Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 116
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nucleic Acids Res ; 51(D1): D39-D45, 2023 01 06.
Article in English | MEDLINE | ID: mdl-36268869

ABSTRACT

Transcription factors (TFs) are proteins that interact with specific DNA sequences to regulate gene expression and play crucial roles in all kinds of biological processes. To keep up with new data and provide a more comprehensive resource for TF research, we updated the Animal Transcription Factor Database (AnimalTFDB) to version 4.0 (http://bioinfo.life.hust.edu.cn/AnimalTFDB4/) with up-to-date data and functions. We refined the TF family rules and prediction pipeline to predict TFs in genome-wide protein sequences from Ensembl. As a result, we predicted 274 633 TF genes and 150 726 transcription cofactor genes in AnimalTFDB 4.0 in 183 animal genomes, which are 86 more species than AnimalTFDB 3.0. Besides double data volume, we also added the following new annotations and functions to the database: (i) variations (including mutations) on TF genes in various human cancers and other diseases; (ii) predicted post-translational modification sites (including phosphorylation, acetylation, methylation and ubiquitination sites) on TFs in 8 species; (iii) TF regulation in autophagy; (iv) comprehensive TF expression annotation for 38 species; (v) exact and batch search functions allow users to search AnimalTFDB flexibly. AnimalTFDB 4.0 is a useful resource for studying TF and transcription regulation, which contains comprehensive annotation and classification of TFs and transcription cofactors.


Subject(s)
Databases, Genetic , Gene Expression Regulation , Transcription Factors , Animals , Humans , Databases, Protein , Molecular Sequence Annotation , Transcription Factors/metabolism
2.
Acta Pharmacol Sin ; 45(1): 180-192, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37644132

ABSTRACT

Adhesion molecules play essential roles in the homeostatic regulation and malignant transformation of hematopoietic cells. The dysregulated expression of adhesion molecules in leukemic cells accelerates disease progression and the development of drug resistance. Thus, targeting adhesion molecules represents an attractive anti-leukemic therapeutic strategy. In this study, we investigated the prognostic role and functional significance of cytohesin-1 (CYTH1) in acute myeloid leukemia (AML). Analysis of AML patient data from the GEPIA and BloodSpot databases revealed that CYTH1 was significantly overexpressed in AML and independently correlated with prognosis. Functional assays using AML cell lines and an AML xenograft mouse model confirmed that CYTH1 depletion significantly inhibited the adhesion, migration, homing, and engraftment of leukemic cells, delaying disease progression and prolonging animal survival. The CYTH1 inhibitor SecinH3 exerted in vitro and in vivo anti-leukemic effects by disrupting leukemic adhesion and survival programs. In line with the CYTH1 knockdown results, targeting CYTH1 by SecinH3 suppressed integrin-associated adhesion signaling by reducing ITGB2 expression. SecinH3 treatment efficiently induced the apoptosis and inhibited the growth of a panel of AML cell lines (MOLM-13, MV4-11 and THP-1) with mixed-lineage leukemia gene rearrangement, partly by reducing the expression of the anti-apoptotic protein MCL1. Moreover, we showed that SecinH3 synergized with the BCL2-selective inhibitor ABT-199 (venetoclax) to inhibit the proliferation and promote the apoptosis of ABT-199-resistant leukemic cells. Taken together, our results not only shed light on the role of CYTH1 in cell-adhesion-mediated leukemogenesis but also propose a novel combination treatment strategy for AML.


Subject(s)
Antineoplastic Agents , Leukemia, Myeloid, Acute , Humans , Mice , Animals , Leukemia, Myeloid, Acute/drug therapy , Sulfonamides/pharmacology , Sulfonamides/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis , Cell Adhesion Molecules , Disease Progression , Cell Line, Tumor
3.
Zhongguo Zhong Yao Za Zhi ; 49(1): 197-207, 2024 Jan.
Article in Zh | MEDLINE | ID: mdl-38403352

