Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 977
Filter
Add more filters

Publication year range
1.
Nature ; 593(7858): 294-298, 2021 05.
Article in English | MEDLINE | ID: mdl-33854234

ABSTRACT

DNA double-strand breaks (DSBs) are a highly cytotoxic form of DNA damage and the incorrect repair of DSBs is linked to carcinogenesis1,2. The conserved error-prone non-homologous end joining (NHEJ) pathway has a key role in determining the effects of DSB-inducing agents that are used to treat cancer as well as the generation of the diversity in antibodies and T cell receptors2,3. Here we applied single-particle cryo-electron microscopy to visualize two key DNA-protein complexes that are formed by human NHEJ factors. The Ku70/80 heterodimer (Ku), the catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs), DNA ligase IV (LigIV), XRCC4 and XLF form a long-range synaptic complex, in which the DNA ends are held approximately 115 Å apart. Two DNA end-bound subcomplexes comprising Ku and DNA-PKcs are linked by interactions between the DNA-PKcs subunits and a scaffold comprising LigIV, XRCC4, XLF, XRCC4 and LigIV. The relative orientation of the DNA-PKcs molecules suggests a mechanism for autophosphorylation in trans, which leads to the dissociation of DNA-PKcs and the transition into the short-range synaptic complex. Within this complex, the Ku-bound DNA ends are aligned for processing and ligation by the XLF-anchored scaffold, and a single catalytic domain of LigIV is stably associated with a nick between the two Ku molecules, which suggests that the joining of both strands of a DSB involves both LigIV molecules.


Subject(s)
Cryoelectron Microscopy , DNA Breaks, Double-Stranded , DNA End-Joining Repair , DNA/metabolism , DNA/ultrastructure , DNA/chemistry , DNA Ligase ATP/metabolism , DNA Ligase ATP/ultrastructure , DNA Repair Enzymes/metabolism , DNA Repair Enzymes/ultrastructure , DNA-Activated Protein Kinase/metabolism , DNA-Activated Protein Kinase/ultrastructure , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/ultrastructure , Humans , Ku Autoantigen/metabolism , Ku Autoantigen/ultrastructure , Models, Molecular , Phosphorylation
2.
Nature ; 598(7881): 500-503, 2021 10.
Article in English | MEDLINE | ID: mdl-34544113

ABSTRACT

Plant immune responses are mainly activated by two types of receptor. Pattern recognition receptors localized on the plasma membrane perceive extracellular microbial features, and nucleotide-binding leucine-rich repeat receptors (NLRs) recognize intracellular effector proteins from pathogens1. NLRs possessing amino-terminal Toll/interleukin-1 receptor (TIR) domains activate defence responses via the NADase activity of the TIR domain2,3. Here we report that activation of TIR signalling has a key role in pattern-triggered immunity (PTI) mediated by pattern recognition receptors. TIR signalling mutants exhibit attenuated PTI responses and decreased resistance against pathogens. Consistently, PTI is compromised in plants with reduced NLR levels. Treatment with the PTI elicitor flg22 or nlp20 rapidly induces many genes encoding TIR-domain-containing proteins, which is likely to be responsible for activating TIR signalling during PTI. Overall, our study reveals that activation of TIR signalling is an important mechanism for boosting plant defence during PTI.


Subject(s)
Arabidopsis/immunology , Plant Immunity , Protein Domains , Receptors, Interleukin-1/chemistry , Receptors, Pattern Recognition/immunology , Signal Transduction , Toll-Like Receptors/chemistry , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Carboxylic Ester Hydrolases/genetics , DNA-Binding Proteins/genetics , Protein Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Pseudomonas syringae/immunology , Pseudomonas syringae/physiology , Receptors, Cell Surface/metabolism , Nicotiana/genetics , Ubiquitin-Protein Ligases
3.
Proc Natl Acad Sci U S A ; 121(18): e2314541121, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38657049

