Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
Add more filters

Country/Region as subject
Publication year range
1.
EMBO Rep ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783164

ABSTRACT

Neutrophil extracellular traps (NETs) are a key antimicrobial feature of cellular innate immunity mediated by polymorphonuclear neutrophils (PMNs). NETs counteract microbes but are also linked to inflammation in atherosclerosis, arthritis, or psoriasis by unknown mechanisms. Here, we report that NET-associated RNA (naRNA) stimulates further NET formation in naive PMNs via a unique TLR8-NLRP3 inflammasome-dependent pathway. Keratinocytes respond to naRNA with expression of psoriasis-related genes (e.g., IL17, IL36) via atypical NOD2-RIPK signaling. In vivo, naRNA drives temporary skin inflammation, which is drastically ameliorated by genetic ablation of RNA sensing. Unexpectedly, the naRNA-LL37 'composite damage-associated molecular pattern (DAMP)' is pre-stored in resting neutrophil granules, defining sterile NETs as inflammatory webs that amplify neutrophil activation. However, the activity of the naRNA-LL37 DAMP is transient and hence supposedly self-limiting under physiological conditions. Collectively, upon dysregulated NET release like in psoriasis, naRNA sensing may represent both a potential cause of disease and a new intervention target.

2.
FASEB J ; 37(10): e23202, 2023 10.
Article in English | MEDLINE | ID: mdl-37732633

ABSTRACT

Trichinellosis caused by Trichinella spiralis (T. spiralis) is a major food-borne parasitic zoonosis worldwide. Prevention of trichinellosis is an effective strategy to improve patient quality of life. Macrophage migration inhibitory factor (MIF) is closely related to the occurrence and development of several parasitic diseases. Studying the impact of MIF deficiency (Mif-/- ) on the alterations in host fecal microbiota due to T. spiralis infection may contribute to proposing a novel dual therapeutic approach for trichinellosis. To reveal the diversity and differences in fecal microbial composition, feces were collected from T. spiralis-uninfected and T. spiralis-infected wild-type (WT) and MIF knockout (KO) C57BL/6 mice at 0, 7, 14, and 35 days post-infection (dpi), and the samples were sent for 16S rRNA amplicon sequencing on the Illumina NovaSeq platform. Flow cytometry was used to determine the expression levels of IFN-γ and IL-4 in the CD4+ /CD8+ T-cell sets of mouse spleens. The results showed that operational taxonomic unit (OTU) clustering, relative abundance of microbial composition, alpha diversity, and beta diversity exhibited significant changes among the eight groups. The LEfSe analysis selected several potential biomarkers at the genus or species level, including Akkermansia muciniphila, Lactobacillus murinus, Coprococcus catus, Firmicutes bacterium M10_2, Parabacteroides sp. CT06, and Bacteroides between the KTs and WTs groups. The predicted bacterial functions of the fecal microbiota were mainly involved in metabolism, such as the metabolism of carbohydrates, amino acids, energy, cofactors, vitamins, nucleotides, glycans, and lipids. Flow cytometry revealed an increased CD3+ CD8- /CD3+ CD8+ T-cell ratio and increased IFN-γ and IL-4 levels in CD3+ CD8- T-cell sets from WT and MIF KO mice at 7 dpi. The results indicated that both MIF KO and infection time have a significant influence on the CD3+ CD8- IFN-γ+ and CD3+ CD8- IL-4+ response in mice after T. spiralis. In conclusion, this research showed alterations of the fecal microbiota and immune response in both WT and MIF KO mice before and after T. spiralis infection. These results revealed a potential role of MIF in regulating the pathogenesis of trichinellosis related to the intestinal microbiota. Importantly, the selected potential biomarkers combined with MIF will also offer a novel therapeutic approach to treat trichinellosis in the future.


Subject(s)
Macrophage Migration-Inhibitory Factors , Microbiota , Trichinella spiralis , Trichinellosis , Animals , Humans , Mice , Interleukin-4 , Intramolecular Oxidoreductases , Macrophage Migration-Inhibitory Factors/genetics , Mice, Inbred C57BL , Quality of Life , RNA, Ribosomal, 16S/genetics
3.
Surg Endosc ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958719

ABSTRACT

BACKGROUND: Laparoscopic pancreatoduodenectomy (LPD) is one of the most challenging operations and has a long learning curve. Artificial intelligence (AI) automated surgical phase recognition in intraoperative videos has many potential applications in surgical education, helping shorten the learning curve, but no study has made this breakthrough in LPD. Herein, we aimed to build AI models to recognize the surgical phase in LPD and explore the performance characteristics of AI models. METHODS: Among 69 LPD videos from a single surgical team, we used 42 in the building group to establish the models and used the remaining 27 videos in the analysis group to assess the models' performance characteristics. We annotated 13 surgical phases of LPD, including 4 key phases and 9 necessary phases. Two minimal invasive pancreatic surgeons annotated all the videos. We built two AI models for the key phase and necessary phase recognition, based on convolutional neural networks. The overall performance of the AI models was determined mainly by mean average precision (mAP). RESULTS: Overall mAPs of the AI models in the test set of the building group were 89.7% and 84.7% for key phases and necessary phases, respectively. In the 27-video analysis group, overall mAPs were 86.8% and 71.2%, with maximum mAPs of 98.1% and 93.9%. We found commonalities between the error of model recognition and the differences of surgeon annotation, and the AI model exhibited bad performance in cases with anatomic variation or lesion involvement with adjacent organs. CONCLUSIONS: AI automated surgical phase recognition can be achieved in LPD, with outstanding performance in selective cases. This breakthrough may be the first step toward AI- and video-based surgical education in more complex surgeries.