ABSTRACT

This study aims to reveal the mechanism of prenatal stress in affecting the testicular development of offspring rats and the intervention effects of Zuogui Pills via connexin 43(Cx43). Forty pregnant SD rats were randomized into a blank control group, a mo-del group, a high-dose(18.9 g·kg~(-1)) Zuogui Pills group, a low-dose(9.45 g·kg~(-1)) Zuogui Pills group, and a vitamin E(1.44 mg·kg~(-1)) group. The other groups except the blank control group was subjected to chronic unpredictable mild stress for the modeling of prenatal stress. The model was evaluated by sucrose preference test, open field test, and enzyme-linked immunosorbent assay(ELISA) of the glucocorticoid level. ELISA was employed to measure the thyroxine 4(T4), testosterone(T), and follicle-stimulating hormone(FSH) levels to assess kidney deficiency. Hematoxylin-eosin(HE) staining was employed to evaluate the status of testicular germ cells. An automatic sperm analyzer was used to measure the sperm quality. Immunofluorescence double staining was employed to detect the expression of Cx43 and follicle-stimulating hormone receptor(FSHR) in the testes of offspring rats. The mRNA and protein levels of Cx43, FSHR, phosphatidylinositol 3-kinase(PI3K), and protein kinase B(Akt) were determined by real-time fluorescence quantitative polymerase chain reaction and Western blot, respectively. Prenatal stress induced testicular development disorders in offspring rats. The HE staining results showed that on the day of birth, the model group had reduced seminiferous tubules in the testes, elevated FSH level in the serum, and lowered Cx43 level in the testicular tissue. Male offspring rats of 60 days old had reduced testicular spermatogenic function, decreased sperm quality, elevated FSH level and lowered T level in the serum, and down-regulated protein and mRNA levels of Cx43, FSHR, PI3K, and Akt in the testicular tissue. Zuogui Pills alleviated the abnormal development and dysfunction of testicles in the offspring rats caused by prenatal stress. In summary, Zuogui Pills may weaken the effects of prenatal stress on testicular development and spermatogenic function of offspring rats by activating the PI3K/Akt pathway to regulate Cx43 expression in the testicular tissue.


Subject(s)
Connexin 43 , Drugs, Chinese Herbal , Proto-Oncogene Proteins c-akt , Rats , Male , Animals , Proto-Oncogene Proteins c-akt/metabolism , Connexin 43/genetics , Connexin 43/metabolism , Connexin 43/pharmacology , Rats, Sprague-Dawley , Phosphatidylinositol 3-Kinases/metabolism , Semen/metabolism , Testis , Follicle Stimulating Hormone/metabolism , Follicle Stimulating Hormone/pharmacology , RNA, Messenger/metabolism
4.
AJR Am J Roentgenol ; 220(6): 817-825, 2023 06.
Article in English | MEDLINE | ID: mdl-36752371

ABSTRACT

BACKGROUND. Abbreviated protocols could allow wider adoption of MRI in patients undergoing breast cancer neoadjuvant chemotherapy (NAC). However, abbreviated MRI has been explored primarily in screening settings. OBJECTIVE. The purpose of this article was to compare diagnostic performance of abbreviated MRI and full-protocol MRI for evaluation of breast cancer NAC response, stratifying by radiologists' breast imaging expertise. METHODS. This retrospective study included 203 patients with breast cancer (mean age, 52.1 ± 11.2 [SD] years) from two hospitals who underwent MRI before NAC initiation and after NAC completion before surgical resection from March 2017 to April 2021. Abbreviated MRI was extracted from full-protocol MRI and included the axial T2-weighted sequence and precontrast and single early postcontrast T1-weighted sequences. Three general radiologists and three breast radiologists independently interpreted abbreviated and full-protocol MRI in separate sessions, identifying enhancing lesions to indicate residual tumor and measuring lesion size. The reference standard was presence and size of residual tumor on pathologic assessment of post-NAC surgical specimens. RESULTS. A total of 50 of 203 patients had pathologic complete response (pCR). Intraobserver and interobserver agreement for abbreviated and full-protocol MRI for general and breast radiologists ranged from substantial to nearly perfect (κ = 0.70-0.81). Abbreviated MRI compared with full-protocol MRI showed no significant difference for general radiologists in sensitivity (54.7% vs 57.3%, p > .99), specificity (92.8% vs 95.6%, p = .29), or accuracy (83.4% vs 86.2%, p = .30), nor for breast radiologists in sensitivity (60.0% vs 61.3%, p > .99), specificity (94.6% vs 97.4%, p = .22), or accuracy (86.0% vs 88.5%, p = .30). Sensitivity, specificity, and accuracy were not significantly different between protocols for any reader individually (p > .05). Mean difference in residual tumor size on MRI relative to pathology for abbreviated protocol ranged for general radiologists from -0.19 to 0.03 mm and for breast radiologists from -0.15 to -0.05 mm, and for full protocol ranged for general radiologists from 0.57 to 0.65 mm and for breast radiologists from 0.66 to 0.79 mm. CONCLUSION. Abbreviated compared with full-protocol MRI showed similar intraobserver and interobserver agreement and no significant difference in diagnostic performance. Full-protocol MRI but not abbreviated MRI slightly overestimated pathologic tumor sizes. CLINICAL IMPACT. Abbreviated protocols may facilitate use of MRI for post-NAC response assessment by general and breast radiologists.


Subject(s)
Breast Neoplasms , Humans , Adult , Middle Aged , Female , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/drug therapy , Breast Neoplasms/surgery , Retrospective Studies , Neoadjuvant Therapy , Neoplasm, Residual , Magnetic Resonance Imaging/methods
5.
Nucleic Acids Res ; 49(D1): D468-D474, 2021 01 08.
Article in English | MEDLINE | ID: mdl-32990749

ABSTRACT

T cells and the T-cell receptor (TCR) repertoire play pivotal roles in immune response and immunotherapy. TCR sequencing (TCR-Seq) technology has enabled accurate profiling TCR repertoire and currently a large number of TCR-Seq data are available in public. Based on the urgent need to effectively re-use these data, we developed TCRdb, a comprehensive human TCR sequences database, by a uniform pipeline to characterize TCR sequences on TCR-Seq data. TCRdb contains more than 277 million highly reliable TCR sequences from over 8265 TCR-Seq samples across hundreds of tissues/clinical conditions/cell types. The unique features of TCRdb include: (i) comprehensive and reliable sequences for TCR repertoire in different samples generated by a strict and uniform pipeline of TCRdb; (ii) powerful search function, allowing users to identify their interested TCR sequences in different conditions; (iii) categorized sample metadata, enabling comparison of TCRs in different sample types; (iv) interactive data visualization charts, describing the TCR repertoire in TCR diversity, length distribution and V-J gene utilization. The TCRdb database is freely available at http://bioinfo.life.hust.edu.cn/TCRdb/ and will be a useful resource in the research and application community of T cell immunology.


Subject(s)
Databases, Protein , Receptors, Antigen, T-Cell/chemistry , Search Engine , Amino Acid Sequence , Internet
6.
J Magn Reson Imaging ; 56(6): 1912-1923, 2022 12.
Article in English | MEDLINE | ID: mdl-35499275

ABSTRACT

BACKGROUND: The monitoring of immunotherapies is still based on changes in the tumor size in imaging, with a long evaluation period and low sensitivity. PURPOSE: To investigate the effectiveness of diffusion kurtosis imaging (DKI) and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in assessing the therapeutic efficacy of anti-programmed death-1 (PD-1) therapy in a mouse triple negative breast cancer (TNBC) model. STUDY TYPE: Prospective. ANIMAL MODEL: A total of 54 BALB/c mouse subcutaneous 4 T1 transplantation models of TNBC. FIELD STRENGTH/SEQUENCE: A 3.0-T; turbo spin echo (TSE) T2-weighted imaging, DKI with seven b values (0, 500, 1000, 1500, 2000, 2500, and 3000 sec/mm2 ) and T1-twist DCE acquisition series. ASSESSMENT: DKI and DCE-MRI parameters were evaluated by two radiologists independently. Regions of interest (ROIs) were drawn manually on the maximum cross-sectional area of the lesion; care was taken to avoid necrotic areas. The tumor cell density, the CD45 and CD31 levels were analyzed by two pathologists. STATISTICAL TESTS: The two-tailed unpaired t-test, Mann-Whitney U test, Fisher's exact test and Pearson correlation coefficient were performed. A P < 0.05 was considered statistically significant. RESULTS: The apparent diffusion coefficient (ADC), mean diffusivity (MD), Ktrans and Kep values were significantly different between the two groups at each time point after treatment. There were significant differences in the mean kurtosis (MK) and Ve values between the two groups at 5 and 10 days after treatment but no significant differences at 15 days (P = 0.317 and 0.183, respectively). The ADC and MD values were significantly correlated with tumor cell density (ADC, r = -0.833; MD, r = 0.890) and the CD45 level (ADC, r = 0.720; MD, r = 0.718). The Ktrans and Kep values were significantly correlated with the CD31 level (Ktrans , r = 0.820; Kep , r = 0.683). DATA CONCLUSION: DKI and DCE-MRI could reflect the changes in tumor microstructure and tumor tissue vasculature after anti-PD-1 therapy, respectively. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY: Stage 4.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Mice , Animals , Triple Negative Breast Neoplasms/diagnostic imaging , Triple Negative Breast Neoplasms/drug therapy , Contrast Media/chemistry , Prospective Studies , Diffusion Magnetic Resonance Imaging/methods , Diffusion Tensor Imaging
7.
Ophthalmic Res ; 65(3): 254-263, 2022.
Article in English | MEDLINE | ID: mdl-34959240

ABSTRACT

BACKGROUND: Myopia (nearsightedness) is currently the most common human eye disorder, worldwide. In the recent years, several studies have addressed the role of microRNAs (miRNAs) in the pathogenesis of myopia. OBJECTIVES: The aim of this study was to perform a meta-analysis on the miRNA-expression profiling studies in myopia to identify commonly dysregulated miRNAs in myopic tissues. METHOD: Seven independent studies were included in the meta-analysis. A vote-counting strategy was employed as the meta-analysis method. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis and Gene Ontology (GO) functional enrichment analysis were performed to identify the pathways most strongly affected by the dysregulated mouse miRNAs. RESULTS: According to the vote-counting method, eighteen miRNAs were reported in at least 2 studies with the consistent direction, of which 13 miRNAs were commonly upregulated in myopic samples compared with control samples, and five miRNAs were commonly downregulated. Subgroup analyses divided and compared the differentially expressed miRNAs according to species (human and animal) and ocular tissue types. The KEGG analysis showed that the dysregulated mouse miRNAs were most enriched in extracellular matrix-receptor interaction signal pathway. The most enriched GO process regulated by the dysregulated mouse miRNAs was cellular protein modification process. CONCLUSIONS: Our meta-analysis recommends several miRNAs may provide some clues of the potential biomarkers in myopia. Further mechanistic studies are warranted to elucidate the biological role of the dysregulated miRNAs in the development of myopia.