ABSTRACT

Recent evidence has demonstrated that the transsynaptic nanoscale organization of synaptic proteins plays a crucial role in regulating synaptic strength in excitatory synapses. However, the molecular mechanism underlying this transsynaptic nanostructure in inhibitory synapses still remains unclear and its impact on synapse function in physiological or pathological contexts has not been demonstrated. In this study, we utilized an engineered proteolysis technique to investigate the effects of acute cleavage of neuroligin-2 (NL2) on synaptic transmission. Our results show that the rapid cleavage of NL2 led to impaired synaptic transmission by reducing both neurotransmitter release probability and quantum size. These changes were attributed to the dispersion of RIM1/2 and GABAA receptors and a weakened spatial alignment between them at the subsynaptic scale, as observed through superresolution imaging and model simulations. Importantly, we found that endogenous NL2 undergoes rapid MMP9-dependent cleavage during epileptic activities, which further exacerbates the decrease in inhibitory transmission. Overall, our study demonstrates the significant impact of nanoscale structural reorganization on inhibitory transmission and unveils ongoing modulation of mature GABAergic synapses through active cleavage of NL2 in response to hyperactivity.


Subject(s)
Cell Adhesion Molecules, Neuronal , Nerve Tissue Proteins , Synapses , Synaptic Transmission , Animals , Mice , Cell Adhesion Molecules, Neuronal/metabolism , Epilepsy/metabolism , Epilepsy/physiopathology , Epilepsy/pathology , Hippocampus/metabolism , Matrix Metalloproteinase 9/metabolism , Membrane Proteins/metabolism , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Proteolysis , Receptors, GABA-A/metabolism , Synapses/metabolism , Synaptic Transmission/physiology
4.
Hum Mol Genet ; 33(13): 1142-1151, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38557732

ABSTRACT

Lowe syndrome, a rare X-linked multisystem disorder presenting with major abnormalities in the eyes, kidneys, and central nervous system, is caused by mutations in OCRL gene (NG_008638.1). Encoding an inositol polyphosphate 5-phosphatase, OCRL catalyzes the hydrolysis of PI(4,5)P2 into PI4P. There are no effective targeted treatments for Lowe syndrome. Here, we demonstrate a novel gene therapy for Lowe syndrome in patient fibroblasts using an adenine base editor (ABE) that can efficiently correct pathogenic point mutations. We show that ABE8e-NG-based correction of a disease-causing mutation in a Lowe patient-derived fibroblast line containing R844X mutation in OCRL gene, restores OCRL expression at mRNA and protein levels. It also restores cellular abnormalities that are hallmarks of OCRL dysfunction, including defects in ciliogenesis, microtubule anchoring, α-actinin distribution, and F-actin network. The study indicates that ABE-mediated gene therapy is a feasible treatment for Lowe syndrome, laying the foundation for therapeutic application of ABE in the currently incurable disease.


Subject(s)
Fibroblasts , Gene Editing , Genetic Therapy , Oculocerebrorenal Syndrome , Phosphoric Monoester Hydrolases , Oculocerebrorenal Syndrome/genetics , Oculocerebrorenal Syndrome/metabolism , Humans , Fibroblasts/metabolism , Phosphoric Monoester Hydrolases/genetics , Phosphoric Monoester Hydrolases/metabolism , Genetic Therapy/methods , Gene Editing/methods , Mutation , Adenine/metabolism
5.
J Neurosci ; 44(19)2024 May 08.
Article in English | MEDLINE | ID: mdl-38538145

ABSTRACT

A classic example of experience-dependent plasticity is ocular dominance (OD) shift, in which the responsiveness of neurons in the visual cortex is profoundly altered following monocular deprivation (MD). It has been postulated that OD shifts also modify global neural networks, but such effects have never been demonstrated. Here, we use wide-field fluorescence optical imaging (WFOI) to characterize calcium-based resting-state functional connectivity during acute (3 d) MD in female and male mice with genetically encoded calcium indicators (Thy1-GCaMP6f). We first establish the fundamental performance of WFOI by computing signal to noise properties throughout our data processing pipeline. Following MD, we found that Δ band (0.4-4 Hz) GCaMP6 activity in the deprived visual cortex decreased, suggesting that excitatory activity in this region was reduced by MD. In addition, interhemispheric visual homotopic functional connectivity decreased following MD, which was accompanied by a reduction in parietal and motor homotopic connectivity. Finally, we observed enhanced internetwork connectivity between the visual and parietal cortex that peaked 2 d after MD. Together, these findings support the hypothesis that early MD induces dynamic reorganization of disparate functional networks including the association cortices.