4.
Sensors (Basel) ; 24(2)2024 Jan 14.
Article in English | MEDLINE | ID: mdl-38257602

ABSTRACT

As a promising paradigm, mobile crowdsensing (MCS) takes advantage of sensing abilities and cooperates with multi-agent reinforcement learning technologies to provide services for users in large sensing areas, such as smart transportation, environment monitoring, etc. In most cases, strategy training for multi-agent reinforcement learning requires substantial interaction with the sensing environment, which results in unaffordable costs. Thus, environment reconstruction via extraction of the causal effect model from past data is an effective way to smoothly accomplish environment monitoring. However, the sensing environment is often so complex that the observable and unobservable data collected are sparse and heterogeneous, affecting the accuracy of the reconstruction. In this paper, we focus on developing a robust multi-agent environment monitoring framework, called self-interested coalitional crowdsensing for multi-agent interactive environment monitoring (SCC-MIE), including environment reconstruction and worker selection. In SCC-MIE, we start from a multi-agent generative adversarial imitation learning framework to introduce a new self-interested coalitional learning strategy, which forges cooperation between a reconstructor and a discriminator to learn the sensing environment together with the hidden confounder while providing interpretability on the results of environment monitoring. Based on this, we utilize the secretary problem to select suitable workers to collect data for accurate environment monitoring in a real-time manner. It is shown that SCC-MIE realizes a significant performance improvement in environment monitoring compared to the existing models.

5.
J Bacteriol ; 205(6): e0003323, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37219457

ABSTRACT

Conjugation is a major form of horizontal gene transfer, contributing to bacterial evolution and the acquisition of new traits. During conjugation, a donor cell transfers DNA to a recipient through a specialized DNA translocation channel classified as a type IV secretion system (T4SS). Here, we focused on the T4SS of ICEBs1, an integrative and conjugative element in Bacillus subtilis. ConE, encoded by ICEBs1, is a member of the VirB4 family of ATPases, the most conserved component of T4SSs. ConE is required for conjugation and localizes to the cell membrane, predominantly at the cell poles. In addition to Walker A and B boxes, VirB4 homologs have conserved ATPase motifs C, D, and E. Here, we created alanine substitutions in five conserved residues within or near ATPase motifs in ConE. Mutations in all five residues drastically decreased conjugation frequency but did not affect ConE protein levels or localization, indicating that an intact ATPase domain is critical for DNA transfer. Purified ConE is largely monomeric with some oligomers and lacks enzymatic activity, suggesting that ATP hydrolysis may be regulated or require special solution conditions. Finally, we investigated which ICEBs1 T4SS components interact with ConE using a bacterial two-hybrid assay. ConE interacts with itself, ConB, and ConQ, but these interactions are not required to stabilize ConE protein levels and largely do not depend on conserved residues within the ATPase motifs of ConE. The structure-function characterization of ConE provides more insight into this conserved component shared by all T4SSs. IMPORTANCE Conjugation is a major form of horizontal gene transfer and involves the transfer of DNA from one bacterium to another through the conjugation machinery. Conjugation contributes to bacterial evolution by disseminating genes involved in antibiotic resistance, metabolism, and virulence. Here, we characterized ConE, a protein component of the conjugation machinery of the conjugative element ICEBs1 of the bacterium Bacillus subtilis. We found that mutations in the conserved ATPase motifs of ConE disrupt mating but do not alter ConE localization, self-interaction, or levels. We also explored which conjugation proteins ConE interacts with and whether these interactions contribute to stabilizing ConE. Our work contributes to the understanding of the conjugative machinery of Gram-positive bacteria.


Subject(s)
Bacillus subtilis , Conjugation, Genetic , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , DNA, Bacterial/genetics , DNA, Bacterial/metabolism , DNA Transposable Elements , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Gene Transfer, Horizontal
6.
Orthod Craniofac Res ; 26(1): 107-116, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35621382

ABSTRACT

OBJECTIVE: The aim of this study was to investigate the role of ephrinB2-EphB4 signalling in alveolar bone remodelling on the tension side during orthodontic tooth movement (OTM). MATERIALS AND METHODS: An OTM model was established on sixty 8-week-old male Wistar rats. They were randomly divided into the experimental group and the control group. The animals in the experimental group were administrated with subcutaneous injection of EphB4 inhibitor NVP-BHG712 every other day, whereas the control group received only the vehicle. Samples containing the maxillary first molar and the surrounding bone were collected after 0, 3, 7, 14 and 21 days of tooth movement. RESULTS: EphrinB2-EphB4 signalling was actively expressed on the tension side during tooth movement. Micro-CT analysis showed the distance of tooth movement in the experimental group was significantly greater than that of the control group (P < .05) with significantly increased trabecular separation (Tb. Sp) and decreased trabecular number (Tb. N) from day 14 to day 21. The number of osteoclasts significantly increased in the experimental group compared with the control group after 3 and 7 days of tooth movement (P < .05). The expressions of alkaline phosphatase (ALP) and osteopontin (OPN) were significantly reduced by inhibition of EphB4 (P < .05). CONCLUSION: The inhibition of EphB4 suppressed bone formation and enhanced bone resorption activities on the tension side of tooth movement. The ephrinB2-EphB4 signalling might play an important role in alveolar bone remodelling during OTM.


Subject(s)
Ephrin-B2 , Tooth Movement Techniques , Animals , Male , Rats , Bone Remodeling , Ephrin-B2/metabolism , Osteoclasts/metabolism , Rats, Wistar , Ephrins/metabolism , Signal Transduction
7.
Acta Biochim Biophys Sin (Shanghai) ; 55(3): 426-437, 2023 Feb 25.
Article in English | MEDLINE | ID: mdl-36825442

ABSTRACT

Cyclic di-adenosine monophosphate (c-di-AMP) is a bacterial second messenger that can be recognized by infected host cells and activate the immunoinflammatory response. The purpose of this study is to demonstrate the effect of c-di-AMP on the differentiation of human periodontal ligament stem cells (hPDLSCs) and its underlying mechanisms. In the present study, we find that the gingival crevicular fluid (GCF) of patients with chronic periodontitis has a higher expression level of c-di-AMP than that of healthy people. In vitro, c-di-AMP influences the differentiation of hPDLSCs by upregulating Toll-like receptors (TLRs); specifically, it inhibits osteogenic differentiation by activating NF-κB and ERK/MAPK and promotes adipogenic differentiation through the NF-κB and p38/MAPK signaling pathways. Inhibitors of TLRs or activated pathways reduce the changes induced by c-di-AMP. Our results establish the potential correlation among bacterial c-di-AMP, periodontal tissue homeostasis and chronic periodontitis pathogenesis.


Subject(s)
Chronic Periodontitis , NF-kappa B , Humans , NF-kappa B/metabolism , Periodontal Ligament/metabolism , Osteogenesis , Chronic Periodontitis/metabolism , Cell Differentiation , Stem Cells/metabolism , Toll-Like Receptors/metabolism , Adenosine Monophosphate/metabolism , Cells, Cultured
8.
Int J Mol Sci ; 24(9)2023 May 05.
Article in English | MEDLINE | ID: mdl-37175998

ABSTRACT

Sex determination and differentiation are processes by which a bipotential gonad adopts either a testicular or ovarian cell fate, and secondary sexual characteristics adopt either male or female developmental patterns. In birds, although genetic factors control the sex determination program, sex differentiation is sensitive to hormones, which can induce sex reversal when disturbed. Although these sex-reversed birds can form phenotypes opposite to their genotypes, none can experience complete sex reversal or produce offspring under natural conditions. Promising evidence indicates that the incomplete sex reversal is associated with cell autonomous sex identity (CASI) of avian cells, which is controlled by genetic factors. However, studies cannot clearly describe the regulatory mechanism of avian CASI and sex development at present, and these factors require further exploration. In spite of this, the abundant findings of avian sex research have provided theoretical bases for the progress of gender control technologies, which are being improved through interdisciplinary co-operation and will ultimately be employed in poultry production. In this review, we provide an overview of avian sex determination and differentiation and comprehensively summarize the research progress on sex reversal in birds, especially chickens. Importantly, we describe key issues faced by applying gender control systems in poultry production and chronologically summarize the development of avian sex control methods. In conclusion, this review provides unique perspectives for avian sex studies and helps scientists develop more advanced systems for sex regulation in birds.


Subject(s)
Chickens , Sex Determination Processes , Female , Animals , Male , Chickens/genetics , Gonads , Sex Differentiation/genetics , Ovary
9.
BMC Public Health ; 22(1): 1447, 2022 07 29.
Article in English | MEDLINE | ID: mdl-35906580

ABSTRACT

OBJECTIVE: To compare an autoregressive integrated moving average (ARIMA) model with a model that combines ARIMA with the Elman recurrent neural network (ARIMA-ERNN) in predicting the incidence of pertussis in mainland China. BACKGROUND: The incidence of pertussis has increased rapidly in mainland China since 2016, making the disease an increasing public health threat. There is a pressing need for models capable of accurately predicting the incidence of pertussis in order to guide prevention and control measures. We developed and compared two models for predicting pertussis incidence in mainland China. METHODS: Data on the incidence of pertussis in mainland China from 2004 to 2019 were obtained from the official website of the Chinese Center for Disease Control and Prevention. An ARIMA model was established using SAS (ver. 9.4) software and an ARIMA-ERNN model was established using MATLAB (ver. R2019a) software. The performances of these models were compared. RESULTS: From 2004 to 2019, there were 104,837 reported cases of pertussis in mainland China, with an increasing incidence over time. The incidence of pertussis showed obvious seasonal characteristics, with the peak lasting from March to September every year. Compared with the mean squared error (MSE), mean absolute error (MAE), and mean absolute percentage error (MAPE) of the ARIMA model, those of the ARIMA-ERNN model were 81.43%, 95.97% and 80.86% lower, respectively, in fitting performance. In terms of prediction performance, the MAE, MSE and MAPE were 37.75%, 56.88% and 43.75% lower, respectively. CONCLUSION: The fitting and prediction performances of the ARIMA-ERNN model were better than those of the ARIMA model. This provides theoretical support for the prediction of infectious diseases and should be beneficial to public health decision making.


Subject(s)
Whooping Cough , China/epidemiology , Forecasting , Humans , Incidence , Models, Statistical , Neural Networks, Computer , Software , Whooping Cough/epidemiology , Whooping Cough/prevention & control
10.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 53(6): 1104-1109, 2022 Nov.
Article in Zh | MEDLINE | ID: mdl-36443060

ABSTRACT

Periodontitis, one of the most common inflammatory oral diseases in human beings, threatens the health of teeth and mouth and is closely associated with the development of many systemic diseases. Existing research about the pathogenesis of periodontitis mainly focuses on the oral microbial homeostasis and its complex interaction with the immune system. Among all the oral microorganisms, Porphyromonas gingivalis ( P. gingivalis) is considered to be the main pathogen causing chronic periodontitis. Recent studies have shown that P. gingivalis poesseses HmuY, a special heme binding protein, which binds with heme to provide essential nutrition for P. gingivalis and activates the host immune system. Therefore, HmuY plays an important role in the growth, proliferation, invasion, and pathogenesis of P. gingivalis and is a potential virulence factor of the bacteria. Existing studies on HmuY are limited to the host immune response that HmuY triggers, and there are still no conclusive findings on whether HmuY participates in the pathogenesis of periodontitis through other ways, such as influencing periodontal bone metabolism. Herein, we reviewed the latest research findings on the biological characteristics and physiological functions of HmuY and its relationship with chronic periodontitis, so as to provide new ideas for in-depth research and further explorations into the pathogenesis of chronic periodontitis.


Subject(s)
Chronic Periodontitis , Porphyromonas gingivalis , Humans , Face , Nutritional Status
11.
Compr Rev Food Sci Food Saf ; 20(4): 3983-4018, 2021 07.
Article in English | MEDLINE | ID: mdl-34148290

ABSTRACT

As one of the three major vegetable oils in the world, rapeseed oil is appreciated for its high nutritional value and characteristic flavor. Flavor is an essential attribute, determining rapeseed oil quality and consumer acceptance. The present manuscript provides a systematic literature review of recent advances and knowledge on the flavor of rapeseed oil, which focuses on aroma-active as well as off-flavor compounds, flavor analysis techniques (i.e., extraction, qualitative, quantitative, sensory, and chemometric methods), and effects of treatments (storage, dehulling, roasting, microwave, flavoring with herbs, refining, and oil heating) on flavor from sensory and molecular perspectives. One hundred thirty-seven odorants found in rapeseed oil from literature are listed and possible formation pathways of some key aroma-active compounds are also proposed. Future flavor analysis techniques will evolve toward time-saving, portability, real-time monitoring, and visualization, which aims to obtain a "complete" flavor profile of rapeseed oil. The changes of volatile compounds in rapeseed oil under different treatments are summarized in this view. Studies to elucidate the influence of different treatments on the formation of aroma-active compounds are needed to get a deeper understanding of factors leading to the variations of rapeseed oil flavor.


Subject(s)
Odorants , Volatile Organic Compounds , Flavoring Agents , Gas Chromatography-Mass Spectrometry , Odorants/analysis , Rapeseed Oil , Volatile Organic Compounds/analysis
12.
Ann Surg Oncol ; 27(10): 3926-3927, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32266569

ABSTRACT

BACKGROUND: In 1972, Beger et al.1 first described duodenum-preserving pancreatic head resection (DPPHR) for patients with severe chronic pancreatitis. Then DPPHR also was proved capable of providing comparable long-term oncologic outcomes in the setting of benign or low-grade malignant tumors.2 As an organ-preserving procedure, DPPHR preserves the integrity of the digestive tract and improves the patient's quality of life compared with pancreaticoduodenectomy (PD),3 although DPPHR is more technically challenging, especially in protecting the bile duct and the pancreaticoduodenal vascular arch.4,5 The indocyanine green (ICG)-enhanced fluorescence imaging system in laparoscopic surgery can identify the biliary and vascular anatomy clearly to ensure a safe cholecystectomy and an adequate vascular supply for colectomy or nephrectomy.6 Nevertheless, to date, no report has described ICG-enhanced fluorescence in laparoscopic duodenum-preserving pancreatic head resection (LDPPHR). This article describes the technique of LDPPHR using a video of a real-time ICG fluorescence imaging system. METHODS: A 29-year-old woman received a diagnosis of chronic pancreatitis and an inflammatory mass in the head of the pancreas. A computed tomography (CT) scan showed atrophy of the pancreas, dilation of the main pancreatic duct, and heterogeneous enhancement of the pancreatic head parenchyma (Fig. 1). Her other preoperative examination results were normal except for high blood sugar. To avoid an extended PD for this young patient, LDPPHR was performed. The patient was placed in supine position with her two legs apart. The observing trocar (10 mm) was located at the inferior umbilicus. Four trocars (two 5-mm trocars and two 12-mm trocars) were distributed symmetrically at the midclavicular line and anterior axillary line. Another 5-mm trocar located at the subxiphoid was used for traction of the stomach with a rubber band. Before the operation, ICG (5 mg) was injected intravenously from the elbow vein. The gastrocolic ligament was opened, and the hepatic flexure of the colon was taken down to explore the head of the pancreas without making a Kocher's maneuver. After hanging of the distal stomach with a rubber band, both the right gastroepiploic vein and Henle's trunk were dissected. The number 8a lymph node was dissected for intraoperative rapid frozen pathology. A post-pancreatic neck tunnel was built, and the pancreatic neck was transected with an ultrasonic scalpel. The main pancreatic duct was identified and transected with cold scissors. The superior mesenteric vein (SMV) was hung with another rubber band and retracted to the left. The uncinate process of the pancreas was retracted to the right, and subcapsular dissection was performed, with particular attention paid to protection of the anterior inferior pancreaticoduodenal artery (AIPDA), the posterior inferior pancreaticoduodenal artery (PIPDA), and their branches that go into the duodenum. Then the gastroduodenal artery (GDA) was identified, and the anterosuperior pancreatic duodenal artery (ASPDA) was dissected. The upper part of the pancreatic head was separated to expose the common bile duct (CBD) with the help of real-time ICG fluorescence imaging (Fig. 2). The pancreas was dissected from the left edge of the duodenum and the right and ventral edges of the CBD. The posterosuperior pancreatic duodenal artery (PSPDA) was identified at the dorsal edge of the CBD. The PSPDA and its branches going into the distal CBD as well as the ampulla of Vater were carefully preserved. The proximal side of the main and accessory pancreatic duct was identified and sutured. Pancreatic anastomosis was performed using the technique of Bing's anastomosis.7 Fig. 1 Enhanced computed tomography (CT) scan showing atrophy of the pancreas, dilatation of the main pancreatic duct, and heterogeneous enhancement of the pancreatic head parenchyma Fig. 2 The common bile duct was separated and exposed from the head to the tail by the assistance of the real-time indocyanine green (ICG)-enhanced fluorescence imaging system RESULTS: The operation time was 251 min, and the estimated blood loss was 150 ml. The postoperative course was uneventful, with a hospital stay of 13 days. From February 2019 to November 2019, LDPPHR was used by the authors to manage 24 cases, including chronic pancreatitis (6 cases), pancreatic intraductal papillary mucinous tumors (6 cases), pancreatic neuroendocrine tumors (4 cases), pancreatic solid pseudopapillary tumors (4 cases), serous cystadenoma (3 cases), and mucinous cystadenoma (1 case). CONCLUSIONS: Indocyanine green-enhanced fluorescence in laparoscopic duodenum-preserving pancreatic head resection was safe and may offer a benefit for maintaining the integrity of the biliary system.


Subject(s)
Laparoscopy , Pancreatic Neoplasms , Adult , Female , Humans , Indocyanine Green , Pancreas/surgery , Pancreatectomy , Pancreatic Neoplasms/surgery , Quality of Life
13.
Molecules ; 25(3)2020 Feb 09.
Article in English | MEDLINE | ID: mdl-32050451

ABSTRACT

A selection of aptamers specific for di(2-ethylhexyl) phthalate (DEHP) and development of electrochemical impedance spectroscopy (EIS) aptasensor are described in this paper. The aptamers were selected from an immobilized ssDNA library using the systematic evolution of ligands by exponential enrichment (SELEX). The enrichment was monitored using real-time quantitative PCR (Q-PCR), and the aptamers were identified by high-throughput sequencing (HTS), gold nanoparticles (AuNPs) colorimetric assay, and localized surface plasmon resonance (LSPR). The EIS aptasensor was developed to detect DEHP in water samples. After eight rounds of enrichment, HTS, AuNPs colorimetric assay, and LSPR analysis indicated that four aptamers had higher binding activity, and aptamer 31 had the highest affinity (Kd = 2.26 ± 0.06 nM). The EIS aptasensor had a limit of detection (LOD) of 0.103 pg/mL with no cross-reactivity to DEHP analogs and a mean recovery of 76.07% to 141.32% for detection of DEHP in water samples. This aptamer is novel with the highest affinity and sensitivity.


Subject(s)
Aptamers, Nucleotide/chemistry , Biosensing Techniques , DNA, Single-Stranded/chemistry , Dielectric Spectroscopy/methods , Diethylhexyl Phthalate/analysis , Water Pollutants, Chemical/analysis , Colorimetry/methods , Drinking Water/chemistry , Gene Library , Gold/chemistry , High-Throughput Nucleotide Sequencing , Humans , Limit of Detection , Metal Nanoparticles/chemistry , Real-Time Polymerase Chain Reaction , SELEX Aptamer Technique , Surface Plasmon Resonance
14.
Proteomics ; 19(11): e1900011, 2019 06.
Article in English | MEDLINE | ID: mdl-30950572

ABSTRACT

The avian egg is a valuable model for the calcitic biomineralization process as it is the fastest calcification process occurring in nature and is a clear example of biomineralization. In this study, iTRAQ MS/MS is used to detect and study for the first time: 1) the overall duck eggshell proteome; 2) regional differences in the proteome between the inner and outer portions of the duck eggshell. The new reference protein datasets allow us to identify 179 more eggshell proteins than solely using the current release of Ensembl duck annotations. In total, 484 proteins are identified in the entire duck eggshell proteome. Twenty-eight novel proteins of unknown function that are involved in eggshell formation are also identified. Among the identified eggshell proteins, 54 proteins show differential abundances between the inner, partially mineralized eggshell (obtained 16 h after ovulation) compared to the overall complete eggshell (normally expulsed eggshell). At least 64 of the abundant matrix proteins are common to eggshell of 4 different domesticated bird species (chicken, duck, quail, turkey) and zebra finch. This study provides a new resource for avian eggshell proteomics, and augments the inventory of eggshell matrix proteins that will lead to a deeper understanding of calcitic biomineralization.


Subject(s)
Avian Proteins/analysis , Ducks , Egg Shell/chemistry , Animals , Avian Proteins/metabolism , Biomineralization , Ducks/growth & development , Egg Shell/growth & development , Proteomics , Tandem Mass Spectrometry
15.
BMC Genomics ; 20(1): 688, 2019 Sep 02.
Article in English | MEDLINE | ID: mdl-31477016

ABSTRACT

BACKGROUND: Pekin duck is an important animal model for its ability for fat synthesis and deposition. However, transcriptional dynamic regulation of adipose differentiation driven by complex signal cascades remains largely unexplored in this model. This study aimed to explore adipogenic transcriptional dynamics before (proliferation) and after (differentiation) initial preadipocyte differentiation in ducks. RESULTS: Exogenous oleic acid alone successfully induced duck subcutaneous preadipocyte differentiation. We explored 36 mRNA-seq libraries in order to study transcriptome dynamics during proliferation and differentiation processes at 6 time points. Using robust statistical analysis, we identified 845, 652, 359, 2401 and 1933 genes differentially expressed between -48 h and 0 h, 0 h and 12 h, 12 h and 24 h, 24 h and 48 h, 48 h and 72 h, respectively (FDR < 0.05, FC > 1.5). At the proliferation stage, proliferation related pathways and basic cellular and metabolic processes were inhibited, while regulatory factors that initiate differentiation enter the ready-to-activate state, which provides a precondition for initiating adipose differentiation. According to weighted gene co-expression network analysis, pathways positively related to adipogenic differentiation are significantly activated at the differentiation stage, while WNT, FOXO and other pathways that inhibit preadipocyte differentiation are negatively regulated. Moreover, we identified and classified more than 100 transcription factors that showed significant changes during differentiation, and found novel transcription factors that were not reported to be related to preadipoctye differentiation. Finally, we manually assembled a proposed regulation network model of subcutaneous preadipocyte differentiation base on the expression data, and suggested that E2F1 may serve as an important link between the processes of duck subcutaneous preadipocyte proliferation and differentiation. CONCLUSIONS: For the first time we comprehensively analyzed the transcriptome dynamics of duck subcutaneous preadipocyte proliferation and differentiation. The current study provides a solid basis for understanding the synthesis and deposition of subcutaneous fat in ducks. Furthermore, the information generated will allow future investigations of specific genes involved in particular stages of duck adipogenesis.


Subject(s)
Adipogenesis/genetics , Cell Differentiation/genetics , Ducks/genetics , Adipocytes/cytology , Adipocytes/metabolism , Animals , Cell Differentiation/physiology , Ducks/metabolism , E2F1 Transcription Factor/metabolism , Forkhead Box Protein O1/metabolism , Gene Ontology , Gene Regulatory Networks , Oleic Acid/metabolism , Transcriptome , Wnt Proteins/metabolism
16.
BMC Genomics ; 20(1): 1, 2019 Jan 03.
Article in English | MEDLINE | ID: mdl-30606130

ABSTRACT

BACKGROUND: Pekin duck products have become popular in Asia over recent decades and account for an increasing market share. However, the genetic mechanisms affecting carcass growth in Pekin ducks remain unknown. This study aimed to identify quantitative trait loci affecting body size and carcass yields in Pekin ducks. RESULTS: We measured 18 carcass traits in 639 Pekin ducks and performed genotyping using genotyping-by-sequencing (GBS). Loci-based association analysis detected 37 significant loci for the 17 traits. Thirty-seven identified candidate genes were involved in many biological processes. One single nucleotide polymorphism (SNP) (Chr1_140105435 A > T) located in the intron of the ATPase phospholipid transporting 11A gene (ATP11A) attained genome-wide significance associated with five weight traits. Eight SNPs were significantly associated with three body size traits, including the candidate gene plexin domain containing 2 (PLXDC2) associated with breast width and tensin 3 (TNS3) associated with fossil bone length. Only two SNPs were significantly associated with foot weight and four SNPs were significantly associated with heart weight. In the gene-based analysis, three genes (LOC101791418, TUBGCP3 (encoding tubulin gamma complex-associated protein 3), and ATP11A) were associated with four traits (42-day body weight, eviscerated weight, half-eviscerated weight, and leg muscle weight percentage). However, no loci were significantly associated with leg muscle weight in this study. CONCLUSIONS: The novel results of this study improve our understanding of the genetic mechanisms regulating body growth in ducks and thus provide a genetic basis for breeding programs aimed at maximizing the economic potential of Pekin ducks.


Subject(s)
Body Size/genetics , Ducks/genetics , Genome-Wide Association Study , Quantitative Trait Loci/genetics , Animals , Body Weight/genetics , Breeding , Genotype , Meat , Phenotype , Polymorphism, Single Nucleotide/genetics
17.
Br J Nutr ; 122(9): 986-995, 2019 11 14.
Article in English | MEDLINE | ID: mdl-31397240

ABSTRACT

Altered gut microbial ecology contributes to the development of metabolic diseases including obesity. However, studies based on different populations have generated conflicting results due to diet, environment, methodologies, etc. The aim of our study was to explore the association between gut microbiota and BMI in Chinese college students. The 16S next-generation sequencing (NGS) was used to test the gut microbiota of nine lean, nine overweight/obesity and ten normal-weight male college students. The differences in gut microbiota distribution among three groups were compared, and the relationship between the richness, diversity, composition of gut microbiota and BMI were analysed. The predominant phyla Bacteroidetes and Firmicutes were further confirmed by real-time PCR. Metagenomic biomarker discovery was conducted by linear discriminant analysis (LDA) effect size (LEfSe). NGS revealed that gut microbiota composition was different among three groups, but there was no difference in the abundance ratio of Firmicutes:Bacteroidetes. Several bacterial taxa were in linear relationship with BMI (positive relationship: uncultured bacterium (Bacteroides genus); negative relationship: Porphyromonadaceae, Acidaminococcaceae, Rikenellaceae, Desulfovibrionaceae, Blautia, Anaerotruncus, Parabacteroides, Alistipes). Moreover, gut microbiota diversity decreased with the increase in BMI. And LEfSe analysis indicated that Blautia, Anaerotruncus and its uncultured species were significantly enriched in the lean group (LDA score ≥ 3), Parasuterella and its uncultured species were significantly enriched in the overweight/obese groups (LDA score ≥ 3). In general, gut microbiota composition and microbial diversity were associated with BMI in Chinese male college students. Our results might enrich the understanding between gut microbiota and obesity.


Subject(s)
Bacteria/genetics , Body Mass Index , Gastrointestinal Microbiome/genetics , High-Throughput Nucleotide Sequencing , Overweight/microbiology , Asian People , Biodiversity , China , Humans , Male , Young Adult
18.
Molecules ; 23(9)2018 Sep 13.
Article in English | MEDLINE | ID: mdl-30216975

ABSTRACT

We describe a multiple combined strategy to discover novel aptamers specific for clenbuterol (CBL). An immobilized ssDNA library was used for the selection of specific aptamers using the systematic evolution of ligands by exponential enrichment (SELEX). Progress was monitored using real-time quantitative PCR (Q-PCR), and the enriched library was sequenced by high-throughput sequencing. Candidate aptamers were picked and preliminarily identified using a gold nanoparticles (AuNPs) biosensor. Bioactive aptamers were characterized for affinity, circular dichroism (CD), specificity and sensitivity. The Q-PCR amplification curve increased and the retention rate was about 1% at the eighth round. Use of the AuNPs biosensor and CD analyses determined that six aptamers had binding activity. Affinity analysis showed that aptamer 47 had the highest affinity (Kd = 42.17 ± 8.98 nM) with no cross reactivity to CBL analogs. Indirect competitive enzyme linked aptamer assay (IC-ELAA) based on a 5'-biotin aptamer 47 indicated the limit of detection (LOD) was 0.18 ± 0.02 ng/L (n = 3), and it was used to detect pork samples with a mean recovery of 83.33⁻97.03%. This is the first report of a universal strategy including library fixation, Q-PCR monitoring, high-throughput sequencing, and AuNPs biosensor identification to select aptamers specific for small molecules.


Subject(s)
Adrenergic beta-Agonists/analysis , Aptamers, Nucleotide/isolation & purification , Clenbuterol/analysis , DNA, Single-Stranded/metabolism , Gold/chemistry , Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/metabolism , Biosensing Techniques , Circular Dichroism , DNA, Single-Stranded/chemistry , Gene Library , High-Throughput Nucleotide Sequencing , Limit of Detection , Metal Nanoparticles/chemistry , SELEX Aptamer Technique , Sequence Analysis, DNA
19.
BMC Genomics ; 18(1): 699, 2017 Sep 06.
Article in English | MEDLINE | ID: mdl-28877683

ABSTRACT

BACKGROUND: Efficient use of feed resources for farm animals is a critical concern in animal husbandry. Numerous genetic and nutritional studies have been conducted to investigate feed efficiency during the regular laying cycle of chickens. However, by prolonging the laying period of layers, the performance of feed utilization in the late-laying period becomes increasingly important. In the present study, we measured daily feed intake (FI), residual feed intake (RFI) and feed conversion ratio (FCR) of 808 hens during 81-82 weeks of age to evaluate genetic properties and then used a genome-wide association study (GWAS) to reveal the genetic determinants. RESULTS: The heritability estimates for the investigated traits were medium and between 0.15 and 0.28 in both pedigree- and genomic-based estimates, whereas the genetic correlations among these traits were high and ranged from 0.49 to 0.90. Three genome-wide significant SNPs located on chromosome 1 (GGA1) were detected for FCR. Linkage disequilibrium (LD) and conditional GWA analysis indicated that these 3 SNPs were highly correlated with one another, located at 13.55-45.16 Kb upstream of gga-miR-15a. Results of quantitative real-time polymerase chain reaction (qRT-PCR) analysis in liver tissue showed that the expression of gga-miR-15a was significantly higher in the high FCR birds than that in the medium or low FCR birds. Bioinformatics analysis further revealed that gga-mir-15a could act on many target genes, such as forkhead box O1 (FOXO1) that is involved in the insulin-signaling pathway, which influences nutrient metabolism in many organisms. Additionally, some suggestively significant variants, located on GGA3 and GGA9, were identified to associate with FI and RFI. CONCLUSIONS: This GWA analysis was conducted on feed intake and efficiency traits for chickens and was innovative for application in the late laying period. Our findings can be used as a reference in the genomic breeding programs for increasing the efficiency performance of old hens and to improve our understanding of the molecular determinants for feed efficiency.


Subject(s)
Chickens/genetics , Chickens/metabolism , Genome-Wide Association Study , MicroRNAs/genetics , Animal Feed , Animals , Gene Expression Regulation , Linkage Disequilibrium , Phenotype
20.
J Transl Med ; 14: 80, 2016 Mar 23.
Article in English | MEDLINE | ID: mdl-27008379

ABSTRACT

BACKGROUND: S100A13 and high mobility group A (HMGA1) are known to play essential roles in the carcinogenesis and progression of cancer. However, the correlation between S100A13 and HMGA1 during cancer progression is not yet well understood. In this study, we determined the effects of S100A13 on HMGA1 expression in thyroid cancer cells and examined the role of HMGA1 in thyroid cancer progression. METHODS: Stable ectopic S100A13 expression TT cellular proliferation was evaluated by nude mice xenografts assays. The effect of lentivirus-mediated S100A13 knockdown on thyroid cancer cellular oncogenic properties were evaluated by MTT, colony formation assays and transwell assays in TPC1 and SW579 cells. The effect of siRNA-mediated HMGA1 knockdown on thyroid cancer cellular proliferation and invasion were evaluated by MTT, colony formation assays and transwell assays. The tissue microarray was performed to investigate the correlation between S100A13 and HMGA1 expression in tumor tissues. RESULTS: The ectopic expression of S100A13 could increase tumor growth in a TT cell xenograft mouse model. Moreover, lentivirus-mediated S100A13 knockdown led to the inhibition of cellular oncogenic properties in thyroid cancer cells, and HMGA1 was found to be involved in the effect of S100A13 on thyroid cancer growth and invasion. Furthermore, siRNA-mediated HMGA1 knockdown was proved to inhibit the growth of TPC1 cells and invasive abilities of SW579 cells. Clinically, it was revealed that both S100A13 and HMGA1 showed a higher expression levels in thyroid cancer cases compared with those in matched normal thyroid cases (P = 0.007 and P = 0.000); S100A13 and HMGA1 expressions were identified to be positively correlated (P = 0.004, R = 0.316) when analyzed regardless of thyroid cancer types. CONCLUSIONS: This is the first report for the association between HMGA1 and S100A13 expression in the modulation of thyroid cancer growth and invasion. Those results would provide an essential insight into the effect of S100A13 on carcinogenesis of thyroid tumor, rending S100A13 to be potential biological marker for the diagnosis of thyroid cancer.


Subject(s)
HMGA1a Protein/metabolism , S100 Proteins/metabolism , Thyroid Neoplasms/metabolism , Thyroid Neoplasms/pathology , Animals , Cell Line, Tumor , Cell Movement , Cell Proliferation , Female , Gene Knockdown Techniques , Humans , Lentivirus/metabolism , Male , Mice, Inbred BALB C , Mice, Nude , Microscopy, Fluorescence , Neoplasm Invasiveness , RNA, Small Interfering/metabolism , Snail Family Transcription Factors , Transcription Factors/metabolism , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL