Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 245
Filter
Add more filters

Publication year range
1.
Mol Cell ; 73(4): 684-698.e8, 2019 02 21.
Article in English | MEDLINE | ID: mdl-30773298

ABSTRACT

Accumulation of senescent cells during aging contributes to chronic inflammation and age-related diseases. While senescence is associated with profound alterations of the epigenome, a systematic view of epigenetic factors in regulating senescence is lacking. Here, we curated a library of short hairpin RNAs for targeted silencing of all known epigenetic proteins and performed a high-throughput screen to identify key candidates whose downregulation can delay replicative senescence of primary human cells. This screen identified multiple new players including the histone acetyltransferase p300 that was found to be a primary driver of the senescent phenotype. p300, but not the paralogous CBP, induces a dynamic hyper-acetylated chromatin state and promotes the formation of active enhancer elements in the non-coding genome, leading to a senescence-specific gene expression program. Our work illustrates a causal role of histone acetyltransferases and acetylation in senescence and suggests p300 as a potential therapeutic target for senescence and age-related diseases.


Subject(s)
Cell Proliferation , Cellular Senescence , Chromatin Assembly and Disassembly , Chromatin/enzymology , Fibroblasts/enzymology , Histones/metabolism , Protein Processing, Post-Translational , p300-CBP Transcription Factors/metabolism , Acetylation , Cell Proliferation/genetics , Cellular Senescence/genetics , Chromatin/genetics , Chromatin Assembly and Disassembly/genetics , Epigenetic Repression , HEK293 Cells , High-Throughput Nucleotide Sequencing/methods , Histones/genetics , Humans , RNA Interference , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Signal Transduction , Time Factors , Transcription, Genetic , p300-CBP Transcription Factors/genetics
2.
Plant Cell ; 35(1): 279-297, 2023 01 02.
Article in English | MEDLINE | ID: mdl-36149299

ABSTRACT

The salt overly sensitive (SOS) pathway is essential for maintaining sodium ion homeostasis in plants. This conserved pathway is activated by a calcium signaling-dependent phosphorylation cascade. However, the identity of the phosphatases and their regulatory mechanisms that would deactivate the SOS pathway remain unclear. In this study, we demonstrate that PP2C.D6 and PP2C.D7, which belong to clade D of the protein phosphatase 2C (PP2C) subfamily in Arabidopsis thaliana, directly interact with SOS1 and inhibit its Na+/H+ antiporter activity under non-salt-stress conditions. Upon salt stress, SOS3-LIKE CALCIUM-BINDING PROTEIN8 (SCaBP8), a member of the SOS pathway, interacts with the PP2Cs and suppresses their phosphatase activity; simultaneously, SCaBP8 regulates the subcellular localization of PP2C.D6 by releasing it from the plasma membrane. Thus, we identified two negative regulators of the SOS pathway that repress SOS1 activity under nonstress conditions. These processes set the stage for the activation of SOS1 by the kinase SOS2 to achieve plant salt tolerance. Our results suggest that reversible phosphorylation/dephosphorylation is crucial for the regulation of the SOS pathway, and that calcium sensors play dual roles in activating/deactivating SOS2 and PP2C phosphatases under salt stress.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Protein Phosphatase 2C/metabolism , Calcium/metabolism , Phosphorylation
3.
J Med Virol ; 96(1): e29373, 2024 01.
Article in English | MEDLINE | ID: mdl-38235541

ABSTRACT

The uncertainty and unknowability of emerging infectious diseases have caused many major public health and security incidents in recent years. As a new tick-borne disease, Dabieshan tick virus (DBTV) necessitate systematic epidemiological and spatial distribution analysis. In this study, tick samples from Liaoning Province were collected and used to evaluate distribution of DBTV in ticks. Outbreak points of DBTV and the records of the vector Haemaphysalis longicornis in China were collected and used to establish a prediction model using niche model combined with environmental factors. We found that H. longicornis and DBTV were widely distributed in Liaoning Province. The risk analysis results showed that the DBTV in the eastern provinces of China has a high risk, and the risk is greatly influenced by elevation, land cover, and meteorological factors. The risk geographical area predicted by the model is significantly larger than the detected positive areas, indicating that the etiological survey is seriously insufficient. This study provided molecular and important epidemiological evidence for etiological ecology of DBTV. The predicted high-risk areas indicated the insufficient monitoring and risk evaluation and the necessity of future monitoring and control work.


Subject(s)
Tick-Borne Diseases , Ticks , Animals , Humans , Haemaphysalis longicornis , Tick-Borne Diseases/epidemiology , China/epidemiology
4.
J Integr Plant Biol ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980229

ABSTRACT

Prime editing is a versatile CRISPR/Cas-based precise genome-editing technique for crop breeding. Four new types of prime editors (PEs) named PE6a-d were recently generated using evolved and engineered reverse transcriptase (RT) variants from three different sources. In this study, we tested the editing efficiencies of four PE6 variants and two additional PE6 constructs with double-RT modules in transgenic rice (Oryza sativa) plants. PE6c, with an evolved and engineered RT variant from the yeast Tf1 retrotransposon, yielded the highest prime-editing efficiency. The average fold change in the editing efficiency of PE6c compared with PEmax exceeded 3.5 across 18 agronomically important target sites from 15 genes. We also demonstrated the feasibility of using two RT modules to improve prime-editing efficiency. Our results suggest that PE6c or its derivatives would be an excellent choice for prime editing in monocot plants. In addition, our findings have laid a foundation for prime-editing-based breeding of rice varieties with enhanced agronomically important traits.

5.
Plant Biotechnol J ; 21(7): 1454-1464, 2023 07.
Article in English | MEDLINE | ID: mdl-37139586

ABSTRACT

Using genetic resistance against bacterial blight (BB) caused by Xanthomonas oryzae pathovar oryzae (Xoo) is a major objective in rice breeding programmes. Prime editing (PE) has the potential to create novel germplasm against Xoo. Here, we use an improved prime-editing system to implement two new strategies for BB resistance. Knock-in of TAL effector binding elements (EBE) derived from the BB susceptible gene SWEET14 into the promoter of a dysfunctional executor R gene xa23 reaches 47.2% with desired edits including biallelic editing at 18% in T0 generation that enables an inducible TALE-dependent BB resistance. Editing the transcription factor TFIIA gene TFIIAγ5 required for TAL effector-dependent BB susceptibility recapitulates the resistance of xa5 at an editing efficiency of 88.5% with biallelic editing rate of 30% in T0 generation. The engineered loci provided resistance against multiple Xoo strains in T1 generation. Whole-genome sequencing detected no OsMLH1dn-associated random mutations and no off-target editing demonstrating high specificity of this PE system. This is the first-ever report to use PE system to engineer resistance against biotic stress and to demonstrate knock-in of 30-nucleotides cis-regulatory element at high efficiency. The new strategies hold promises to fend rice off the evolving Xoo strains and protect it from epidemics.


Subject(s)
Oryza , Xanthomonas , Transcription Activator-Like Effectors/genetics , Transcription Activator-Like Effectors/metabolism , Oryza/metabolism , Plant Breeding , Promoter Regions, Genetic , Disease Resistance/genetics , Plant Diseases/genetics , Plant Diseases/prevention & control , Plant Diseases/microbiology
6.
Mol Cell Proteomics ; 20: 100001, 2021.
Article in English | MEDLINE | ID: mdl-33517144

ABSTRACT

Malaria elimination is still pending on the development of novel tools that rely on a deep understanding of parasite biology. Proteins of all living cells undergo myriad posttranslational modifications (PTMs) that are critical to multifarious life processes. An extensive proteome-wide dissection revealed a fine PTM map of most proteins in both Plasmodium falciparum, the causative agent of severe malaria, and the infected red blood cells. More than two-thirds of proteins of the parasite and its host cell underwent extensive and dynamic modification throughout the erythrocytic developmental stage. PTMs critically modulate the virulence factors involved in the host-parasite interaction and pathogenesis. Furthermore, P. falciparum stabilized the supporting proteins of erythrocyte origin by selective demodification. Collectively, our multiple omic analyses, apart from having furthered a deep understanding of the systems biology of P. falciparum and malaria pathogenesis, provide a valuable resource for mining new antimalarial targets.


Subject(s)
Erythrocytes/parasitology , Plasmodium falciparum , Protein Processing, Post-Translational , Protozoan Proteins/metabolism , Humans , Malaria, Falciparum/parasitology , Proteome/metabolism
7.
Int J Mol Sci ; 24(18)2023 Sep 09.
Article in English | MEDLINE | ID: mdl-37762181

ABSTRACT

Polygalae radix (PR) is a well-known traditional Chinese medicine that is used to treat depression, and polygalae radix oligosaccharide esters (PROEs) are the main active ingredient. Although gut microbiota are now believed to play key role in depression, the effects of PROEs on depression via modulation of gut microbiota remain unknown. In this article, we investigate the effect of PROEs on the gut microbiota of a depression rat and the possible mechanism responsible. The depression rat model was induced by solitary rearing combined with chronic unpredictable mild stress (CUMS). The depression-like behavior, the influence on the hypothalamic-pituitary-adrenal (HPA) axis, the contents of monoamine neurotransmitter in the hippocampus, and the quantity of short-chain fatty acids (SCFAs) in the feces were each assessed, and the serum levels of lipopolysaccharide (LPS) and interleukin-6 (IL-6) were measured by ELISA. Additionally, ultrastructural changes of the duodenal and colonic epithelium were observed under transmission electron microscope, and the gut microbiota were profiled by using 16S rRNA sequencing. The results show that PROEs alleviated the depression-like behavior of the depression model rats, increased the level of monoamine neurotransmitters in the brain, and reduced the hyperfunction of the HPA axis. Furthermore, PROEs regulated the imbalance of the gut microbiota in the rats, relieving intestinal mucosal damage by increasing the relative abundance of gut microbiota with intestinal barrier protective functions, and adjusting the level of SCFAs in the feces, as well as the serum levels of LPS and IL-6. Thus, we find that PROEs had an antidepressant effect through the restructuring of gut microbiota that restored the function of the intestinal barrier, reduced the release of intestinal endotoxin, and constrained the inflammatory response.


Subject(s)
Depression , Gastrointestinal Microbiome , Rats , Animals , Depression/drug therapy , Depression/etiology , Hypothalamo-Hypophyseal System , Interleukin-6/pharmacology , RNA, Ribosomal, 16S , Lipopolysaccharides/pharmacology , Pituitary-Adrenal System , Oligosaccharides/pharmacology , Oligosaccharides/therapeutic use , Stress, Psychological/drug therapy
8.
Exp Appl Acarol ; 90(3-4): 389-407, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37464132

ABSTRACT

Ticks are vectors and reservoirs of a variety of pathogens including protozoa, bacteria and viruses which cause tick-borne diseases (TBDs) in humans and livestock. TBDs pose serious constraints to the improvement of livestock production in tropical and subtropical regions of the world. Despite their wide distribution, information on the tick and pathogen relationship is scarce in Tanzania. We used nested PCR and sequencing to screen pathogens of public and veterinary health importance in ticks collected by flagging from four districts of Tanzania. In total, 2021 ticks comprising nine species were identified. DNA from ticks was pooled according to tick species, developmental stage, and location, then screened for Babesia bigemina, Babesia bovis, Theileria parva and Coxiella burnetii. Out of 377 pools, 34.7% were positive for at least one pathogen. Theileria parva was the most abundant with a minimum infection rate (MIR) of 2.8%, followed by B. bigemina (MIR = 1.8%) and B. bovis (MIR = 0.8%). Multiple pathogens detection was observed in 7.2% of the tested pools. However, PCR screening of individual tick DNA revealed that only 0.3% of the examined pools had co-infection. DNA of C. burnetii was never detected in any tick DNA pool. The MIR of tick-borne pathogens (TBPs) differed significantly among districts, seasons, tick species, and tick developmental stages. Sequence analysis showed that B. bigemina RAP-1a, B. bovis SBP-4, and T. parva p104 genes were conserved among pathogens in the four districts. Despite the absence of C. burnetii in ticks, considering its pathogenic potential, it is essential to continue monitoring for its possible recurrence in ticks. This information adds to the knowledge of TBPs epidemiology and will contribute to the scientific basis for planning future control strategies.


Subject(s)
Cattle Diseases , Theileria , Tick-Borne Diseases , Ticks , Cattle , Animals , Humans , Ticks/microbiology , Tanzania , Theileria/genetics , Cattle Diseases/parasitology , Tick-Borne Diseases/epidemiology , Tick-Borne Diseases/veterinary , Tick-Borne Diseases/microbiology
9.
Molecules ; 28(2)2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36677669

ABSTRACT

Scavenger receptor class B type 1 (SR-B1), a multiligand membrane receptor, is expressed in a gradient along the gastrocolic axis. SR-B1 deficiency enhances lymphocyte proliferation and elevates inflammatory cytokine production in macrophages. However, whether SR-B1 affects intestinal metabolites is unclear. In this study, we detected metabolite changes in the intestinal tissue of SR-B1-/- mice, including amino acids and neurotransmitters, by ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF/MS) and HPLC. We found that SR-B1-/- mice exhibited changes in intestinal lipid metabolites and metabolic pathways, including the glycerophospholipid, sphingolipid, linoleic acid, taurine, and hypotaurine metabolic pathways. SR-B1 deficiency influenced the contents of amino acids and neurotransmitters in all parts of the intestine; the contents of leucine (LEU), phenylalanine (PHE), tryptophan (TRP), and tyrosine (TYR) were affected in all parts of the intestine; and the contents of 3,4-dihydroxyphenylacetic acid (DOPAC) and dopamine (DA) were significantly decreased in both the colon and rectum. In summary, SR-B1 deficiency regulated intestinal lipids, amino acids, and neurotransmitter metabolism in mice.


Subject(s)
Amino Acids , Intestines , Mice , Animals , Mice, Knockout , Chromatography, Liquid/methods , Mass Spectrometry/methods , Chromatography, High Pressure Liquid
10.
J Integr Plant Biol ; 65(4): 900-906, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36478403

ABSTRACT

Low efficiency is the main obstacle to using prime editing in maize (Zea mays). Recently, prime-editing efficiency was greatly improved in mammalian cells and rice (Oryza sativa) plants by engineering prime-editing guide RNAs (pegRNAs), optimizing the prime editor (PE) protein, and manipulating cellular determinants of prime editing. In this study, we tested PEs optimized via these three strategies in maize. We demonstrated that the ePE5max system, composed of PEmax, epegRNAs (pegRNA-evopreQ. 1), nicking single guide RNAs (sgRNAs), and MLH1dn, efficiently generated heritable mutations that conferred resistance to herbicides that inhibit 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), acetolactate synthase (ALS), or acetyl CoA carboxylase (ACCase) activity. Collectively, we demonstrate that the ePE5max system has sufficient efficiency to generate heritable (homozygous or heterozygous) mutations in maize target genes and that the main obstacle to using PEs in maize has thus been removed.


Subject(s)
Herbicides , Zea mays , Zea mays/genetics , Herbicides/pharmacology , Mutation/genetics , Gene Editing , CRISPR-Cas Systems
11.
J Infect Dis ; 225(11): 1991-2001, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35235942

ABSTRACT

BACKGROUND: Antigens of migrating schistosomula are promising candidates as schistosomiasis vaccine targets, since immune attack on hepatic schistosomula would interrupt the parasites life cycle and reduce egg burden on the host. METHODS: In this study, we report a collection of Schistosoma japonicum schistosomula proteins (SjScPs) that are highly expressed in hepatic schistosomula. The expression characteristics, antigenicity and immune protection of these proteins were studied by western blot, ELISA, immunofluorescence and challenge assays. RESULTS: We found that several of these SjScPs were highly antigenic and could effectively stimulate humoral immune responses in both human and other mammalian hosts. In particular, SjScP25, SjScP37, SjScP41, SjScP80, and SjScP88 showed high potential as biomarkers for schistosomiasis immunodiagnosis. Furthermore, we demonstrated that immunization with several of the recombinant SjScPs were able to protect mice from S japonicum challenge infection, with SjScP25 generating the most protective results. CONCLUSIONS: Our work represents a group of novel schistosome immunogens, which may be promising schistosomiasis japonica diagnosis and vaccine candidates.


Subject(s)
Schistosoma japonicum , Schistosomiasis japonica , Schistosomiasis , Vaccines , Animals , Immunologic Tests , Mammals , Mice , Schistosomiasis japonica/diagnosis , Schistosomiasis japonica/prevention & control
12.
Sensors (Basel) ; 22(3)2022 Feb 06.
Article in English | MEDLINE | ID: mdl-35161983

ABSTRACT

Recently, robotic sensor systems have gained more attention annually in complex system sense strategies. The robotic sensors sense the information from itself and the environment, and fuse information for the use of perception, decision, planning, and control. As an important supplement to traditional industrial robots, co-bots (short for co-working robots) play an increasingly vital role in helping small and medium-sized enterprises realize intelligent manufacturing. They have high flexibility and safety so that they can assist humans to complete highly repetitive and high-precision work. In order to maintain robot safe operation in the increasing complex working environment and human-computer intelligent interactive control, this paper is concerned with the problem of applicant accuracy analysis and singularity avoidance for co-bots. Based on the dynamic model with load and torque sensors, which is used to detect the external force at the end of the robot, this paper systematically analyzes the causes of singularity phenomenon in the robot motion control. The inverse solution is obtained by analytical method and numerical method, respectively. In order to ensure the smooth and safe operation in the whole workspace, it is necessary for a robot to avoid singularity. Singularity avoidance schemes are utilized for different control tasks, including point-to-point control and continuous path control. Corresponding simulation experiments are designed to verify the effectiveness of different evasion schemes, in which the advantages and disadvantages are compared and analyzed.


Subject(s)
Robotic Surgical Procedures , Robotics , Humans , Motion , Software , Torque
13.
Fish Shellfish Immunol ; 117: 211-219, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34303835

ABSTRACT

Tachaea chinensis, a parasitic isopod, negatively affects the production of several commercially important shrimp species. To better understand the interaction between shrimp immunity and isopod infection, we performed a transcriptome analysis of the hepatopancreas of Palaemonetes sinensis challenged with T. chinensis. After assembly and annotation, 75,980 high-quality unigenes were obtained using RNA-seq data. Differential gene expression analysis revealed 896 significantly differently expressed genes (DEGs) after infection, with 452 and 444 upregulated and downregulated genes, respectively. Specifically, expression levels of genes involved in detoxification, such as the interferon regulatory factor, venom carboxylesterase-6, serine proteinase inhibitor, and cytochrome P450, were upregulated. Furthermore, expression levels of genes corresponding to retinol dehydrogenase, triosephosphate isomerase, variant ionotropic glutamate receptor, and phosphoenolpyruvate carboxykinase were significantly upregulated after isopod parasitization, indicating that the shrimp's visual system was influenced by isopod parasitization. Moreover, quantitative real-time PCR of 10 DEGs helped validate the RNA-seq findings. These results provide a valuable basis for future studies on the elucidation of immune responses of P. sinensis to T. chinensis infection.


Subject(s)
Host-Parasite Interactions/genetics , Isopoda/physiology , Palaemonidae/genetics , Palaemonidae/parasitology , Transcriptome , Animals , Gene Expression Profiling , Hepatopancreas/immunology , Palaemonidae/immunology
14.
Parasitology ; 148(1): 122-128, 2021 01.
Article in English | MEDLINE | ID: mdl-33087183

ABSTRACT

Toxoplasma gondii is an obligate intracellular protozoan parasite, which can infect almost all warm-blooded animals, including humans, leading to toxoplasmosis. Currently, the effective treatment for human toxoplasmosis is the combination of sulphadiazine and pyrimethamine. However, both drugs have serious side-effects and toxicity in the host. Therefore, there is an urgent need for the discovery of new anti-T. gondii drugs with high potency and less or no side-effects. Our findings suggest that lumefantrine exerts activity against T. gondii by inhibiting its proliferation in Vero cells in vitro without being toxic to Vero cells (P ≤ 0.01). Lumefantrine prolonged mice infected with T. gondii from death for 3 days at the concentration of 50 µg L-1 than negative control (phosphate-buffered saline treated only), and reduced the parasite burden in mouse tissues in vivo (P ≤ 0.01; P ≤ 0.05). In addition, a significant increase in interferon gamma (IFN-γ) production was observed in high-dose lumefantrine-treated mice (P ≤ 0.01), whereas interleukin 10 (IL-10) and IL-4 levels increased in low-dose lumefantrine-treated mice (P ≤ 0.01). The results demonstrated that lumefantrine may be a promising agent to treat toxoplasmosis, and more experiments on the protective mechanism of lumefantrine should be undertaken in further studies.


Subject(s)
Lumefantrine/pharmacology , Toxoplasma/drug effects , Toxoplasmosis/drug therapy , Animals , Cell Proliferation/drug effects , Chlorocebus aethiops , Humans , Mice , Vero Cells
15.
Mol Cell Proteomics ; 18(11): 2207-2224, 2019 11.
Article in English | MEDLINE | ID: mdl-31488510

ABSTRACT

Toxoplasma gondii is a unicellular protozoan parasite of the phylum Apicomplexa. The parasite repeatedly goes through a cycle of invasion, division and induction of host cell rupture, which is an obligatory process for proliferation inside warm-blooded animals. It is known that the biology of the parasite is controlled by a variety of mechanisms ranging from genomic to epigenetic to transcriptional regulation. In this study, we investigated the global protein posttranslational lysine crotonylation and 2-hydroxyisobutyrylation of two T. gondii strains, RH and ME49, which represent distinct phenotypes for proliferation and pathogenicity in the host. Proteins with differential expression and modification patterns associated with parasite phenotypes were identified. Many proteins in T. gondii were crotonylated and 2-hydroxyisobutyrylated, and they were localized in diverse subcellular compartments involved in a wide variety of cellular functions such as motility, host invasion, metabolism and epigenetic gene regulation. These findings suggest that lysine crotonylation and 2-hydroxyisobutyrylation are ubiquitous throughout the T. gondii proteome, regulating critical functions of the modified proteins. These data provide a basis for identifying important proteins associated with parasite development and pathogenicity.


Subject(s)
Histones/chemistry , Lysine/analogs & derivatives , Proteome/analysis , Protozoan Proteins/metabolism , Toxoplasma/metabolism , Amino Acid Motifs , Amino Acid Sequence , Animals , Lysine/chemistry , Phenotype , Protein Processing, Post-Translational , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Sequence Homology , Toxoplasma/classification , Toxoplasma/genetics , Toxoplasma/growth & development , Toxoplasmosis/parasitology
16.
Dis Aquat Organ ; 144: 143-150, 2021 May 06.
Article in English | MEDLINE | ID: mdl-33955852

ABSTRACT

In this study, we describe in detail the life cycle of Tachaea chinensis (Isopoda: Corallanidae), a branchial ectoparasitic isopod that infests the freshwater shrimp Palaemonetes sinensis in China. We obtained 14 ovigerous T. chinensis females (8.22-11.92 mm in length) and observed the development of embryos through 5 sequential ontogenetic stages within the brood pouches (marsupium) of these females. The number of eggs or mancae (post-larval juveniles) held in the female marsupium ranged from 31 to 86, with a mean ± SD of 61.25 ± 16.16 eggs. Female T. chinensis were semelparous, i.e. individuals died following the release of mancae from the marsupium. Released mancae were non-planktonic and immediately infective to host shrimps. However, only a few mancae successfully established contact with a host, and it is thus assumed that the remainder were predated by shrimp. Attached T. chinensis fed on the host hemolymph, and subsequent to host death, these isopods typically searched for a new host. We also found that T. chinensis exhibits a host preference: most mancae attached to P. sinensis rather than to Neocaridina sp. or Macrobrachium nipponense. This study provides valuable empirical data that will support future research on the prevention and control of parasitic isopod infections.


Subject(s)
Isopoda , Palaemonidae , Animals , China , Female , Fresh Water , Host-Parasite Interactions , Life Cycle Stages
17.
Phytochem Anal ; 32(2): 141-152, 2021 Apr.
Article in English | MEDLINE | ID: mdl-31512326

ABSTRACT

INTRODUCTION: Polygoni Orientalis Fructus (POF) is a clinically effective Chinese medicine. Raw POF (RPOF) and POF Tostus (POFT) are used separately in clinics. However, incomplete progress has been made on quality control. OBJECTIVE: To establish a comprehensive method for quality assessment of RPOF and POFT and to discriminate these two varieties. METHODOLOGY: High-performance liquid chromatography combined with the diode array detector (HPLC-DAD) methods were developed for fingerprinting and quantitative analysis of seven major compounds in RPOF and POFT, and the main components were determined by HPLC-DAD coupled with Fourier-transform ion cyclotron resonance-mass spectrometry. Chemometric approaches were performed to discriminate RPOF and POFT and to screen discriminatory components. RESULTS: Fingerprints were established and 12 common peaks were identified, cannabisin G and cannabisin E were firstly identified from POF. In quantitative analysis, all analytes showed good regression (R > 0.9996) within test ranges and the recovery of the method was in the range 96.6-104.3%. Fingerprints in conjunction with similarity analysis and hierarchical clustering analysis (HCA) demonstrated the consistent quality of RPOF and showed a clear discrimination between RPOF and POFT. Principal component analysis, partial least-squares discriminant analysis, and heatmap-HCA on quantitative data not only gave a clear differentiation between RPOF and POFT, but they also suggested that quercetin, 3,5,7-trihydroxychromone, and N-trans-feruloyltyramine acted as the main factors responsible for the sample differences. CONCLUSIONS: Chromatographic analysis in combination with chemometric analysis provides a simple and reliable method of comparing and evaluating the qualities of RPOF and POFT.


Subject(s)
Drugs, Chinese Herbal , Chromatography, High Pressure Liquid , Fruit , Principal Component Analysis , Quality Control
18.
J Infect Dis ; 222(1): 126-135, 2020 06 16.
Article in English | MEDLINE | ID: mdl-32060530

ABSTRACT

Many obligate intracellular apicomplexan parasites have adapted a distinct invasion mechanism involving a close interaction between the parasite ligands and the sialic acid (SA) receptor. We found that sialic acid binding protein-1 (SABP1), localized on the outer membrane of the zoonotic parasite Toxoplasma gondii, readily binds to sialic acid on the host cell surface. The binding was sensitive to neuraminidase treatment. Cells preincubated with recombinant SABP1 protein resisted parasite invasion in vitro. The parasite lost its invasion capacity and animal infectivity after the SABP1 gene was deleted, whereas complementation of the SABP1 gene restored the virulence of the knockout strain. These data establish the critical role of SABP1 in the invasion process of T. gondii. The previously uncharacterized protein, SABP1, facilitated T. gondii attachment and invasion via sialic acid receptors.


Subject(s)
Carrier Proteins/genetics , Host-Parasite Interactions , Infections/genetics , N-Acetylneuraminic Acid/metabolism , Toxoplasma/genetics , Toxoplasmosis/genetics , Virulence/genetics , Animals , Infections/physiopathology , Models, Animal , N-Acetylneuraminic Acid/genetics , Toxoplasmosis/physiopathology
19.
Plant Physiol ; 181(4): 1441-1448, 2019 12.
Article in English | MEDLINE | ID: mdl-31558579

ABSTRACT

The lack of efficient delivery methods is a major barrier to clustered regularly interspaced short palindromic repeats/CRISPR-associated protein (CRISPR/Cas)-mediated genome editing in many plant species. Combinations of morphogenic regulator (MR) genes and ternary vector systems are promising solutions to this problem. In this study, we first demonstrated that MR vectors greatly enhance maize (Zea mays) transformation. We then tested a CRISPR/Cas9 MR vector in maize and found that the MR and CRISPR/Cas9 modules have no negative influence on each other. Finally, we developed a novel ternary vector system to integrate the MR and CRISPR/Cas modules. Our ternary vector system is composed of new pGreen-like binary vectors, here named pGreen3, and a pVS1-based virulence helper plasmid, which also functions as a replication helper for the pGreen3 vectors in Agrobacterium tumefaciens The pGreen3 vectors were derived from the plasmid pRK2 and display advantages over pGreen2 vectors regarding both compatibility and stability. We demonstrated that the union of our ternary vector system with MR gene modules has additive effects in enhancing maize transformation and that this enhancement is especially evident in the transformation of recalcitrant maize inbred lines. Collectively, our ternary vector system-based tools provide a user-friendly solution to the low efficiency of CRISPR/Cas delivery in maize and represent a basic platform for developing efficient delivery tools to use in other plant species recalcitrant to transformation.


Subject(s)
CRISPR-Cas Systems/genetics , Genes, Plant , Genetic Vectors/genetics , Morphogenesis/genetics , Zea mays/growth & development , Zea mays/genetics , Agrobacterium tumefaciens/genetics , Transformation, Genetic
20.
Fish Shellfish Immunol ; 101: 78-87, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32209399

ABSTRACT

Tachaea chinensis is a parasitic isopod that negatively affects the production of several commercially important shrimp species in China. To date, there have been no reports on the antioxidant and immune responses of host shrimps to isopod parasite infection or their underlying molecular mechanisms. In this study, we examined the specific activities of the immune and antioxidant enzymes of the shrimp Macrobrachium nipponense during the course of a 15-day isopod infection and evaluated expression of related genes. Acid phosphatase (ACP) and alkaline phosphatase (AKP) activities and malondialdehyde (MDA) levels showed significant peaks over 15 days of exposure in both the hepatopancreas and muscle (P < 0.05), whereas catalase (CAT) activity increased continuously during infection (P < 0.05), and lysozyme (LZM) activity increased only in the hepatopancreas (P < 0.05). After 6 days of exposure, expressions of glutathione S-transferase (GST), ACP, and AKP were significantly higher than at 12 days. Compared with the control group, at 12 days, S-(hydroxymethyl) glutathione dehydrogenase activity and glutathione metabolism pathways were significantly inhibited (P < 0.05). Furthermore, the NOD-like receptor signaling pathway and antigen processing and presentation pathways were also significantly inhibited at 12 days compared with that at 6 days (P < 0.05), indicating that T. chinensis parasitism could perturb the antioxidant and immune systems of shrimp hosts during the latter stages of infection. Additionally, the molting and mortality rates of M. nipponense increased the duration of parasitism. These findings indicate that M. nipponense can activate antioxidant and immune defense systems during the early period during isopod parasitism, whereas the parasite can negatively affect these host defense systems during the latter period. Our findings accordingly provide valuable insights into the antioxidant defense systems and immune function characterizing parasite-host interactions.


Subject(s)
Antioxidants/metabolism , Host-Parasite Interactions , Immunity , Isopoda/physiology , Palaemonidae/immunology , Animals , Palaemonidae/parasitology
SELECTION OF CITATIONS
SEARCH DETAIL