Subject(s)
Mice, Inbred C57BL , Nerve Net , Sensory Deprivation , Visual Cortex , Animals , Mice , Male , Female , Sensory Deprivation/physiology , Visual Cortex/physiology , Nerve Net/physiology , Neuronal Plasticity/physiology , Dominance, Ocular/physiology , Critical Period, Psychological , Visual Pathways/physiology
6.
Plant J ; 119(1): 432-444, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38635415

ABSTRACT

Thiamine functions as a crucial activator modulating plant health and broad-spectrum stress tolerances. However, the role of thiamine in regulating plant virus infection is largely unknown. Here, we report that the multifunctional 17K protein encoded by barley yellow dwarf virus-GAV (BYDV-GAV) interacted with barley pyrimidine synthase (HvTHIC), a key enzyme in thiamine biosynthesis. HvTHIC was found to be localized in chloroplast via an N-terminal 74-amino acid domain. However, the 17K-HvTHIC interaction restricted HvTHIC targeting to chloroplasts and triggered autophagy-mediated HvTHIC degradation. Upon BYDV-GAV infection, the expression of the HvTHIC gene was significantly induced, and this was accompanied by accumulation of thiamine and salicylic acid. Silencing of HvTHIC expression promoted BYDV-GAV accumulation. Transcriptomic analysis of HvTHIC silenced and non-silenced barley plants showed that the differentially expressed genes were mainly involved in plant-pathogen interaction, plant hormone signal induction, phenylpropanoid biosynthesis, starch and sucrose metabolism, photosynthesis-antenna protein, and MAPK signaling pathway. Thiamine treatment enhanced barley resistance to BYDV-GAV. Taken together, our findings reveal a molecular mechanism underlying how BYDV impedes thiamine biosynthesis to uphold viral infection in plants.


Subject(s)
Hordeum , Plant Diseases , Plant Proteins , Thiamine , Hordeum/virology , Hordeum/genetics , Hordeum/metabolism , Thiamine/metabolism , Thiamine/biosynthesis , Plant Diseases/virology , Plant Diseases/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Luteovirus/physiology , Gene Expression Regulation, Plant , Viral Proteins/metabolism , Viral Proteins/genetics , Chloroplasts/metabolism , Salicylic Acid/metabolism , Host-Pathogen Interactions , Disease Resistance/genetics
7.
Brief Bioinform ; 24(2)2023 03 19.
Article in English | MEDLINE | ID: mdl-36754847

ABSTRACT

Feature gene selection has significant impact on the performance of cell clustering in single-cell RNA sequencing (scRNA-seq) analysis. A well-rounded feature selection (FS) method should consider relevance, redundancy and complementarity of the features. Yet most existing FS methods focus on gene relevance to the cell types but neglect redundancy and complementarity, which undermines the cell clustering performance. We develop a novel computational method GeneClust to select feature genes for scRNA-seq cell clustering. GeneClust groups genes based on their expression profiles, then selects genes with the aim of maximizing relevance, minimizing redundancy and preserving complementarity. It can work as a plug-in tool for FS with any existing cell clustering method. Extensive benchmark results demonstrate that GeneClust significantly improve the clustering performance. Moreover, GeneClust can group cofunctional genes in biological process and pathway into clusters, thus providing a means of investigating gene interactions and identifying potential genes relevant to biological characteristics of the dataset. GeneClust is freely available at https://github.com/ToryDeng/scGeneClust.