Subject(s)
MicroRNAs , Myopia , Animals , Biomarkers , Gene Expression Profiling/methods , Humans , Mice , MicroRNAs/genetics , Myopia/genetics , Signal Transduction
8.
Bioinformatics ; 36(15): 4255-4262, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32399561

ABSTRACT

MOTIVATION: T-cell receptors (TCRs) function to recognize antigens and play vital roles in T-cell immunology. Surveying TCR repertoires by characterizing complementarity-determining region 3 (CDR3) is a key issue. Due to the high diversity of CDR3 and technological limitation, accurate characterization of CDR3 repertoires remains a great challenge. RESULTS: We propose a computational method named CATT for ultra-sensitive and precise TCR CDR3 sequences detection. CATT can be applied on TCR sequencing, RNA-Seq and single-cell TCR(RNA)-Seq data to characterize CDR3 repertoires. CATT integrated de Bruijn graph-based micro-assembly algorithm, data-driven error correction model and Bayesian inference algorithm, to self-adaptively and ultra-sensitively characterize CDR3 repertoires with high performance. Benchmark results of datasets from in silico and experimental data demonstrated that CATT showed superior recall and precision compared with existing tools, especially for data with short read length and small size and single-cell sequencing data. Thus, CATT will be a useful tool for TCR analysis in researches of cancer and immunology. AVAILABILITY AND IMPLEMENTATION: http://bioinfo.life.hust.edu.cn/CATT or https://github.com/GuoBioinfoLab/CATT. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
RNA-Seq , Receptors, Antigen, T-Cell , Bayes Theorem , Complementarity Determining Regions/genetics , Receptors, Antigen, T-Cell/genetics , T-Lymphocytes
9.
Immunity ; 35(6): 883-96, 2011 Dec 23.
Article in English | MEDLINE | ID: mdl-22169041

ABSTRACT

Epigenetic histone modifications play critical roles in the control of gene transcription. Recently, an increasing number of histone H2A deubiquitinases have been identified and characterized. However, the physiological functions for this entire group of histone H2A deubiquitinases remain unknown. In this study, we revealed that the histone H2A deubiquitinase MYSM1 plays an essential and intrinsic role in early B cell development. MYSM1 deficiency results in a block in early B cell commitment and a defect of B cell progenitors in expression of EBF1 and other B lymphoid genes. We further demonstrated that MYSM1 derepresses EBF1 transcription in B cell progenitors by orchestrating histone modifications and transcription factor recruitment to the EBF1 locus. Thus, this study not only uncovers the essential role for MYSM1 in gene transcription during early B cell development but also underscores the biological significance of reversible epigenetic histone H2A ubiquitination.


Subject(s)
B-Lymphocytes/cytology , B-Lymphocytes/enzymology , Cell Differentiation , Endopeptidases/metabolism , Histones/metabolism , Transcription Factors/metabolism , Animals , B-Lymphocytes/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Lineage/genetics , Chromosomal Proteins, Non-Histone/metabolism , Gene Expression Regulation , Mice , Mice, Inbred C57BL , Mice, Transgenic , Promoter Regions, Genetic , Protein Binding , Trans-Activators/genetics , Transcription Factors/genetics , Transcription, Genetic , Ubiquitin-Specific Proteases
10.
Med Sci Monit ; 26: e926224, 2020 Aug 10.
Article in English | MEDLINE | ID: mdl-32773731

ABSTRACT

BACKGROUND We used fractional amplitude of low-frequency fluctuation (fALFF) technology to investigate spontaneous cerebral activity in patients with monocular blindness (MB) and in healthy controls (HCs). MATERIAL AND METHODS Thirty MB patient and 15 HCs were included in this study. All subjects were scanned by resting-state functional magnetic resonance imaging (rs-fMRI). The independent sample t test and chi-squared test were applied to analyze demographics of MB patients and HCs. The 2-sample t test and receiver operating characteristic (ROC) curves were applied to identify the difference in average fALFF values between MB patients and HCs. Pearson's correlation analysis was applied to explore the relationship between the average fALFF values of brain areas and clinical behavior in the MB group. RESULTS MB patients had lower fALFF values in the left anterior cingulate and higher fALFF values in the left precuneus and right and left inferior parietal lobes than in HCs. Moreover, the mean fALFF values of MB patients in the left anterior cingulate had negative correlations with the anxiety scale score (r=-0.825, P<0.001) and the depression scale score (r=-0.871, P<0.001). CONCLUSIONS Our study found that MB patients had abnormal spontaneous activities in the visual and vision-related regions. The finding of abnormal neuronal activity helps to reveal the underlying neuropathologic mechanisms of vision loss.


