACT

AIMS: Structural cells play an important role in regulating immune cells during infection. Our aim was to determine whether structural porcine tracheal epithelial cells (PTECs) can regulate alveolar macrophages (AMs) to prevent bacterial pneumonia, explore the underlying mechanism(s) and therapeutic target. MATERIALS AND METHODS: Actinobacillus pleuropneumoniae (APP) was used as the model strain for infection studies. Small RNA sequencing was used to identify differentially abundant exosome-derived miRNAs. The role of PTECs exosome-derived miR-21-5p in regulating AMs autophagy, pyroptosis, reactive oxygen species (ROS) was determined using RT-qPCR, western-blotting, flow cytometry, immunohistochemistry. Luciferase reporter assays were conducted to identify potential binding targets of miR-21-5p. The universality of miR-21-5p action on resistance to bacterial pulmonary infection was demonstrated using Klebsiella pneumoniae or Staphylococcus aureus in vitro and in vivo infection models. KEY FINDINGS: MiR-21-5p was enriched in PETCs-derived exosomes, which protected AMs against pulmonary bacterial infection. Mechanistically, miR-21-5p targeted PIK3CD, to promote autophagy of AMs, which reduced the pyroptosis induced by APP infection via inhibiting the over-production of ROS, which in turn suppressed the over-expression of pro-inflammatory cytokines, and increased bacterial clearance. Importantly, the protective effect and mechanism of miR-21-5p were universal as they also occurred upon challenge with Klebsiella pneumoniae and Staphylococcus aureus. SIGNIFICANCE: Our data reveals miR-21-5p can promote pulmonary resistance to bacterial infection by inhibiting pyroptosis of alveolar macrophages through the PIK3CD-autophagy-ROS pathway, suggesting PIK3CD may be a potential therapeutic target for bacterial pneumonia.


Subject(s)
Exosomes , MicroRNAs , Pneumonia, Bacterial , Animals , Swine , Pyroptosis , Macrophages, Alveolar/metabolism , Exosomes/metabolism , Reactive Oxygen Species/metabolism , MicroRNAs/metabolism , Epithelial Cells/metabolism , Autophagy/genetics
20.
Res Sq ; 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38562821

ABSTRACT

Given the safety, tumor tropism, and ease of genetic manipulation in non-pathogenic Escherichia coli (E. coli), we designed a novel approach to deliver biologics to overcome poor trafficking and exhaustion of immune cells in the tumor microenvironment, via the surface display of key immune-activating cytokines on the outer membrane of E. coli K-12 DH5α. Bacteria expressing murine decoy-resistant IL18 mutein (DR18) induced robust CD8+ T and NK cell-dependent immune responses leading to dramatic tumor control, extending survival, and curing a significant proportion of immune-competent mice with colorectal carcinoma and melanoma. The engineered bacteria demonstrated tumor tropism, while the abscopal and recall responses suggested epitope spreading and induction of immunologic memory. E. coli K-12 DH5α engineered to display human DR18 potently activated mesothelin-targeting CAR NK cells and safely enhanced their trafficking into the tumors, leading to improved control and survival in xenograft mice bearing mesothelioma tumor cells, otherwise resistant to NK cells. Gene expression analysis of the bacteria-primed CAR NK cells showed enhanced TNFα signaling via NFkB and upregulation of multiple activation markers. Our novel live bacteria-based immunotherapeutic platform safely and effectively induces potent anti-tumor responses in otherwise hard-to-treat solid tumors, motivating further evaluation of this approach in the clinic.

SELECTION OF CITATIONS
SEARCH DETAIL