Subject(s)
Algorithms , Gene Expression Profiling , Gene Expression Profiling/methods , Sequence Analysis, RNA/methods , Single-Cell Gene Expression Analysis , Single-Cell Analysis/methods , Cluster Analysis
8.
EMBO Rep ; 24(12): e57440, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-37885348

ABSTRACT

Embryogenesis is highly dependent on maternally loaded materials, particularly those used for energy production. Different environmental conditions and genetic backgrounds shape embryogenesis. The robustness of embryogenesis in response to extrinsic and intrinsic changes remains incompletely understood. By analyzing the levels of two major nutrients, glycogen and neutral lipids, we discovered stage-dependent usage of these two nutrients along with mitochondrial morphology changes during Caenorhabditis elegans embryogenesis. ATGL, the rate-limiting lipase in cellular lipolysis, is expressed and required in the hypodermis to regulate mitochondrial function and support embryogenesis. The embryonic lethality of atgl-1 mutants can be suppressed by reducing sinh-1/age-1-akt signaling, likely through modulating glucose metabolism to maintain sustainable glucose consumption. The embryonic lethality of atgl-1(xd314) is also affected by parental nutrition. Parental glucose and oleic acid supplements promote glycogen storage in atgl-1(xd314) embryos to compensate for the impaired lipolysis. The rescue by parental vitamin B12 supplement is likely through enhancing mitochondrial function in atgl-1 mutants. These findings reveal that metabolic plasticity contributes to the robustness of C. elegans embryogenesis.


Subject(s)
Caenorhabditis elegans , Lipolysis , Animals , Caenorhabditis elegans/metabolism , Lipolysis/genetics , Lipase/genetics , Glucose/metabolism , Glycogen/metabolism
9.
Nucleic Acids Res ; 51(10): 5022-5039, 2023 06 09.
Article in English | MEDLINE | ID: mdl-37094076

ABSTRACT

The Ccr4-Not complex is a conserved multi protein complex with diverse roles in the mRNA life cycle. Recently we determined that the Not1 and Not4 subunits of Ccr4-Not inversely regulate mRNA solubility and thereby impact dynamics of co-translation events. One mRNA whose solubility is limited by Not4 is MMF1 encoding a mitochondrial matrix protein. In this work we uncover a mechanism that limits MMF1 overexpression and depends upon its co-translational targeting to the mitochondria. We have named this mechanism Mito-ENCay. This mechanism relies on Not4 promoting ribosome pausing during MMF1 translation, and hence the co-translational docking of the MMF1 mRNA to mitochondria via the mitochondrial targeting sequence of the Mmf1 nascent chain, the Egd1 chaperone, the Om14 mitochondrial outer membrane protein and the co-translational import machinery. Besides co-translational Mitochondrial targeting, Mito-ENCay depends upon Egd1 ubiquitination by Not4, the Caf130 subunit of the Ccr4-Not complex, the mitochondrial outer membrane protein Cis1, autophagy and no-go-decay.


Subject(s)
Saccharomyces cerevisiae Proteins , Autophagy/genetics , Membrane Proteins/genetics , Mitochondria/genetics , Mitochondria/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Ribosomes/genetics , Ribosomes/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Ubiquitination
10.
J Cell Mol Med ; 28(2): e18034, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37942713

ABSTRACT

Fulminant myocarditis (FM) is the most serious type of myocarditis. However, the molecular mechanism underlying the pathogenesis of FM has not been fully elucidated. Small extracellular vesicles (sEVs) play important roles in many diseases, but any potential role in paediatric FM has not been reported. Here, the differential signatures of lncRNAs in plasma sEVs were studied in FM children and healthy children using transcriptome sequencing followed by functional analysis. Then immune-related lncRNAs were screened to study their role in immune mechanisms, the levels and clinical relevance of core immune-related lncRNAs were verified by qRT-PCR in a large sample size. Sixty-eight lncRNAs had increased levels of plasma sEVs in children with FM and 11 had decreased levels. Functional analysis showed that the sEVs-lncRNAs with different levels were mainly related to immunity, apoptosis and protein efflux. Seventeen core immune-related sEVs-lncRNAs were screened, functional enrichment analysis showed that these lncRNAs were closely related to immune activation, immune cell migration and cytokine pathway signal transduction. The results of the study show that sEVs-lncRNAs may play an important role in the pathogenesis of fulminant myocarditis in children, especially in the mechanism of immune regulation.


