ABSTRACT
Nutrient sensing and damage sensing are two fundamental processes in living organisms. While hyperglycemia is frequently linked to diabetes-related vulnerability to microbial infection, how body glucose levels affect innate immune responses to microbial invasion is not fully understood. Here, we surprisingly found that viral infection led to a rapid and dramatic decrease in blood glucose levels in rodents, leading to robust AMPK activation. AMPK, once activated, directly phosphorylates TBK1 at S511, which triggers IRF3 recruitment and the assembly of MAVS or STING signalosomes. Consistently, ablation or inhibition of AMPK, knockin of TBK1-S511A, or increased glucose levels compromised nucleic acid sensing, while boosting AMPK-TBK1 cascade by AICAR or TBK1-S511E knockin improves antiviral immunity substantially in various animal models. Thus, we identify TBK1 as an AMPK substrate, reveal the molecular mechanism coupling a dual sensing of glucose and nuclei acids, and report its physiological necessity in antiviral defense.
Subject(s)
AMP-Activated Protein Kinases , Nucleic Acids , Animals , AMP-Activated Protein Kinases/genetics , Immunity, Innate , Antiviral Agents , GlucoseABSTRACT
Metformin, the most prescribed antidiabetic medicine, has shown other benefits such as anti-ageing and anticancer effects1-4. For clinical doses of metformin, AMP-activated protein kinase (AMPK) has a major role in its mechanism of action4,5; however, the direct molecular target of metformin remains unknown. Here we show that clinically relevant concentrations of metformin inhibit the lysosomal proton pump v-ATPase, which is a central node for AMPK activation following glucose starvation6. We synthesize a photoactive metformin probe and identify PEN2, a subunit of γ-secretase7, as a binding partner of metformin with a dissociation constant at micromolar levels. Metformin-bound PEN2 forms a complex with ATP6AP1, a subunit of the v-ATPase8, which leads to the inhibition of v-ATPase and the activation of AMPK without effects on cellular AMP levels. Knockout of PEN2 or re-introduction of a PEN2 mutant that does not bind ATP6AP1 blunts AMPK activation. In vivo, liver-specific knockout of Pen2 abolishes metformin-mediated reduction of hepatic fat content, whereas intestine-specific knockout of Pen2 impairs its glucose-lowering effects. Furthermore, knockdown of pen-2 in Caenorhabditis elegans abrogates metformin-induced extension of lifespan. Together, these findings reveal that metformin binds PEN2 and initiates a signalling route that intersects, through ATP6AP1, the lysosomal glucose-sensing pathway for AMPK activation. This ensures that metformin exerts its therapeutic benefits in patients without substantial adverse effects.
Subject(s)
Hypoglycemic Agents , Metformin , Vacuolar Proton-Translocating ATPases , AMP-Activated Protein Kinases/metabolism , Adenosine Triphosphatases/metabolism , Amyloid Precursor Protein Secretases , Animals , Caenorhabditis elegans/metabolism , Diabetes Mellitus/drug therapy , Glucose/metabolism , Humans , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/metabolism , Hypoglycemic Agents/pharmacology , Lysosomes/metabolism , Membrane Proteins , Metformin/agonists , Metformin/metabolism , Metformin/pharmacology , Vacuolar Proton-Translocating ATPases/metabolismABSTRACT
Mitochondria play essential roles in cancer cell adaptation to hypoxia, but the underlying mechanisms remain elusive. Through mitochondrial proteomic profiling, we here find that the prolyl hydroxylase EglN1 (PHD2) accumulates on mitochondria under hypoxia. EglN1 substrate-binding region in the ß2ß3 loop is responsible for its mitochondrial translocation and contributes to breast tumor growth. Furthermore, we identify AMP-activated protein kinase alpha (AMPKα) as an EglN1 substrate on mitochondria. The EglN1-AMPKα interaction is essential for their mutual mitochondrial translocation. After EglN1 prolyl-hydroxylates AMPKα under normoxia, they rapidly dissociate following prolyl-hydroxylation, leading to their immediate release from mitochondria. In contrast, hypoxia results in constant EglN1-AMPKα interaction and their accumulation on mitochondria, leading to the formation of a Ca2+ /calmodulin-dependent protein kinase 2 (CaMKK2)-EglN1-AMPKα complex to activate AMPKα phosphorylation, ensuring metabolic homeostasis and breast tumor growth. Our findings identify EglN1 as an oxygen-sensitive metabolic checkpoint signaling hypoxic stress to mitochondria through its ß2ß3 loop region, suggesting a potential therapeutic target for breast cancer.
Subject(s)
AMP-Activated Protein Kinases , Breast Neoplasms , Female , Humans , AMP-Activated Protein Kinases/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Hypoxia , Hypoxia-Inducible Factor-Proline Dioxygenases/genetics , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Mitochondria/metabolism , ProteomicsABSTRACT
Wood formation involves consecutive developmental steps, including cell division of vascular cambium, xylem cell expansion, secondary cell wall (SCW) deposition, and programmed cell death. In this study, we identified PagMYB31 as a coordinator regulating these processes in Populus alba × Populus glandulosa and built a PagMYB31-mediated transcriptional regulatory network. PagMYB31 mutation caused fewer layers of cambial cells, larger fusiform initials, ray initials, vessels, fiber and ray cells, and enhanced xylem cell SCW thickening, showing that PagMYB31 positively regulates cambial cell proliferation and negatively regulates xylem cell expansion and SCW biosynthesis. PagMYB31 repressed xylem cell expansion and SCW thickening through directly inhibiting wall-modifying enzyme genes and the transcription factor genes that activate the whole SCW biosynthetic program, respectively. In cambium, PagMYB31 could promote cambial activity through TRACHEARY ELEMENT DIFFERENTIATION INHIBITORY FACTOR (TDIF)/PHLOEM INTERCALATED WITH XYLEM (PXY) signaling by directly regulating CLAVATA3/ESR-RELATED (CLE) genes, and it could also directly activate WUSCHEL HOMEOBOX RELATED4 (PagWOX4), forming a feedforward regulation. We also observed that PagMYB31 could either promote cell proliferation through the MYB31-MYB72-WOX4 module or inhibit cambial activity through the MYB31-MYB72-VASCULAR CAMBIUM-RELATED MADS2 (VCM2)/PIN-FORMED5 (PIN5) modules, suggesting its role in maintaining the homeostasis of vascular cambium. PagMYB31 could be a potential target to manipulate different developmental stages of wood formation.
Subject(s)
Cambium , Gene Expression Regulation, Plant , Plant Proteins , Populus , Transcription Factors , Xylem , Populus/genetics , Populus/growth & development , Populus/metabolism , Xylem/metabolism , Xylem/genetics , Xylem/growth & development , Cambium/genetics , Cambium/growth & development , Cambium/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Cell Wall/metabolism , Cell Proliferation , Wood/growth & development , Wood/metabolism , Wood/geneticsABSTRACT
Iron-based hexacyanoferrate (Fe-HCF) are promising cathode materials for sodium-ion batteries (SIBs) due to their unique open-channel structure that facilitates fast ion transport and framework stability. However, practical implementation of SIBs has been hindered by low initial Coulombic efficiency (ICE), poor rate performance, and short lifespan. Herein, we report a coordination engineering to synthesize sodium-rich Fe-HCF as cathodes for SIBs through a uniquely designed 10-kg-scale chemical reactor. Our study systematically investigated the relationship between coordination surroundings and the electrochemical behavior. Building on this understanding, the cathode delivered a reversible capacity of 99.3 mAh g-1 at 5 C (1 C = 100 mA g-1), exceptional rate capability (51 mAh g-1 even at 100 C), long lifespan (over 15,000 times at 50 C), and a high ICE of 92.7%. A full cell comprising the Fe-HCF cathode and hard carbon (HC) anode exhibited an impressive cyclic stability with a high-capacity retention rate of 98.3% over 1,000 cycles. Meanwhile, this material can be readily scaled to the practical levels of yield. The findings underscore the potential of Fe-HCF as cathodes for SIBs and highlight the significance of controlling nucleation and morphology through coordination engineering for a sustainable energy storage system.
ABSTRACT
Autophagy represents a fundamental mechanism for maintaining cell survival and tissue homeostasis in response to physiological and pathological stress. Autophagy initiation converges on the FIP200-ATG13-ULK1 complex wherein the serine/threonine kinase ULK1 plays a central role. Here, we reveal that the E3 ubiquitin ligase TRIM27 functions as a negative regulatory component of the FIP200-ATG13-ULK1 complex. TRIM27 directly polyubiquitinates ULK1 at K568 and K571 sites with K48-linked ubiquitin chains, with proteasomal turnover maintaining control over basal ULK1 levels. However, during starvation-induced autophagy, TRIM27 catalyzes non-degradative K6- and K11-linked ubiquitination of the serine/threonine kinase 38-like (STK38L) kinase. In turn, STK38L ubiquitination promotes its activation and phosphorylation of ULK1 at Ser495, rendering ULK1 in a permissive state for TRIM27-mediated hyper-ubiquitination of ULK1. This cooperative mechanism serves to restrain the amplitude and duration of autophagy. Further evidence from mouse models shows that basal autophagy levels are increased in Trim27 knockout mice and that Trim27 differentially regulates tumorigenesis and metastasis. Our study identifies a key role of STK38L-TRIM27-ULK1 signaling axis in negatively controlling autophagy with relevance established in human breast cancer.
Subject(s)
Autophagy , Protein Serine-Threonine Kinases , Animals , Autophagy-Related Protein-1 Homolog/genetics , Carcinogenesis/genetics , DNA-Binding Proteins , Humans , Intracellular Signaling Peptides and Proteins/genetics , Mice , Nuclear Proteins , Protein Serine-Threonine Kinases/genetics , Serine , Transcription Factors , Ubiquitin-Protein LigasesABSTRACT
Plants have evolved complex photoreceptor-controlled mechanisms to sense and respond to seasonal changes in day length. This ability allows plants to optimally time the transition from vegetative growth to flowering. UV-B is an important part intrinsic to sunlight; however, whether and how it affects photoperiodic flowering has remained elusive. Here, we report that, in the presence of UV-B, genetic mutation of REPRESSOR OF UV-B PHOTOMORPHOGENESIS 2 (RUP2) renders the facultative long day plant Arabidopsis thaliana a day-neutral plant and that this phenotype is dependent on the UV RESISTANCE LOCUS 8 (UVR8) UV-B photoreceptor. We provide evidence that the floral repression activity of RUP2 involves direct interaction with CONSTANS, repression of this key activator of flowering, and suppression of FLOWERING LOCUS T transcription. RUP2 therefore functions as an essential repressor of UVR8-mediated induction of flowering under noninductive short day conditions and thus provides a crucial mechanism of photoperiodic flowering control.
Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis Proteins/physiology , Chromosomal Proteins, Non-Histone/metabolism , Flowers/growth & development , Photoperiod , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , DNA-Binding Proteins/metabolism , Promoter Regions, Genetic , Transcription Factors/metabolism , Ultraviolet RaysABSTRACT
Photoperiodic plants coordinate the timing of flowering with seasonal light cues, thereby optimizing their sexual reproductive success. The WD40-repeat protein REPRESSOR OF UV-B PHOTOMORPHOGENESIS 2 (RUP2) functions as a potent repressor of UV RESISTANCE LOCUS 8 (UVR8) photoreceptor-mediated UV-B induction of flowering under noninductive, short-day conditions in Arabidopsis (Arabidopsis thaliana); however, in contrast, the closely related RUP1 seems to play no major role. Here, analysis of chimeric ProRUP1:RUP2 and ProRUP2:RUP1 expression lines suggested that the distinct functions of RUP1 and RUP2 in repressing flowering are due to differences in both their coding and regulatory DNA sequences. Artificial altered expression using tissue-specific promoters indicated that RUP2 functions in repressing flowering when expressed in mesophyll and phloem companion cells, whereas RUP1 functions only when expressed in phloem companion cells. Endogenous RUP1 expression in vascular tissue was quantified as lower than that of RUP2, likely underlying the functional difference between RUP1 and RUP2 in repressing flowering. Taken together, our findings highlight the importance of phloem vasculature expression of RUP2 in repressing flowering under short days and identify a basis for the functional divergence of Arabidopsis RUP1 and RUP2 in regulating flowering time.
Subject(s)
Arabidopsis , Arabidopsis/genetics , Reproduction , Cues , Phloem/genetics , Promoter Regions, Genetic/geneticsABSTRACT
Immunopsychiatric field has rapidly accumulated evidence demonstrating the involvement of both innate and adaptive immune components in psychotic disorders such as schizophrenia. Nevertheless, researchers are facing dilemmas of discrepant findings of immunophenotypes both outside and inside the brains of psychotic patients, as discovered by recent meta-analyses. These discrepancies make interpretations and interrogations on their roles in psychosis remain vague and even controversial, regarding whether certain immune cells are more activated or less so, and whether they are causal or consequential, or beneficial or harmful for psychosis. Addressing these issues for psychosis is not at all trivial, as immune cells either outside or inside the brain are an enormously heterogeneous and plastic cell population, falling into a vast range of lineages and subgroups, and functioning differently and malleably in context-dependent manners. This review aims to overview the currently known immunophenotypes of patients with psychosis, and provocatively suggest the premature immune "burnout" or inflamm-aging initiated since organ development as a potential primary mechanism behind these immunophenotypes and the pathogenesis of psychotic disorders.
Subject(s)
Brain , Immunophenotyping , Psychotic Disorders , Schizophrenia , Humans , Psychotic Disorders/immunology , Immunophenotyping/methods , Schizophrenia/immunology , Inflammation/immunology , Immunity, Innate , Adaptive ImmunityABSTRACT
Ethane is the second most abundant component of natural gas in addition to methane, and-similar to methane-is chemically unreactive. The biological consumption of ethane under anoxic conditions was suggested by geochemical profiles at marine hydrocarbon seeps1-3, and through ethane-dependent sulfate reduction in slurries4-7. Nevertheless, the microorganisms and reactions that catalyse this process have to date remained unknown8. Here we describe ethane-oxidizing archaea that were obtained by specific enrichment over ten years, and analyse these archaea using phylogeny-based fluorescence analyses, proteogenomics and metabolite studies. The co-culture, which oxidized ethane completely while reducing sulfate to sulfide, was dominated by an archaeon that we name 'Candidatus Argoarchaeum ethanivorans'; other members were sulfate-reducing Deltaproteobacteria. The genome of Ca. Argoarchaeum contains all of the genes that are necessary for a functional methyl-coenzyme M reductase, and all subunits were detected in protein extracts. Accordingly, ethyl-coenzyme M (ethyl-CoM) was identified as an intermediate by liquid chromatography-tandem mass spectrometry. This indicated that Ca. Argoarchaeum initiates ethane oxidation by ethyl-CoM formation, analogous to the recently described butane activation by 'Candidatus Syntrophoarchaeum'9. Proteogenomics further suggests that oxidation of intermediary acetyl-CoA to CO2 occurs through the oxidative Wood-Ljungdahl pathway. The identification of an archaeon that uses ethane (C2H6) fills a gap in our knowledge of microorganisms that specifically oxidize members of the homologous alkane series (CnH2n+2) without oxygen. Detection of phylogenetic and functional gene markers related to those of Ca. Argoarchaeum at deep-sea gas seeps10-12 suggests that archaea that are able to oxidize ethane through ethyl-CoM are widespread members of the local communities fostered by venting gaseous alkanes around these seeps.
Subject(s)
Aquatic Organisms/metabolism , Archaea/metabolism , Ethane/metabolism , Anaerobiosis , Archaea/classification , Archaea/enzymology , Archaea/genetics , Deltaproteobacteria/metabolism , Ethane/chemistry , Gases/chemistry , Gases/metabolism , Gulf of Mexico , Methane/biosynthesis , Oxidation-Reduction , Oxidoreductases/genetics , Oxidoreductases/isolation & purification , Oxidoreductases/metabolism , Phylogeny , RNA, Ribosomal, 16S/genetics , Sulfates/metabolism , Sulfides/metabolismABSTRACT
GCN2-eIF2α signaling pathway plays crucial roles in cell growth,development, and protein synthesis. However, in polyploid fish, the function of this pathway is rarely understood. In this study, genes associated with the GCN2-eIF2α pathway (pkr, pek, gcn2, eif2α) are founded lower expression levels in the triploid crucian carp (3nCC) muscle compared to that of the red crucian carp (RCC). In muscle effect stage embryos of the 3nCC, the mRNA levels of this pathway genes are generally lower than those of RCC, excluding hri and fgf21. Inhibiting gcn2 in 3nCC embryos downregulates downstream gene expression (eif2α, atf4, fgf21), accelerating embryonic development. In contrast, overexpressing of eif2α can alter the expression levels of downstream genes (atf4 and fgf21), and decelerates the embryonic development. These results demonstrate the GCN2-eIF2α pathway's regulatory impact on 3nCC growth, advancing understanding of fish rapid growth genetics and offering useful molecular markers for breeding of excellent strains.
Subject(s)
Carps , Eukaryotic Initiation Factor-2 , Fish Proteins , Signal Transduction , Animals , Carps/genetics , Carps/metabolism , Carps/growth & development , Eukaryotic Initiation Factor-2/metabolism , Eukaryotic Initiation Factor-2/genetics , Fish Proteins/genetics , Fish Proteins/metabolism , Triploidy , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Activating Transcription Factor 4/metabolism , Activating Transcription Factor 4/genetics , Gene Expression Regulation, Developmental , Embryonic Development/geneticsABSTRACT
The spin-orbit coupling (SOC), the dynamics of the nonequilibrium transport process, and the breaking of time-reversal and space-inversion symmetries have been regarded as key factors for the emergence of chirality-induced spin selectivity (CISS) and chirality-dependent spin currents in helix molecules. In this work, we demonstrated the generation of persistent CISS currents in various circular single-stranded DNAs and 310-helix proteins for the first time, regardless of whether an external magnetic flux is applied or not. This new CISS effect presents only in equilibrium transport processes, distinct from the traditional CISS observed in nonequilibrium transport processes and linear helix molecules; we term it as the PCISS effect. Notably, PCISS manifests irrespective of whether the SOC is chirality-driven or stems from heavy-metal substrates, making it an efficient way to generate chirality-locked pure spin currents. Our research establishes a novel paradigm for examining the underlying physics of the CISS effect.
ABSTRACT
Rechargeable magnesium batteries (rMBs) are promising candidates for next-generation batteries in which sulfides are widely used as cathode materials. The slow kinetics, low redox reversibility, and poor magnesium storage stability induced by the large Coulombic resistance and ionic polarization of Mg2+ ions have obstructed the development of high-performance rMBs. Herein, a Cu1.8S1-xSex cathode material with a two-dimensional sheet structure has been prepared by an anion-tuning strategy, achieving improved magnesium storage capacity and cycling stability. Element-specific synchrotron radiation analysis is evidence that selenium incorporation has indeed changed the chemical state of Cu species. Density functional theory calculations combined with kinetics analysis reveal that the anionic substitution endows the Cu1.8S1-xSex electrode with favorable charge-transfer kinetics and low ion diffusion barrier. The principal magnesium storage mechanisms and structural evolution process have been revealed in details based on a series of ex situ investigations. Our findings provide an effective heteroatom-tuning tactic of optimizing electrode structure toward advanced energy storage devices.
ABSTRACT
Aqueous aluminum-ion batteries (AAIBs) are considered a strong candidate for the new generation of energy storage devices. The lack of suitable cathode materials has been a bottleneck factor hindering the future development of AAIBs. In this work, we design and construct a highly effective cathode with dual morphologies. Two-dimensional (2D) layered MXene materials possessed good conductivity and hydrophilicity, which are used as the substrates to deposit rod-shaped vanadium oxides (V2O5) to form a three-dimensional (3D) cathode. The cathode design provides a strong boost for the rapid electrochemical activities of rod-shaped V2O5 by embedding/extracting both protons (H+) and aluminum-ion (Al3+). As a result, the V2O5@MXene cathode based AAIB delivers an ultrahigh initial specific capacity of 626 mAh/g at 0.1 A/g with a stable cycle performance up to 100 cycles. This work is a breakthrough for the development of cathode materials for AAIBs.
ABSTRACT
ZnSeTe quantum dots (QDs) offer an efficient avenue for realizing heavy-metal-free light-emitting diodes (LEDs) that meet the Rec.2100 blue standard. Synthetic core-shell engineering has enabled big advances in the external quantum efficiency (EQE) of ZnSeTe QD-LEDs. However, the mechanisms behind the degradation of the operational stability of ZnSeTe QD-LEDs remain relatively unexplored. In this study, we explore the impact of ligand density and composition on both material and device stability. We developed a solid-film ligand exchange utilizing an inorganic X-type ligand (zinc chloride), revealing that the substitution of inorganic ligands for organic counterparts significantly influences the stability of both materials and devices.
ABSTRACT
This paper proposes a data-driven analysis method to accurately partition large-scale resting-state functional brain networks from fMRI data. The method is based on a spectral clustering algorithm and combines eigenvector direction selection with Pearson correlation clustering in the spectral space. The method is an improvement on available spectral clustering methods, capable of robustly identifying active brain networks consistent with those from model-driven methods at different noise levels, even at the noise level of real fMRI data.
Subject(s)
Algorithms , Brain , Magnetic Resonance Imaging , Nerve Net , Humans , Magnetic Resonance Imaging/methods , Brain/physiology , Brain/diagnostic imaging , Cluster Analysis , Nerve Net/diagnostic imaging , Nerve Net/physiology , Image Processing, Computer-Assisted/methods , Brain Mapping/methods , Rest/physiology , AdultABSTRACT
BACKGROUND: 8-Oxoguanine DNA glycosylase (OGG1), a well-known DNA repair enzyme, has been demonstrated to promote lung fibrosis, while the specific regulatory mechanism of OGG1 during pulmonary fibrosis remains unclarified. METHODS: A bleomycin (BLM)-induced mouse pulmonary fibrosis model was established, and TH5487 (the small molecule OGG1 inhibitor) and Mitochondrial division inhibitor 1 (Mdivi-1) were used for administration. Histopathological injury of the lung tissues was assessed. The profibrotic factors and oxidative stress-related factors were examined using the commercial kits. Western blot was used to examine protein expression and immunofluorescence analysis was conducted to assess macrophages polarization and autophagy. The conditional medium from M2 macrophages was harvested and added to HFL-1 cells for culture to simulate the immune microenvironment around fibroblasts during pulmonary fibrosis. Subsequently, the loss- and gain-of function experiments were conducted to further confirm the molecular mechanism of OGG1/PINK1. RESULTS: In BLM-induced pulmonary fibrosis, OGG1 was upregulated while PINK1/Parkin was downregulated. Macrophages were activated and polarized to M2 phenotype. TH5487 administration effectively mitigated pulmonary fibrosis, M2 macrophage polarization, oxidative stress and mitochondrial dysfunction while promoted PINK1/Parkin-mediated mitophagy in lung tissues of BLM-induced mice, which was partly hindered by Mdivi-1. PINK1 overexpression restricted M2 macrophages-induced oxidative stress, mitochondrial dysfunction and mitophagy inactivation in lung fibroblast cells, and OGG1 knockdown could promote PINK1/Parkin expression and alleviate M2 macrophages-induced mitochondrial dysfunction in HFL-1 cells. CONCLUSION: OGG1 inhibition protects against pulmonary fibrosis, which is partly via activating PINK1/Parkin-mediated mitophagy and retarding M2 macrophage polarization, providing a therapeutic target for pulmonary fibrosis.
Subject(s)
Bleomycin , DNA Glycosylases , Disease Models, Animal , Macrophages , Mitophagy , Protein Kinases , Pulmonary Fibrosis , Animals , Mitophagy/drug effects , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/etiology , Pulmonary Fibrosis/pathology , DNA Glycosylases/metabolism , DNA Glycosylases/genetics , Mice , Macrophages/metabolism , Protein Kinases/metabolism , Bleomycin/adverse effects , Male , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Oxidative Stress/drug effects , Mice, Inbred C57BL , Macrophage Activation , Humans , QuinazolinonesABSTRACT
Single-molecule localization microscopy (SMLM) requires high-intensity laser irradiation, typically exceeding kW/cm2, to yield a sufficient photon count. However, this intense visible light exposure incurs substantial cellular toxicity, hindering its use in living cells. Here, we developed a class of near-infrared (NIR) spontaneously blinking fluorophores for SMLM. These NIR fluorophores are a combination of rhodamine spirolactams and merocyanine derivatives, where the rhodamine spirolactam component converts between a bright and dark state based on pH-dependent spirocyclization and merocyanine derivatives shift the excitation wavelength into the infrared. Single-molecule characterizations demonstrated their potential for SMLM. At a moderate power density of 3.93 kW/cm2, these probes exhibit duty cycle as low as 0.18% and an emission rate as high as 26,700 photons/s. Phototoxicity assessment under single-molecule imaging conditions reveals that NIR illumination (721 nm) minimizes harm to living cells. Employing these NIR fluorophores, we successfully captured time-lapse super-resolution tracking of mitochondria at a Fourier ring correlation (FRC) resolution of 69.4 nm and reconstructed the ultrastructures of endoplasmic reticulum (ER) in living cells.
Subject(s)
Fluorescent Dyes , Infrared Rays , Fluorescent Dyes/chemistry , Humans , HeLa Cells , Indoles/chemistry , Rhodamines/chemistry , Microscopy, Fluorescence , Cell Survival/drug effects , Mitochondria , BenzopyransABSTRACT
INTRODUCTION: An optimal follow-up schedule for small (≤3-cm) hepatocellular carcinoma (HCC) after radiofrequency ablation (RFA) remains unclear in clinical guidelines. We aimed to assess the cost-effectiveness of follow-up strategies in patients with small HCC after RFA. METHODS: In total, 11,243 patients were collected from global institutions to calculate recurrence rates. Subsequently, a Markov model covering a 10-year period was developed to compare 25 surveillance strategies involving different surveillance techniques (computed tomography [CT], magnetic resonance imaging or ultrasonography [US], and α-fetoprotein [AFP]) and intervals (3 or 6 months). The study endpoint was incremental cost-effectiveness ratio (ICER), which represented additional cost per incremental quality-adjusted life year. Sensitivity analysis was conducted by varying the values of input parameters to observe the ICER. RESULTS: In a base case analysis, the dominant strategy was CT every 3 months during an initial 2 years, followed by semiannual CT, and then switch to biannual the combination of US screening and AFP testing after 5 years (m3_CT-m6_CT-m6_USAFP), with an ICER of $68,570.92 compared with the "not followed" strategy. One-way sensitivity analysis showed the ICER consistently remained below the willingness-to-pay threshold of $100,000.00. In a probabilistic sensitivity analysis, m3_CT-m6_CT-m6_USAFP was the most cost-effective approach in 95.6% of simulated scenarios at a willingness-to-pay threshold. DISCUSSION: For small HCC after RFA, the recommended follow-up strategy is CT, with scans scheduled every 3 months for the first 2 years, every 6 months thereafter, and transition to biannual the combination of US screening and AFP testing after 5 years.
Subject(s)
Carcinoma, Hepatocellular , Cost-Benefit Analysis , Liver Neoplasms , Neoplasm Recurrence, Local , Quality-Adjusted Life Years , Radiofrequency Ablation , Tomography, X-Ray Computed , alpha-Fetoproteins , Humans , Carcinoma, Hepatocellular/surgery , Carcinoma, Hepatocellular/economics , Carcinoma, Hepatocellular/diagnostic imaging , Liver Neoplasms/surgery , Liver Neoplasms/economics , Liver Neoplasms/diagnostic imaging , Radiofrequency Ablation/economics , alpha-Fetoproteins/analysis , alpha-Fetoproteins/metabolism , Follow-Up Studies , Neoplasm Recurrence, Local/economics , Male , Female , Tomography, X-Ray Computed/economics , Markov Chains , Magnetic Resonance Imaging/economics , Middle Aged , Ultrasonography/economics , Aged , Catheter Ablation/economics , Catheter Ablation/methodsABSTRACT
Aluminum batteries (ABs) are identified as one of the most promising candidates for the next generation of large-scale energy storage elements because of their efficient three-electron reaction. Compared to ionic electrolytes, aqueous aluminum-ion batteries (AAIBs) are considered safer, less costly, and more environmentally friendly. However, considerable cycling performance is a key issue limiting the development of AAIBs. Stable, efficient, and electrolyte-friendly cathodes are most desirable for AAIBs. Herein, a rod-shaped defect-rich α-MnO2 is designed as a cathode, which is capable to deliver high performance with stable cycling for 180 cycles at 500 mA g-1 and maintains a discharge specific capacity of ≈100 mAh g-1. In addition, the infiltrability simulation is effectively utilized to corroborate the rapid electrochemical reaction brought about by the defective mechanism. With the formation of oxygen vacancies, the dual embedding of protons and metal ions is activated. This work provides a brand-new design for the development and characterization of cathodes for AAIBs.