Subject(s)
Blindness/diagnostic imaging , Magnetic Resonance Imaging/methods , Blindness/physiopathology , Brain Mapping/methods , Case-Control Studies , Female , Humans , Male , Middle Aged
11.
Med Sci Monit ; 26: e925856, 2020 Nov 23.
Article in English | MEDLINE | ID: mdl-33226973

ABSTRACT

BACKGROUND The aim of this study was to explore potential changes in brain function network activity in patients with adult strabismus with amblyopia (SA) using the voxel-wise degree centrality (DC) method. MATERIAL AND METHODS We enrolled 15 patients with SA (6 males, 9 females) and 15 sex-matched healthy controls (HCs). All subjects completed resting functional magnetic resonance imaging scans. Independent-sample t tests and receiver operating characteristic (ROC) curves were used to assess DC value differences between groups, and Pearson correlation analysis was performed to evaluate correlations between DC-changed brain regions and clinical data of patients with SA. RESULTS Compared with the HC group, DC values that were lower in patients with SA included the left middle frontal gyrus and bilateral angular gyri. Increases were observed in the left fusiform gyrus, right lingual gyrus, right middle occipital gyrus, right postcentral gyrus, and left paracentral lobule. However, DC values were not correlated with clinical manifestations. ROC curve analysis showed high accuracy. CONCLUSIONS We found abnormal neural activity in specific brain regions in patients with SA. Specifically, we observed significant changes in DC values compared to HCs. These changes may be useful to identify the specific mechanisms involved in brain dysfunction in SA.


Subject(s)
Amblyopia/diagnostic imaging , Amblyopia/physiopathology , Brain/physiopathology , Magnetic Resonance Imaging , Nerve Net/physiopathology , Rest , Strabismus/diagnostic imaging , Strabismus/physiopathology , Adult , Amblyopia/complications , Brain/diagnostic imaging , Case-Control Studies , Female , Humans , Male , Nerve Net/diagnostic imaging , ROC Curve , Strabismus/complications , Young Adult
12.
Med Sci Monit ; 24: 2541-2549, 2018 Apr 25.
Article in English | MEDLINE | ID: mdl-29694335

ABSTRACT

BACKGROUND Histone H2A deubiquitinase MYSM1 has recently been shown to be essential for hematopoiesis and hematopoietic stem cell (HSC) function in both mice and humans. However, conventional MYSM1 knockouts cause partial embryonic lethality and growth retardation, and it is difficult to convincingly remove the effects of environmental factors on HSC differentiation and function. MATERIAL AND METHODS MYSM1 conditional knockout (cKO) mice were efficiently induced by using the Vav1-cre transgenic system. The Vav-Cre MYSM1 cKO mice were then analyzed to verify the intrinsic role of MYSM1 in hematopoietic cells. RESULTS MYSM1 cKO mice were viable and were born at normal litter sizes. At steady state, we observed a defect in hematopoiesis, including reduced bone marrow cellularity and abnormal HSC function. MYSM1 deletion drives HSCs from quiescence into rapid cycling, and MYSM1-deficient HSCs display impaired engraftment. In particular, the immature cycling cKO HSCs have elevated reactive oxygen species (ROS) levels and are prone to apoptosis, resulting in the exhaustion of the stem cell pool during stress response to 5-FU. CONCLUSIONS Our study using MYSM1 cKO mice confirms the important role of MYSM1 in maintaining HSC quiescence and survival.


Subject(s)
Endopeptidases/metabolism , Hematopoietic Stem Cells/metabolism , Animals , Apoptosis/physiology , Cell Differentiation/physiology , Cell Division , Cell Survival/genetics , Endopeptidases/genetics , Hematopoiesis , Hematopoietic Stem Cells/physiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Reactive Oxygen Species/metabolism , Trans-Activators , Ubiquitin-Specific Proteases
13.
Small ; 13(48)2017 12.
Article in English | MEDLINE | ID: mdl-29125688

ABSTRACT

As a characteristic trait of most tumor types, metastasis is the major cause of the death of patients. In this study, a photothermal agent based on gold nanorod is coated with metal (Gd3+ )-organic (polyphenol) network to realize combination therapy for metastatic tumors. This nanotheranostic system significantly enhances antitumor therapeutic effects in vitro and in vivo with the combination of photothermal therapy (PTT) and chemotherapy, also can remarkably prevent the invasion and metastasis due to the presence of polyphenol. After the treatment, an 81% decrease in primary tumor volumes and a 58% decrease in lung metastasis are observed. In addition, the good performance in magnetic resonance imaging, computerized tomography, and photothermal imaging of the nanotheranostic system can realize image-guided therapy. The multifunctional nanotheranostic system will find a great potential in diagnosis and treatment integration in tumor treatments, and broaden the applications of PTT treatment.


Subject(s)
Metals/chemistry , Neoplasm Metastasis/therapy , Polyphenols/pharmacology , Theranostic Nanomedicine/methods , Animals , Cell Death , Cell Movement , Gold/chemistry , HeLa Cells , Humans , Male , Metabolomics , Metal Nanoparticles/chemistry , Metal Nanoparticles/ultrastructure , Mice, Inbred BALB C , Mice, Inbred C57BL , Silicon Dioxide/chemistry
14.
J Immunol ; 195(4): 1459-69, 2015 Aug 15.
Article in English | MEDLINE | ID: mdl-26157173

ABSTRACT

Invariant NKT (iNKT) cells are unconventional innate-like T cells demonstrating potent antitumor function in conventional mouse models. However, the iNKT cell ligands have had limited efficacy in human antitumor clinical trials, mostly due to the profound differences in the properties and compositions of iNKT cells between the two species, including the presence of a CD8(+) subset of iNKT cells only in humans. To build reliable in vivo models for studying human iNKT cells, we recently developed the first humanized mouse model (hCD1d-KI) with human CD1d knocked in. To further humanize the mouse model, we now introduced the human invariant NKT TCRα-chain (Vα24Jα18) into the hCD1d-knockin mice. Similar to humans, this humanized mouse model developed a subset of CD8αß(+) iNKT cells among other human-like iNKT subsets. The presence of the CD8αß(+) iNKT cells in the thymus suggests that these cells developed in the thymus. In the periphery, these NKT cells showed a strong Th1-biased cytokine response and potent cytotoxicity for syngeneic tumor cells upon activation, as do human CD8αß(+) iNKT cells. The low binding avidity of iNKT TCRs to the human CD1d/lipid complex and high prevalence of Vß7 TCRß among the CD8(+) iNKT cells strongly point to a low avidity-based developmental program for these iNKT cells, which included the suppression of Th-POK and upregulation of eomesodermin transcriptional factors. Our establishment of this extensively humanized mouse model phenotypically and functionally reflecting the human CD1d/iNKT TCR system will greatly facilitate the future design and optimization of iNKT cell-based immunotherapies.


Subject(s)
CD8 Antigens/metabolism , Natural Killer T-Cells/metabolism , T-Lymphocyte Subsets/metabolism , Animals , Antigens, CD1d/genetics , Antigens, CD1d/metabolism , Cytotoxicity, Immunologic , Humans , Immunologic Memory , Immunophenotyping , Mice , Mice, Knockout , Models, Animal , Natural Killer T-Cells/immunology , Phenotype , Protein Binding , Receptors, Antigen, T-Cell/metabolism , Receptors, Antigen, T-Cell, alpha-beta/metabolism , T-Lymphocyte Subsets/immunology , Transcription, Genetic
15.
Blood ; 124(17): 2647-56, 2014 Oct 23.
Article in English | MEDLINE | ID: mdl-25217698

ABSTRACT

The mechanisms controlling the development of dendritic cells (DCs) remain incompletely understood. Using an Mysm1 knockout (Mysm1(-/-)) mouse model, we identified the histone H2A deubiquitinase Mysm1, as a critical regulator in DC differentiation. Mysm1(-/-) mice showed a global reduction of DCs in lymphoid organs, whereas development of granulocytes and macrophages were not severely affected. Hematopoietic progenitors and DC precursors were significantly decreased in Mysm1(-/-) mice and defective in Fms-like tyrosine kinase-3(Flt3) ligand-induced, but not in granulocyte macrophage-colony-stimulating factor (GM-CSF)-induced DC differentiation in vitro. Molecular studies demonstrated that the developmental defect of DCs from common myeloid progenitor (CMP) in Mysm1(-/-) mice is associated with decreased Flt3 expression and that Mysm1 derepresses transcription of the Flt3 gene by directing histone modifications at the Flt3 promoter region. Two molecular mechanisms were found to be responsible for the selective role of Mysm1 in lineage determination of DCs from CMPs: the selective expression of Mysm1 in a subset of CMPs and the different requirement of Mysm1 for PU.1 recruitment to the Flt3 locus vs GM-CSF-α and macrophage-colony-stimulating factor receptor loci. In conclusion, this study reveals an essential role of Mysm1 in epigenetic regulation of Flt3 transcription and DC development, and it provides a novel mechanism for lineage determination from CMP.


Subject(s)
Cell Differentiation/genetics , Dendritic Cells/metabolism , Endopeptidases/genetics , Epigenesis, Genetic , Myeloid Progenitor Cells/metabolism , Animals , Cell Differentiation/drug effects , Cells, Cultured , Endopeptidases/metabolism , Flow Cytometry , Gene Expression , Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology , HEK293 Cells , Histones/metabolism , Humans , Mice, Knockout , Promoter Regions, Genetic/genetics , Protein Binding , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Receptor, Macrophage Colony-Stimulating Factor/genetics , Receptor, Macrophage Colony-Stimulating Factor/metabolism , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Trans-Activators/genetics , Trans-Activators/metabolism , Ubiquitin-Specific Proteases , fms-Like Tyrosine Kinase 3/genetics , fms-Like Tyrosine Kinase 3/metabolism
16.
Hum Genomics ; 9: 2, 2015 Feb 08.
Article in English | MEDLINE | ID: mdl-25757876

ABSTRACT

Breast cancer is the most common malignancy in women and the leading cause of cancer deaths in women worldwide. Breast cancers are heterogenous and exist in many different subtypes (luminal A, luminal B, triple negative, and human epidermal growth factor receptor 2 (HER2) overexpressing), and each subtype displays distinct characteristics, responses to treatment, and patient outcomes. In addition to varying immunohistochemical properties, each subtype contains a distinct gene mutation profile which has yet to be fully defined. Patient treatment is currently guided by hormone receptor status and HER2 expression, but accumulating evidence suggests that genetic mutations also influence drug responses and patient survival. Thus, identifying the unique gene mutation pattern in each breast cancer subtype will further improve personalized treatment and outcomes for breast cancer patients. In this study, we used the Ion Personal Genome Machine (PGM) and Ion Torrent AmpliSeq Cancer Panel to sequence 737 mutational hotspot regions from 45 cancer-related genes to identify genetic mutations in 80 breast cancer samples of various subtypes from Chinese patients. Analysis revealed frequent missense and combination mutations in PIK3CA and TP53, infrequent mutations in PTEN, and uncommon combination mutations in luminal-type cancers in other genes including BRAF, GNAS, IDH1, and KRAS. This study demonstrates the feasibility of using Ion Torrent sequencing technology to reliably detect gene mutations in a clinical setting in order to guide personalized drug treatments or combination therapies to ultimately target individual, breast cancer-specific mutations.


Subject(s)
Breast Neoplasms/genetics , High-Throughput Nucleotide Sequencing/methods , Mutation/genetics , Receptor, ErbB-2/genetics , Adult , Aged , Breast Neoplasms/pathology , DNA Mutational Analysis , Female , Humans , Middle Aged , Neoplasm Proteins/genetics , Precision Medicine
17.
Proc Natl Acad Sci U S A ; 110(41): E3927-36, 2013 Oct 08.
Article in English | MEDLINE | ID: mdl-24062447

ABSTRACT

Histone modifications play critical roles in regulating immunity; however, little is known about the epigenetic control of natural killer (NK) cell development. Here, we found that NK cell development is severely impaired in mice deficient in the histone H2A deubiquitinase MYSM1. We demonstrated that MYSM1 is required for NK cell maturation but not for NK lineage specification and commitment. We also found that MYSM1 intrinsically controls this NK cell maturation. Mechanistic studies revealed that the expression of transcription factor, inhibitor of DNA-binding protein (ID2), a critical factor for NK cell development, is impaired in Mysm1(-/-) NK cells. MYSM1 interacts with nuclear factor IL-3 (NFIL3, also known as E4BP4), a critical factor for mouse NK cell development, and the recruitment of nuclear factor Il-3 to the ID2 locus is dependent on MYSM1. Further, we observed that MYSM1 is involved in maintaining an active chromatin at the ID2 locus to promote NK cell development. Hence this study demonstrates the critical epigenetic regulation of NK cell development by the histone H2A deubiquitinase MYSM1 through the transcriptional control of transcription factors important for NK cell development.


Subject(s)
Adaptive Immunity/immunology , Endopeptidases/immunology , Epigenesis, Genetic/immunology , Killer Cells, Natural/immunology , Animals , Chromatin Immunoprecipitation , Endopeptidases/genetics , Endopeptidases/metabolism , Flow Cytometry , HEK293 Cells , Humans , Immunoblotting , Inhibitor of Differentiation Protein 2/metabolism , Interleukin-3/metabolism , Killer Cells, Natural/cytology , Mice , Mice, Knockout , Real-Time Polymerase Chain Reaction , Trans-Activators , Transduction, Genetic , Ubiquitin-Specific Proteases
18.
J Hum Genet ; 60(10): 589-96, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26134512

ABSTRACT

Colorectal cancer (CRC) is widespread with significant mortality. Both inherited and sporadic mutations in various signaling pathways influence the development and progression of the cancer. Identifying genetic mutations in CRC is important for optimal patient treatment and many approaches currently exist to uncover these mutations, including next-generation sequencing (NGS) and commercially available kits. In the present study, we used a semiconductor-based targeted DNA-sequencing approach to sequence and identify genetic mutations in 91 human rectal cancer samples. Analysis revealed frequent mutations in KRAS (58.2%), TP53 (28.6%), APC (16.5%), FBXW7 (9.9%) and PIK3CA (9.9%), and additional mutations in BRAF, CTNNB1, ERBB2 and SMAD4 were also detected at lesser frequencies. Thirty-eight samples (41.8%) also contained two or more mutations, with common combination mutations occurring between KRAS and TP53 (42.1%), and KRAS and APC (31.6%). DNA sequencing for individual cancers is of clinical importance for targeted drug therapy and the advantages of such targeted gene sequencing over other NGS platforms or commercially available kits in sensitivity, cost and time effectiveness may aid clinicians in treating CRC patients in the near future.


Subject(s)
High-Throughput Nucleotide Sequencing , Neoplasm Proteins/genetics , Rectal Neoplasms/genetics , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Mutation
19.
Hepatology ; 59(5): 1850-63, 2014 May.
Article in English | MEDLINE | ID: mdl-24002871

ABSTRACT

UNLABELLED: The MYC oncogene is overexpressed in hepatocellular carcinoma (HCC) and has been associated with widespread microRNA (miRNA) repression; however, the underlying mechanisms are largely unknown. Here, we report that the c-Myc oncogenic transcription factor physically interacts with enhancer of zeste homolog 2 (EZH2), a core enzymatic unit of polycomb repressive complex 2 (PRC2). Furthermore, miR-101, an important tumor-suppressive miRNA in human hepatocarcinomas, is epigenetically repressed by PRC2 complex in a c-Myc-mediated manner. miR-101, in turn, inhibits the expression of two subunits of PRC2 (EZH2 and EED), thus creating a double-negative feedback loop that regulates the process of hepatocarcinogenesis. Restoration of miR-101 expression suppresses multiple malignant phenotypes of HCC cells by coordinate repression of a cohort of oncogenes, including STMN1, JUNB, and CXCR7, and further increases expression of endogenous miR-101 by inhibition of PRC2 activation. In addition, co-overexpression of c-Myc and EZH2 in HCC samples was closely associated with lower expression of miR-101 (P < 0.0001) and poorer prognosis of HCC patients (P < 0.01). CONCLUSIONS: c-Myc collaborates with EZH2-containing PRC2 complex in silencing tumor-suppressive miRNAs during hepatocarcinogenesis and provides promising therapeutic candidates for human HCC.


Subject(s)
Carcinoma, Hepatocellular/genetics , Gene Expression Regulation, Neoplastic , Gene Silencing , Liver Neoplasms/genetics , MicroRNAs/physiology , Proto-Oncogene Proteins c-myc/physiology , Animals , Carcinoma, Hepatocellular/mortality , Carcinoma, Hepatocellular/pathology , DNA Methylation , Enhancer of Zeste Homolog 2 Protein , Humans , Liver Neoplasms/mortality , Liver Neoplasms/pathology , Mice , Mice, Inbred BALB C , MicroRNAs/antagonists & inhibitors , Polycomb Repressive Complex 2/metabolism , Polycomb Repressive Complex 2/physiology , Receptors, CXCR/physiology
20.
Blood ; 122(16): 2812-22, 2013 Oct 17.
Article in English | MEDLINE | ID: mdl-24014243

ABSTRACT

Epigenetic histone modifications play critical roles in the control of self-renewal and differentiation of hematopoietic stem cells (HSCs). Mysm1 is a recently identified histone H2A deubiquitinase with essential and intrinsic roles for maintaining functional HSCs. In this study, in addition to confirming this function of Mysm1, by using Mysm1-deficient (Mysm1(-/-)) mice, we provide more evidence for how Mysm1 controls HSC homeostasis. Mysm1 deletion drives HSCs from quiescence into rapid cycling and increases their apoptotic rate, resulting in an exhaustion of the stem cell pool, which leads to an impaired self-renewal and lineage reconstituting abilities in the Mysm1-deficient mice. Our study identified Gfi1 as one of the candidate genes responsible for the HSC defect in Mysm1-deficient mice. Mechanistic studies revealed that Mysm1 modulates histone modifications and directs the recruitment of key transcriptional factors such as Gata2 and Runx1 to the Gfi1 locus in HSCs. We found that Mysm1 directly associates with the Gfi1 enhancer element and promotes its transcription through Gata2 and Runx1 transactivation. Thus, our study not only elaborates on the initial reports of Mysm1 association with HSC homeostasis but also delineates a possible epigenetic mechanism through which Mysm1 carries out this function in the HSCs.


Subject(s)
Endopeptidases/physiology , Epigenesis, Genetic , Hematopoietic Stem Cells/cytology , Animals , Apoptosis , Cell Cycle , Cell Differentiation , Cell Proliferation , Cell Survival , Core Binding Factor Alpha 2 Subunit/metabolism , DNA-Binding Proteins/metabolism , Endopeptidases/genetics , GATA2 Transcription Factor/metabolism , Gene Deletion , Histones/metabolism , Homeostasis , Mice , Mice, Transgenic , Trans-Activators , Transcription Factors/metabolism , Ubiquitin-Specific Proteases
SELECTION OF CITATIONS
SEARCH DETAIL