Subject(s)
Extracellular Vesicles , Myocarditis , RNA, Long Noncoding , Humans , Child , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Myocarditis/genetics , Extracellular Vesicles/genetics , Extracellular Vesicles/metabolism , Signal Transduction/genetics , Cytokines
11.
J Biol Chem ; 299(10): 105191, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37625588

ABSTRACT

Both the biogenesis and functions of osteoclasts and macrophages involves dynamic membrane traffic. We screened transcript levels for Rab family small GTPases related to osteoclasts and identified Rab38. Rab38 expression is upregulated during osteoclast differentiation and maturation. In osteoclasts, both Rab38 and its paralog, Rab32, colocalize to lysosome-related organelles (LROs). In macrophages, Rab32 is also found in LROs. LROs are part of the endocytic pathway but are distinct from lysosomes. After receptor activator of NF-κB ligand stimulation, LROs contain cathepsin K and tartrate-resistant acid phosphatase inside and help both proteins to accumulate around bone resorption pits. After osteoclast maturation, these enzymes are hardly found within LROs. In macrophages derived from Rab32 and Rab38 double knockout mice, both acidification and V-ATPase a3 localization were severely compromised. Both the double knockout macrophage and bafilomycin-treated wildtype macrophage show an increase in Lamp1-positive organelles, implying that biogenesis of lysosomes and LROs are related. These results indicate that Rab32 and Rab38 both play a crucial role in LRO biogenesis in macrophages and in osteoclasts.

12.
Plant J ; 114(6): 1425-1442, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36951178

ABSTRACT

Redox homeostasis in plant cells is critical for maintaining normal growth and development because reactive oxygen species (ROS) can function as signaling molecules or toxic compounds. However, how plants fine-tune redox homeostasis during natural or stress-induced senescence remains unclear. Cut roses (Rosa hybrida), an economically important ornamental product worldwide, often undergo stress-induced precocious senescence at the post-harvest bud stage. Here, we identified RhPLATZ9, an age- and dehydration-induced PLATZ (plant AT-rich sequence and zinc-binding) protein, and determined that it functions as a transcriptional repressor in rose flowers during senescence. We also showed that RhWRKY33a regulates RhPLATZ9 expression during flower senescence. RhPLATZ9-silenced flowers and RhWRKY33a-silenced flowers showed accelerated senescence, with higher ROS contents than the control. By contrast, overexpression of RhWRKY33a or RhPLATZ9 delayed flower senescence, and overexpression in rose calli showed lower ROS accumulation than the control. RNA-sequencing analysis revealed that apoplastic NADPH oxidase genes (RhRbohs) were enriched among the upregulated differentially expressed genes in RhPLATZ9-silenced flowers compared to wild-type flowers. Yeast one-hybrid assays, electrophoretic mobility shift assays, dual luciferase assays and chromatin immunoprecipitation quantitative PCR confirmed that the RhRbohD gene is a direct target of RhPLATZ9. These findings suggest that the RhWRKY33a-RhPLATZ9-RhRbohD regulatory module acts as a brake to help maintain ROS homeostasis in petals and thus antagonize age- and stress-induced precocious senescence in rose flowers.


Subject(s)
Rosa , Reactive Oxygen Species/metabolism , Rosa/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Flowers , Gene Expression Regulation, Plant/genetics
13.
Am J Epidemiol ; 193(1): 121-133, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-37552958

ABSTRACT

Understanding the extent of coronavirus disease 2019 (COVID-19) nonvaccination attributable to vaccine hesitancy versus other barriers can help prioritize approaches for increasing vaccination uptake. Using data from the Centers for Disease Control and Prevention's Research and Development Survey, a nationally representative survey fielded from May 1 to June 30, 2021 (n = 5,458), we examined the adjusted population attribution fraction (PAF) of COVID-19 vaccine hesitancy attributed to nonvaccination according to sociodemographic characteristics and health-related variables. Overall, the adjusted PAF of nonvaccination attributed to vaccine hesitancy was 76.1%. The PAF was highest among adults who were ≥50 years of age (87.9%), were non-Hispanic White (83.7%), had a bachelor's degree or higher (82.7%), had an annual household income of at least $75,000 (85.5%), were insured (82.4%), and had a usual place for health care (80.7%). The PAF was lower for those who were current smokers (65.3%) compared with never smokers (77.9%), those who had anxiety or depression (65.2%) compared with those who did not (80.1%), and those who had a disability (64.5%) compared with those who did not (79.2%). Disparities in PAF suggest areas for prioritization of efforts for intervention and development of messaging campaigns that address all barriers to uptake, including hesitancy and access, to advance health equity and protect individuals from COVID-19.


Subject(s)
COVID-19 , Adult , United States/epidemiology , Humans , COVID-19/epidemiology , COVID-19/prevention & control , Vaccination Hesitancy , COVID-19 Vaccines , Anxiety , Anxiety Disorders , Vaccination
14.
Anal Chem ; 96(1): 197-203, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38016046

ABSTRACT

Interface interaction between aromatic molecules and noble metals plays a prominent role in fundamental science and technological applications. However, probing π-metal interactions under ambient conditions remains challenging, as it requires characterization techniques to have high sensitivity and molecular specificity without any restrictions on the sample. Herein, the interactions between polycyclic aromatic hydrocarbon (PAH) molecules and Au nanodimers with a subnanometer gap are investigated by surface-enhanced Raman spectroscopy (SERS). A cleaner and stronger plasmonic field of subnanometer gap Au nanodimer structures was constructed through solvent extraction. High sensitivity and strong π-Au interaction between PAHs and Au nanodimers are observed. Additionally, the density functional theory calculation confirmed the interactions of PAHs physically absorbed on the Au surface; the binding energy and differential charge further theoretically indicated the correlation between the sensitivity and the number of PAH rings, which is consistent with SERS experimental results. This work provides a new method to understand the interactions between aromatic molecules and noble metal surfaces in an ambient environment, also paving the way for designing the interfaces in the fields of catalysis, sensors, and molecular electronics.

15.
BMC Med ; 22(1): 328, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39135035

ABSTRACT

BACKGROUND: Mothers play a crucial role in influencing their daughters' HPV vaccination decisions. Addressing barriers to receiving HPV vaccination among mothers of girls may achieve two goals in one strike: increasing vaccination coverage among both mothers and their daughters. This study aims to examine the HPV vaccination uptake and its determinants among mothers of girls in China at both the individual and interpersonal levels. METHODS: From July to October 2023, a cross-sectional online study was conducted to investigate HPV vaccine refusal for daughters aged 9-17 years among 11,678 mothers in Shenzhen, China. A randomized selection method was employed, targeting 11 primary schools and 13 secondary schools in Shenzhen. The research team invited mothers of girls to participate in an anonymous online survey. Multilevel logistic regression models (level 1: schools; level 2: individual participants) were employed to analyze the data. RESULTS: Among 11,678 mothers, 41.1% self-reported receiving at least one dose of HPV vaccination. Through multilevel logistic regression analysis, eight items measuring illness representations of HPV, which refers to how people think about HPV, were associated with higher HPV vaccination uptake (AOR: 1.02-1.14). These items included identity (identifying symptoms of HPV), timeline (whether HPV is acute/chronic), negative consequences, personal and treatment control (whether HPV is under volitional control), concern, negative emotions, and coherence (overall understanding of HPV). In addition, participants refusing HPV vaccines for the index daughters (AOR: 0.82, 95%CI: 0.76, 0.89) had lower vaccine uptake. Perceived more difficulties in accessing the 9-valent vaccines (AOR: 1.06, 95%CI: 1.04, 1.08) and more satisfaction with vaccine-related promotional materials (AOR: 1.50, 95%CI: 1.46, 1.54) at the individual level were associated with higher vaccine uptake. At the interpersonal factors, higher frequency of exposure to testimonials given by others about HPV vaccination on social media (AOR: 1.19, 95%CI: 1.14, 1.25) and thoughtful consideration of the veracity of the information (AOR: 1.11, 95%CI: 1.07, 1.16) were correlated with higher HPV vaccination uptake. CONCLUSIONS: These findings offer essential implications for modifying HPV disease perceptions, addressing difficulties in accessing the 9-valent HPV vaccines, and enhancing health communication needs to improve HPV vaccine uptake among mothers of girls.


Subject(s)
Mothers , Papillomavirus Infections , Papillomavirus Vaccines , Social Media , Humans , Cross-Sectional Studies , Female , Adolescent , China , Papillomavirus Vaccines/administration & dosage , Papillomavirus Infections/prevention & control , Child , Mothers/psychology , Adult , Vaccination/psychology , Health Knowledge, Attitudes, Practice , Nuclear Family , Patient Acceptance of Health Care , Middle Aged , Surveys and Questionnaires
16.
Small ; 20(22): e2308756, 2024 May.
Article in English | MEDLINE | ID: mdl-38133491

ABSTRACT

Driven by the pressing demand for stable energy systems, zinc-air batteries (ZABs) have emerged as crucial energy storage solutions. However, the quest for cost-effective catalysts to enhance vital oxygen evolution and reduction reactions remains challenging. FeNiCo|MnGaOx heterostructure nanoparticles on carbon nanotubes (CNTs) are synthesized using liquid-phase reduction and H2 calcination approach. Compared to its component, such FeNiCo|MnGaOx/CNT shows a high synergistic effect, low impedance, and modulated electronic structure, leading to a superior bifunctional catalytic performance with an overpotential of 255 mV at 10 mA cm-2 and half-wave potential of 0.824 V (ω = 1600 rpm and 0.1 m KOH electrolyte). Moreover, ZABs based on FeNiCo|MnGaOx/CNT demonstrate notable features, including a peak power density of 136.1 mW cm-2, a high specific capacity of 808.3 mAh gZn -1, and outstanding stability throughout >158 h of uninterrupted charge-discharge cycling. Theoretical calculations reveal that the non-homogeneous interface can introduce more carriers and altered electronic structures to refine intermediate adsorption reactions, especially promoting O* formation, thereby enhancing electrocatalytic performance. This work demonstrates the importance of heterostructure interfacial modulation of electronic structure and enhancement of adsorption capacity in promoting the implementation of OER/ORR, ZABs, and related applications.

17.
Small ; : e2404224, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39082384

ABSTRACT

Metal-organic frameworks (MOFs) are normally moisture-sensitive and unstable in aqueous environments, which has considerably limited their practical applications because water/moisture is ubiquitous in many industrial processes. New materials with superior water stability are, therefore, in great demand and vital to their practical applications. Here, a novel oil/water interfacial assembly strategy is demonstrated for the synthesis of a new class of metal-organic monoacid framework (MOmAF) with exceptional water stability and chemical stability. Superhydrophobic 2D sheets are synthesized at room temperature, while 1D nanotubes are obtained via the self-scrolling of their 2D sheets for the first time. In addition, a simple sequential drop-casting method is developed to coat as-synthesized MOmAF structures onto porous membranes. This can potentially open up new avenues in the design of superhydrophobic self-cleaning MOmAF materials without tedious post-synthetic modifications and usher in a new class of materials meeting industrial needs.

18.
Planta ; 259(2): 35, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38193994

ABSTRACT

MAIN CONCLUSION: OsNAC103 negatively regulates rice plant height by influencing the cell cycle and crosstalk of phytohormones. Plant height is an important characteristic of rice farming and is directly related to agricultural yield. Although there has been great progress in research on plant growth regulation, numerous genes remain to be elucidated. NAC transcription factors are widespread in plants and have a vital function in plant growth. Here, we observed that the overexpression of OsNAC103 resulted in a dwarf phenotype, whereas RNA interference (RNAi) plants and osnac103 mutants showed no significant difference. Further investigation revealed that the cell length did not change, indicating that the dwarfing of plants was caused by a decrease in cell number due to cell cycle arrest. The content of the bioactive cytokinin N6-Δ2-isopentenyladenine (iP) decreased as a result of the cytokinin synthesis gene being downregulated and the enhanced degradation of cytokinin oxidase. OsNAC103 overexpression also inhibited cell cycle progression and regulated the activity of the cell cyclin OsCYCP2;1 to arrest the cell cycle. We propose that OsNAC103 may further influence rice development and gibberellin-cytokinin crosstalk by regulating the Oryza sativa homeobox 71 (OSH71). Collectively, these results offer novel perspectives on the role of OsNAC103 in controlling plant architecture.


Subject(s)
Oryza , Transcription Factors , Transcription Factors/genetics , Oryza/genetics , Cell Cycle/genetics , Cell Division , Cytokinins
19.
Basic Res Cardiol ; 119(1): 57-74, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38151579

ABSTRACT

Cardiac sympathetic overactivation is a critical driver in the progression of acute myocardial infarction (AMI). The left middle cervical ganglion (LMCG) is an important extracardiac sympathetic ganglion. However, the regulatory effects of LMCG on AMI have not yet been fully documented. In the present study, we detected that the LMCG was innervated by abundant sympathetic components and exerted an excitatory effect on the cardiac sympathetic nervous system in response to stimulation. In canine models of AMI, targeted ablation of LMCG reduced the sympathetic indexes of heart rate variability and serum norepinephrine, resulting in suppressed cardiac sympathetic activity. Moreover, LMCG ablation could improve ventricular electrophysiological stability, evidenced by the prolonged ventricular effective refractory period, elevated action potential duration, increased ventricular fibrillation threshold, and enhanced connexin43 expression, consequently showing antiarrhythmic effects. Additionally, compared with the control group, myocardial infarction size, circulating cardiac troponin I, and myocardial apoptosis were significantly reduced, accompanied by preserved cardiac function in canines subjected to LMCG ablation. Finally, we performed the left stellate ganglion (LSG) ablation and compared its effects with LMCG destruction. The results indicated that LMCG ablation prevented ventricular electrophysiological instability, cardiac sympathetic activation, and AMI-induced ventricular arrhythmias with similar efficiency as LSG denervation. In conclusion, this study demonstrated that LMCG ablation suppressed cardiac sympathetic activity, stabilized ventricular electrophysiological properties and mitigated cardiomyocyte death, resultantly preventing ischemia-induced ventricular arrhythmias, myocardial injury, and cardiac dysfunction. Neuromodulation therapy targeting LMCG represented a promising strategy for the treatment of AMI.


Subject(s)
Myocardial Infarction , Animals , Dogs , Arrhythmias, Cardiac , Heart/innervation , Ventricular Fibrillation/etiology , Ventricular Fibrillation/prevention & control , Ganglia, Sympathetic/metabolism
20.
J Transl Med ; 22(1): 769, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39143573

ABSTRACT

BACKGROUND: Although immune checkpoint inhibitors (ICIs) have revolutionized the landscape of cancer treatment, only a minority of colorectal cancer (CRC) patients respond to them. Enhancing tumor immunogenicity by increasing major histocompatibility complex I (MHC-I) surface expression is a promising strategy to boost the antitumor efficacy of ICIs. METHODS: Dual luciferase reporter assays were performed to find drug candidates that can increase MHC-I expression. The effect of nilotinib on MHC-I expression was verified by dual luciferase reporter assays, qRT-PCR, flow cytometry and western blotting. The biological functions of nilotinib were evaluated through a series of in vitro and in vivo experiments. Using RNA-seq analysis, immunofluorescence assays, western blotting, flow cytometry, rescue experiments and microarray chip assays, the underlying molecular mechanisms were investigated. RESULTS: Nilotinib induces MHC-I expression in CRC cells, enhances CD8+ T-cell cytotoxicity and subsequently enhances the antitumor effects of anti-PDL1 in both microsatellite instability and microsatellite stable models. Mechanistically, nilotinib promotes MHC-I mRNA expression via the cGAS-STING-NF-κB pathway and reduces MHC-I degradation by suppressing PCSK9 expression in CRC cells. PCSK9 may serve as a potential therapeutic target for CRC, with nilotinib potentially targeting PCSK9 to exert anti-CRC effects. CONCLUSION: This study reveals a previously unknown role of nilotinib in antitumor immunity by inducing MHC-I expression in CRC cells. Our findings suggest that combining nilotinib with anti-PDL1 therapy may be an effective strategy for the treatment of CRC.


Subject(s)
Colorectal Neoplasms , Pyrimidines , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms/immunology , Colorectal Neoplasms/metabolism , Humans , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Animals , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/drug effects , B7-H1 Antigen/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/drug effects , Histocompatibility Antigens Class I/metabolism , Histocompatibility Antigens Class I/genetics , Mice , Microsatellite Instability/drug effects , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL