Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 119
Filter
Add more filters

Publication year range
1.
Plant J ; 118(6): 1937-1954, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38491870

ABSTRACT

Chilling stress causes banana fruit softening disorder and severely impairs fruit quality. Various factors, such as transcription factors, regulate fruit softening. Herein, we identified a novel regulator, MaC2H2-IDD, whose expression is closely associated with fruit ripening and softening disorder. MaC2H2-IDD is a transcriptional activator located in the nucleus. The transient and ectopic overexpression of MaC2H2-IDD promoted "Fenjiao" banana and tomato fruit ripening. However, transient silencing of MaC2H2-IDD repressed "Fenjiao" banana fruit ripening. MaC2H2-IDD modulates fruit softening by activating the promoter activity of starch (MaBAM3, MaBAM6, MaBAM8, MaAMY3, and MaISA2) and cell wall (MaEXP-A2, MaEXP-A8, MaSUR14-like, and MaGLU22-like) degradation genes. DLR, Y1H, EMSA, and ChIP-qPCR assays validated the expression regulation. MaC2H2-IDD interacts with MaEBF1, enhancing the regulation of MaC2H2-IDD to MaAMY3, MaEXP-A2, and MaGLU22-like. Overexpressing/silencing MaC2H2-IDD in banana and tomato fruit altered the transcript levels of the cell wall and starch (CWS) degradation genes. Several differentially expressed genes (DEGs) were authenticated between the overexpression and control fruit. The DEGs mainly enriched biosynthesis of secondary metabolism, amino sugar and nucleotide sugar metabolism, fructose and mannose metabolism, starch and sucrose metabolism, and plant hormones signal transduction. Overexpressing MaC2H2-IDD also upregulated protein levels of MaEBF1. MaEBF1 does not ubiquitinate or degrade MaC2H2-IDD. These data indicate that MaC2H2-IDD is a new regulator of CWS degradation in "Fenjiao" banana and cooperates with MaEBF1 to modulate fruit softening, which also involves the cold softening disorder.


Subject(s)
Cold-Shock Response , Fruit , Gene Expression Regulation, Plant , Musa , Plant Proteins , Musa/genetics , Musa/metabolism , Musa/physiology , Fruit/genetics , Fruit/metabolism , Fruit/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Cold-Shock Response/genetics , Solanum lycopersicum/genetics , Solanum lycopersicum/physiology , Solanum lycopersicum/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Plants, Genetically Modified , Cell Wall/metabolism , Starch/metabolism
2.
Plant Cell Physiol ; 65(1): 49-67, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-37767757

ABSTRACT

As zinc finger protein transcription factors (TFs), the molecular mechanism of Cys-Cys-Cys-His (CCCH) TFs in regulating plant development, growth and stress response has been well studied. However, the roles of CCCH TFs in fruit ripening are still obscure. Herein, we report that MaCCCH33-like2 TF and its associated proteins modulate the fruit softening of 'Fenjiao' bananas. MaCCCH33-like2 interacts directly with the promoters of three genes: isoamylase2 (MaISA2), sugar transporter14-like (MaSUR14-like) and ß-d-xylosidase23 (MaXYL23), all of which are responsible for encoding proteins involved in the degradation of starch and cell wall components. Additionally, MaCCCH33-like2 forms interactions with abscisic acid-insensitive 5 (ABI5)-like and ethylene F-box protein 1 (MaEBF1), resulting in enhanced binding and activation of promoters of genes related to starch and cell wall degradation. When MaCCCH33-like2 is transiently and ectopically overexpressed in 'Fenjiao' banana and tomato fruit, it facilitates softening and ripening processes by promoting the degradation of cell wall components and starch and the production of ethylene. Conversely, the temporary silencing of MaCCCH33-like2 using virus-induced gene silencing (VIGS) inhibits softening and ripening in the 'Fenjiao' banana by suppressing ethylene synthesis, as well as starch and cell wall degradation. Furthermore, the promoter activity of MaCCCH33-like2 is regulated by MaABI5-like. Taken together, we have uncovered a novel MaCCCH33-like2/MaEBF1/MaABI5-like module that participates in fruit softening regulation in bananas.


Subject(s)
Musa , Starch , Starch/metabolism , Musa/genetics , Musa/metabolism , Fruit/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Cell Wall/metabolism , Zinc Fingers , Ethylenes/metabolism , Gene Expression Regulation, Plant
3.
Br J Haematol ; 204(6): 2468-2479, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38650379

ABSTRACT

Paroxysmal nocturnal haemoglobinuria (PNH) is a disorder resulting from erythrocyte membrane deficiencies caused by PIG-A gene mutations. While current treatments alleviate symptoms, they fail to address the underlying cause of the disease-the pathogenic PNH clones. In this study, we found that the expression of carbamoyl phosphate synthetase 1 (CPS1) was downregulated in PNH clones, and the level of CPS1 was negatively correlated with the proportion of PNH clones. Using PIG-A knockout K562 (K562 KO) cells, we demonstrated that CPS1 knockdown increased cell proliferation and altered cell metabolism, suggesting that CPS1 participates in PNH clonal proliferation through metabolic reprogramming. Furthermore, we observed an increase in the expression levels of the histone demethylase JMJD1C in PNH clones, and JMJD1C expression was negatively correlated with CPS1 expression. Knocking down JMJD1C in K562 KO cells upregulated CPS1 and H3K36me3 expression, decreased cell proliferation and increased cell apoptosis. Chromatin immunoprecipitation analysis further demonstrated that H3K36me3 regulated CPS1 expression. Finally, we demonstrated that histone demethylase inhibitor JIB-04 can suppressed K562 KO cell proliferation and reduced the proportion of PNH clones in PNH mice. In conclusion, aberrant regulation of the JMJD1C-H3K36me3-CPS1 axis contributes to PNH clonal proliferation. Targeting JMJD1C with a specific inhibitor unveils a potential strategy for treating PNH patients.


Subject(s)
Cell Proliferation , Hemoglobinuria, Paroxysmal , Jumonji Domain-Containing Histone Demethylases , Humans , Jumonji Domain-Containing Histone Demethylases/genetics , Jumonji Domain-Containing Histone Demethylases/metabolism , Animals , Mice , K562 Cells , Hemoglobinuria, Paroxysmal/pathology , Hemoglobinuria, Paroxysmal/genetics , Hemoglobinuria, Paroxysmal/metabolism , Male , Female , Apoptosis , Metabolic Reprogramming , Oxidoreductases, N-Demethylating
4.
Small ; 20(40): e2401915, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38805744

ABSTRACT

Designing cathode materials that effectively enhancing structural stability under high voltage is paramount for rationally enhancing energy density and safety of Na-ion batteries. This study introduces a novel P2-Na0.73K0.03Ni0.23Li0.1Mn0.67O2 (KLi-NaNMO) cathode through dual-site synergistic doping of K and Li in Na and transition metal (TM) layers. Combining theoretical and experimental studies, this study discovers that Li doping significantly strengthens the orbital overlap of Ni (3d) and O (2p) near the Fermi level, thereby regulates the phase transition and charge compensation processes with synchronized Ni and O redox. The introduction of K further adjusts the ratio of Nae and Naf sites at Na layer with enhanced structural stability and extended lattice space distance, enabling the suppression of TM dissolution, achieving a single-phase transition reaction even at a high voltage of 4.4 V, and improving reaction kinetics. Consequently, KLi-NaNMO exhibits a high capacity (105 and 120 mAh g-1 in the voltage of 2-4.2 V and 2-4.4 V at 0.1 C, respectively) and outstanding cycling performance over 300 cycles under 4.2 and 4.4 V. This work provides a dual-site doping strategy to employ synchronized TM and O redox with improved capacity and high structural stability via electronic and crystal structure modulation.

5.
Plant Biotechnol J ; 22(6): 1703-1723, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38319003

ABSTRACT

It is well known that calcium, ethylene and abscisic acid (ABA) can regulate fruit ripening, however, their interaction in the regulation of fruit ripening has not yet been fully clarified. The present study found that the expression of the papaya calcium sensor CpCML15 was strongly linked to fruit ripening. CpCML15 could bind Ca2+ and served as a true calcium sensor. CpCML15 interacted with CpPP2C46 and CpPP2C65, the candidate components of the ABA signalling pathways. CpPP2C46/65 expression was also related to fruit ripening and regulated by ethylene. CpCML15 was located in the nucleus and CpPP2C46/65 were located in both the nucleus and membrane. The interaction between CpCML15 and CpPP2C46/65 was calcium dependent and further repressed the activity of CpPP2C46/65 in vitro. The transient overexpression of CpCML15 and CpPP2C46/65 in papaya promoted fruit ripening and gene expression related to ripening. The reduced expression of CpCML15 and CpPP2C46/65 by virus-induced gene silencing delayed fruit colouring and softening and repressed the expression of genes related to ethylene signalling and softening. Moreover, ectopic overexpression of CpCML15 in tomato fruit also promoted fruit softening and ripening by increasing ethylene production and enhancing gene expression related to ripening. Additionally, CpPP2C46 interacted with CpABI5, and CpPP2C65 interacted with CpERF003-like, two transcriptional factors in ABA and ethylene signalling pathways that are closely related to fruit ripening. Taken together, our results showed that CpCML15 and CpPP2Cs positively regulated fruit ripening, and their interaction integrated the cross-talk of calcium, ABA and ethylene signals in fruit ripening through the CpCML15-CpPP2Cs-CpABI5/CpERF003-like pathway.


Subject(s)
Abscisic Acid , Calcium , Carica , Ethylenes , Fruit , Gene Expression Regulation, Plant , Plant Proteins , Signal Transduction , Abscisic Acid/metabolism , Ethylenes/metabolism , Carica/metabolism , Carica/genetics , Carica/growth & development , Calcium/metabolism , Fruit/metabolism , Fruit/genetics , Fruit/growth & development , Plant Proteins/metabolism , Plant Proteins/genetics , Calmodulin/metabolism , Calmodulin/genetics , Plant Growth Regulators/metabolism
6.
Respir Res ; 25(1): 304, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39127664

ABSTRACT

BACKGROUND: The gut-lung axis, pivotal for respiratory health, is inadequately explored in pulmonary and critical care medicine (PCCM) inpatients. METHODS: Examining PCCM inpatients from three medical university-affiliated hospitals, we conducted 16S ribosomal RNA sequencing on stool samples (inpatients, n = 374; healthy controls, n = 105). We conducted statistical analyses to examine the gut microbiota composition in PCCM inpatients, comparing it to that of healthy controls. Additionally, we explored the associations between gut microbiota composition and various clinical factors, including age, white blood cell count, neutrophil count, platelet count, albumin level, hemoglobin level, length of hospital stay, and medical costs. RESULTS: PCCM inpatients exhibited lower gut microbiota diversity than healthy controls. Principal Coordinates Analysis revealed marked overall microbiota structure differences. Four enterotypes, including the exclusive Enterococcaceae enterotype in inpatients, were identified. Although no distinctions were found at the phylum level, 15 bacterial families exhibited varying abundances. Specifically, the inpatient population from PCCM showed a significantly higher abundance of Enterococcaceae, Lactobacillaceae, Erysipelatoclostridiaceae, Clostridiaceae, and Tannerellaceae. Using random forest analyses, we calculated the areas under the receiver operating characteristic curves (AUCs) to be 0.75 (95% CIs 0.69-0.80) for distinguishing healthy individuals from inpatients. The four most abundant genera retained in the classifier were Blautia, Subdoligranulum, Enterococcus, and Klebsiella. CONCLUSIONS: Evidence of gut microbiota dysbiosis in PCCM inpatients underscores the gut-lung axis's significance, promising further avenues in respiratory health research.


Subject(s)
Dysbiosis , Gastrointestinal Microbiome , Humans , Gastrointestinal Microbiome/physiology , Male , Dysbiosis/diagnosis , Female , Middle Aged , Aged , Critical Care , Inpatients , Adult , Feces/microbiology
7.
Lung ; 202(1): 53-61, 2024 02.
Article in English | MEDLINE | ID: mdl-38228883

ABSTRACT

BACKGROUND: Non-cystic fibrosis bronchiectasis is a chronic respiratory disease characterized by bronchial dilation. However, the significance of elevated eosinophil counts in acute exacerbations of bronchiectasis remains unclear. METHODS: This retrospective case-control study included 169 hospitalized patients with acute exacerbations of non-cystic fibrosis bronchiectasis. Based on blood eosinophil levels, patients were categorized into eosinophilic and non-eosinophilic bronchiectasis groups. Various clinical variables, including lung function, comorbidities and clinical features were collected for analysis. The study aimed to examine the differences between these groups and their clinical phenotypes. RESULTS: Eosinophilic bronchiectasis (EB) was present in approximately 22% of all hospitalized patients with bronchiectasis, and it was more prevalent among male smokers (P < 0.01). EB exhibited greater severity of bronchiectasis, including worse airway obstruction, higher scores in the E-FACED (FACED combined with exacerbations) and bronchiectasis severity index (BSI), a high glucocorticoids medication possession ratio, and increased hospitalization cost (P < 0.05 or P < 0.01). Furthermore, we observed a significant positive correlation between blood eosinophil count and both sputum eosinophils (r = 0.49, P < 0.01) and serum total immunoglobulin E levels (r = 0.21, P < 0.05). Additional analysis revealed that patients with EB had a higher frequency of shortness of breath (P < 0.05), were more likely to have comorbid sinusitis (P < 0.01), and exhibited a greater number of lung segments affected by bronchiectasis (P < 0.01). CONCLUSIONS: These findings suggest that EB presents a distinct pattern of bronchiectasis features, confirming the notion that it is a specific phenotype.


Subject(s)
Bronchiectasis , Eosinophils , Humans , Male , Retrospective Studies , Case-Control Studies , Phenotype , Fibrosis
8.
BMC Ophthalmol ; 24(1): 238, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849758

ABSTRACT

BACKGROUND: This study explores prognostic factors influencing Vogt-Koyanagi-Harada (VKH) disease and observes the efficacy and safety of Adalimumab (ADA) in treating recurrence in Vogt-Koyanagi-Harada (VKH) patients. METHODS: A retrospective study was conducted on all patients diagnosed with VKH disease at Beijing Tongren Hospital between 2020 and 2023. Clinical data included initial and final visual acuity, age, gender, ocular complications, treatment modalities, disease duration, and recurrence frequency. RESULTS: A total of 62 VKH patients were included, comprising 34 in the acute-resolved group and 28 in the chronic-recurrent group. The mean age of patients in the acute-resolved group was 38.29 ± 15.46 years, while the mean age of chronic-recurrent group had a 49.00 ± 16.43 years. Initial best-corrected visual acuity (BCVA) examination at the first visit showed an average BCVA of 0.64 ± 0.29 logMAR in the acute-resolved group and 1.38 ± 0.54 logMAR in the chronic-recurrent group (p = 0.002). During follow-up, ocular complications were observed in 29.4% of the acute-resolved group patients and 41.7% of the chronic-recurrent group patients (P = 0.006). "Sunset glow fundus" was observed in 23.5% of the acute-resolved group and 64.3% of the chronic-recurrent group patients (P = 0.001). Poor initial BCVA (P = 0.046) and the occurrence of "sunset glow fundus" (P = 0.040) were significantly associated with progression to the chronic recurrent phase. Logistic regression analysis revealed that older age at onset (P = 0.042) and the occurrence of "sunset glow fundus" (P = 0.037) were significant predictors for progression to the chronic recurrent phase. ADA significantly reduced anterior chamber inflammatory cells (P = 0.000) and vitreous cavity inflammatory cells (P = 0.001) in the chronic-recurrent group, and markedly decreased the recurrence rate in VKH patients (P = 0.009). CONCLUSION: In comparison to acute-resolved patients, chronic-recurrent patients exhibited poorer initial BCVA and a significantly increased incidence of "sunset glow fundus." Older age at onset and the occurrence of "sunset glow fundus" at diagnosis are crucial predictive factors for VKH patients progressing to the chronic recurrent phase. ADA effectively alleviates refractory VKH disease and is generally well-tolerated.


Subject(s)
Adalimumab , Recurrence , Uveomeningoencephalitic Syndrome , Visual Acuity , Humans , Uveomeningoencephalitic Syndrome/drug therapy , Uveomeningoencephalitic Syndrome/diagnosis , Uveomeningoencephalitic Syndrome/physiopathology , Adalimumab/therapeutic use , Female , Male , Retrospective Studies , Adult , Middle Aged , Visual Acuity/physiology , Chronic Disease , Young Adult , Anti-Inflammatory Agents/therapeutic use , Follow-Up Studies , Adolescent , Treatment Outcome , Aged , Prognosis
9.
BMC Ophthalmol ; 24(1): 23, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38233844

ABSTRACT

BACKGROUND: While the 2019 novel coronavirus disease (COVID-19) pandemic has resulted in millions of cases worldwide, there is increasing recognition of a wide range of ocular manifestations associated with the virus, including uveitis. Uveitis is an inflammatory condition of the uveal tract of the eye that can lead to permanent vision loss if not treated promptly. Here we report a retrospective observational study of patients who presented with new onset or recurrent uveitis following COVID-19 infection. METHODS: This is a retrospective observational study conducted at the Beijing Tongren Hospital. We identified patients who presented with symptoms of non-infectious active uveitis with positive real-time reverse transcription polymerase chain reaction (RT-PCR) of COVID-19 within 4 weeks. All patients received ophthalmic examinations, including anterior and posterior segment imaging, to assess the extent of ocular involvement. RESULTS: The 18 patients with a total of 33 eyes included in this study presented with symptoms of active uveitis within 4 weeks of their positive COVID-19 RT-PCR test. Among them, 9 patients presented with the development of uveitis following COVID-19 infection, and 9 patients had relapsed uveitis after COVID-19 infection. Treatment with corticosteroids resulted in improvement of symptoms and resolution of inflammation in all cases. In this study, all patients did not experience any adverse drug reactions during treatment. CONCLUSION: Our observational study highlights the potential for new onset or recurrence of uveitis following COVID-19 infection. TRIAL REGISTRATION: https://www.chictr.org.cn/ ; identifier: ChiCTR2100044365, date: 03/17/2023.


Subject(s)
COVID-19 , Uveitis , Humans , COVID-19/complications , Uveitis/diagnosis , Uveitis/drug therapy , Uveitis/etiology , Adrenal Cortex Hormones/therapeutic use , Retrospective Studies , Eye
10.
BMC Ophthalmol ; 24(1): 19, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38200478

ABSTRACT

BACKGROUND: In this study, we report a case series of acute macular neuroretinopathy (AMN) associated with COVID-19 infection. METHODS: This retrospective observational study was conducted at Beijing Tongren Hospital. We reviewed patients who were diagnosed with AMN within one month of testing positive for COVID-19 using real-time reverse transcription-polymerase chain reaction (RT-PCR). RESULTS: A total of 11 AMN patients (20 eyes) were included in the study. The mean age was 33.8 ± 12.6 years. The average interval between a positive COVID-19 PCR test and the onset of ocular symptoms was 2.8 ± 2.5 days. The mean follow-up period for the patients was 12.5 ± 3.8 weeks. Imaging characteristics of AMN patients following COVID-19 infection included areas of low reflectivity on near-infrared reflectance (NIR) imaging, hyperreflective lesions at the level of the outer plexiform layer (OPL) and outer nuclear layer (ONL) and disruption of the ellipsoid zone (EZ) on spectral domain optical coherence tomography (SD-OCT) B-scans. Visual field examinations revealed parafoveal scotomas that closely corresponded to the clinical lesions. Optical coherence tomography angiography (OCT-A) demonstrated impaired perfusion in the deep retinal vascular plexus. Fluorescein angiography (FA), indocyanine green angiography (ICGA), and spontaneous fundus autofluorescence showed no significant abnormalities. During follow-up, partial improvement in retinal lesions was observed in NIR imaging and SD-OCT in some patients, but a proportion of patients still exhibited persistent retinal damage and no improvement in visual field scotomas. CONCLUSION: COVID-19-related AMN share similar clinical and imaging features with AMN due to other causes, as evidenced by the persistent presence of visual field scotomas over a longer duration. TRAIL REGISTRATION: https://www.chictr.org.cn/ ; identifier: ChiCTR2100044365.


Subject(s)
COVID-19 , White Dot Syndromes , Humans , Young Adult , Adult , Middle Aged , Scotoma/diagnosis , Scotoma/etiology , COVID-19/complications , Retina , Face , Observational Studies as Topic
11.
Aesthet Surg J ; 44(7): NP501-NP518, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38567442

ABSTRACT

BACKGROUND: Macrophage-mediated inflammatory response in the early post-grafting period restricts fat graft retention. Pyroptosis is a novel type of programmed cell death that extensively participates in inflammatory pathologies. OBJECTIVES: This study sought to determine whether macrophage pyroptosis was activated during the inflammatory phase after fat grafting and to investigate the efficacy of a pyroptosis inhibitor, disulfiram (DSF), in fat graft retention. METHODS: We established a C57BL/6 mice fat grafting model and then analyzed macrophage pyroptosis. DSF (50 mg/kg, every other day) was intraperitoneally injected starting 1 hour before fat grafting and continued for 14 days. An in vitro co-culture system was established in which mouse RAW264.7 macrophages were co-cultured with apoptotic adipocytes to further validate the findings of the in vivo studies and to explore the underlying mechanisms. RESULTS: Here we reported that macrophage pyroptosis was activated in both fat grafts and in vitro co-culture models. DSF was found to be a potent pyroptosis inhibitor, promoting M2 macrophage polarization. In addition, DSF was demonstrated to enhance vascularization and graft retention. CONCLUSIONS: Our results suggested that pyroptosis plays a crucial role in the inflammatory cascade within fat grafts. DSF, being a clinically available drug, could be translated into a clinically effective drug for improving fat graft survival by inhibiting macrophage pyroptosis, therefore inducing M2 macrophage polarization and promoting neovascularization.


Subject(s)
Coculture Techniques , Disulfiram , Inflammasomes , Macrophages , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein , Pyroptosis , Animals , Pyroptosis/drug effects , Disulfiram/pharmacology , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors , Macrophages/drug effects , Macrophages/metabolism , Macrophages/immunology , Inflammasomes/metabolism , Inflammasomes/antagonists & inhibitors , Inflammasomes/drug effects , RAW 264.7 Cells , Adipose Tissue/drug effects , Graft Survival/drug effects , Adipocytes/drug effects , Adipocytes/metabolism , Male
12.
Angew Chem Int Ed Engl ; : e202413065, 2024 Sep 14.
Article in English | MEDLINE | ID: mdl-39275906

ABSTRACT

Rationally designing a current collector that can maintain low lithium (Li) porosity and smooth morphology while enduring high-loading Li deposition is crucial for realizing the high energy density of Li metal batteries, but it is still challengeable. Herein, a Li2ZnCu3 alloy-modified Cu foil is reported as a stable current collector to fulfill the stable high-loading Li deposition. Benefiting from the in-situ alloying, the generated numerous Li2ZnCu3@Cu heterojunctions induce a homogeneous Li nucleation and dense growth even at an ultrahigh capacity of 12 mAh cm-2. Such a spatial structure endows the overall Li2ZnCu3@Cu electrode with the manipulated steric hindrance and outmost surface electric potential to suppress the side reactions during Li stripping and plating. The resultant Li||Li2ZnCu3@Cu asymmetric cell preserves an ultrahigh average Coulombic efficiency of 99.2% at 3 mA cm-2/6 mAh cm-2 over 200 cycles. Moreover, the Li-Li2ZnCu3@Cu||LiFePO4 cell maintains a cycling stability of 87.5% after 300 cycles. After coupling with the LiCoO2 cathode (4 mAh cm-2), the cell exhibits a high energy density of 407.4 Wh kg-1 with remarkable cycling reversibility at an N/P ratio of 3. All these findings present a doable way to realize the high-capacity, dendrite-free, and dense Li deposition for high-performance Li metal batteries.

13.
J Am Chem Soc ; 145(31): 17220-17231, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37492900

ABSTRACT

In electrochemical ethanol oxidation reactions (EOR) catalyzed by Pt metal nanoparticles through a C2 route, the dissociation of the C-C bond in the ethanol molecule can be a limiting factor. Complete EOR processes producing CO2 were always exemplified by the oxidative dehydrogenation of C1 intermediates, a reaction route with less energy utilization efficiency. Here, we report a Pt3Ga/C electrocatalyst with a uniform distribution of Ga over the nanoparticle surface for EOR that produces CO2 at medium potentials (>0.3 V vs SCE) efficiently through direct and sustainable oxidation of C2 intermediate species, i.e., acetaldehyde. We demonstrate the excellent performance of the Pt3Ga-200/C catalyst by using electrochemical in situ Fourier transform infrared reflection spectroscopy (FTIR) and an isotopic labeling method. The atomic interval structure between Pt and Ga makes the surface of nanoparticles nonensembled, avoiding the formation of poisonous *CHx and *CO species via bridge-type adsorption of ethanol molecules. Meanwhile, the electron redistribution from Ga to Pt diminishes the *O/*OH adsorption and CO poisoning on Pt atoms, exposing more available sites for interaction with the C2 intermediates. Furthermore, the dissociation of H2O into *OH is facilitated by the high hydrophilicity of Ga, which is supported by DFT calculations, promoting the deep oxidation of C2 intermediates. Our work represents an extremely rare EOR process that produces CO2 without observing kinetic limitations under medium potential conditions.

14.
Plant Physiol ; 188(2): 1312-1334, 2022 02 04.
Article in English | MEDLINE | ID: mdl-34791491

ABSTRACT

Cold stress adversely affects plant production, both qualitatively and quantitatively. Banana (Musa acuminata) is sensitive to cold stress and suffers chilling injury (CI) when stored under 11°C, causing abnormal fruit softening. However, the mechanism underlying the abnormal fruit softening due to CI remains obscure. This study uncovered the coordinated transcriptional mechanism of ethylene F-box (EBF1) protein and abscisic acid-insensitive 5 (ABI5)-like protein in regulating chilling-induced softening disorders of Fenjiao banana. Cold stress severely inhibited the transcript and protein levels of EBF1, ABI5-like, and fruit softening-related genes. The ABI5-like protein bound to the promoters of key starch and cell wall degradation-related genes such as ß-amylase 8 (BAM8), pectate lyase 8 (PL8), and ß-D-xylosidase23-like (XYL23-like) and activated their activities. EBF1 physically interacted with ABI5-like and enhanced the transcriptional activity of the key starch and cell wall degradation-related genes but did not ubiquitinate or degrade ABI5-like protein. This promoted fruit ripening and ameliorated fruit CI in a manner similar to the effect of exogenous abscisic acid treatment. The ectopic and transient overexpression of EBF1 and ABI5-like genes in tomato (Solanum lycopersicum) and Fenjiao banana accelerated fruit ripening and softening by promoting ethylene production, starch and cell wall degradation, and decreasing fruit firmness. EBF1 interacted with EIL4 but did not ubiquitinate or degrade EIL4, which is inconsistent with the typical role of EBF1/2 in Arabidopsis (Arabidopsis thaliana). These results collectively highlight that the interaction of EBF1 and ABI5-like controls starch and cell wall metabolism in banana, which is strongly inhibited by chilling stress, leading to fruit softening and ripening disorder.


Subject(s)
Abscisic Acid/metabolism , Cold-Shock Response/genetics , Cold-Shock Response/physiology , F-Box Proteins/metabolism , Fruit/genetics , Fruit/metabolism , Musa/genetics , Musa/metabolism , China , Crops, Agricultural/genetics , Crops, Agricultural/metabolism , F-Box Proteins/genetics , Gene Expression Regulation, Plant , Genes, Plant , Transcription Factors
15.
BMC Infect Dis ; 23(1): 431, 2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37365506

ABSTRACT

BACKGROUND: Sepsis has a high mortality rate, which is expensive to treat, and is a major drain on healthcare resources; it seriously impacts the quality of human life. The clinical features of positive or non-positive blood cultures have been reported, but the clinical features of sepsis with different microbial infections and how they contribute to clinical outcomes have not been adequately described. METHODS: We extracted clinical data of septic patients with a single pathogen from the online Medical Information Mart for Intensive Care(MIMIC)-IV database. Based on microbial cultures, patients were classified into Gram-negative, Gram-positive, and fungal groups. Then, we analyzed the clinical characteristics of sepsis patients with Gram-negative, Gram-positive, and fungal infections. The primary outcome was 28-day mortality. The secondary outcomes were in-hospital mortality, the length of hospital stay, the length of ICU stay, and the ventilation duration. In addition, Kaplan-Meier analysis was used for the 28-day cumulative survival rate of patients with sepsis. Finally, we performed further univariate and multivariate regression analyses for 28-day mortality and created a nomogram for predicting 28-day mortality. RESULTS: The analysis showed that bloodstream infections showed a statistically significant difference in survival between Gram-positive and fungal organisms; drug resistance only reached statistical significance for Gram-positive bacteria. Through univariate and multivariate analysis, it was found that both the Gram-negative bacteria and fungi were independent risk factors for the short-term prognosis of sepsis patients. The multivariate regression model showed good discrimination, with a C-index of 0.788. We developed and validated a nomogram for the individualized prediction of 28-day mortality in patients with sepsis. Application of the nomogram still gave good calibration. CONCLUSIONS: Organism type of infection is associated with mortality of sepsis, and early identification of the microbiological type of a patient with sepsis will provide an understanding of the patient's condition and guide treatment.


Subject(s)
Gram-Negative Bacterial Infections , Sepsis , Humans , Gram-Negative Bacterial Infections/microbiology , Retrospective Studies , Sepsis/drug therapy , Prognosis , Gram-Negative Bacteria , Intensive Care Units
16.
J Immunol ; 207(7): 1848-1856, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34452933

ABSTRACT

Immune cell responses are strikingly altered in patients with severe coronavirus disease 2019 (COVID-19), but the immunoregulatory process in these individuals is not fully understood. In this study, 23 patients with mild and 22 patients with severe COVID-19 and 6 asymptomatic carriers of COVID-19 were enrolled, along with 44 healthy controls (HC). Peripheral immune cells in HC and patients with COVID-19 were comprehensively profiled using mass cytometry. We found that in patients with severe COVID-19, the number of HLA-DRlow/- monocytes was significantly increased, but that of mucosal-associated invariant T (MAIT) cells was greatly reduced. MAIT cells were highly activated but functionally impaired in response to Escherichia coli and IL-12/IL-18 stimulation in patients with severe COVID-19, especially those with microbial coinfection. Single-cell transcriptome analysis revealed that IFN-stimulated genes were significantly upregulated in peripheral MAIT cells and monocytes from patients with severe COVID-19. IFN-α pretreatment suppressed MAIT cells' response to E. coli by triggering high levels of IL-10 production by HLA-DRlow/--suppressive monocytes. Blocking IFN-α or IL-10 receptors rescued MAIT cell function in patients with severe COVID-19. Moreover, plasma from patients with severe COVID-19 inhibited HLA-DR expression by monocytes through IL-10. These data indicate a unique pattern of immune dysregulation in severe COVID-19, which is characterized by enrichment of suppressive HLA-DRlow/- monocytes associated with functional impairment of MAIT cells through the IFN/IL-10 pathway.


Subject(s)
COVID-19/immunology , Escherichia coli Infections/immunology , Escherichia coli/physiology , Interleukin-10/metabolism , Monocytes/immunology , Mucosal-Associated Invariant T Cells/immunology , SARS-CoV-2/physiology , Adolescent , Adult , Asymptomatic Diseases , Cells, Cultured , Child , Coinfection , Disease Progression , Female , Humans , Immune Tolerance , Lymphocyte Activation , Male , Middle Aged , Severity of Illness Index , Young Adult
17.
J Integr Plant Biol ; 65(9): 2036-2055, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37177912

ABSTRACT

Banana is a typical subtropical fruit, sensitive to chilling injuries and prone to softening disorder. However, the underlying regulatory mechanisms of the softening disorder caused by cold stress remain obscure. Herein, we found that BEL1-LIKE HOMEODOMAIN transcription factor 1 (MaBEL1) and its associated proteins regulate the fruit softening and ripening process. The transcript and protein levels of MaBEL1 were up-regulated with fruit ripening but severely repressed by the chilling stress. Moreover, the MaBEL1 protein interacted directly with the promoters of the cell wall and starch degradation-related genes, such as MaAMY3, MaXYL32, and MaEXP-A8. The transient overexpression of MaBEL1 alleviated fruit chilling injury and ripening disorder caused by cold stress and promoted fruit softening and ripening of "Fenjiao" banana by inducing ethylene production and starch and cell wall degradation. The accelerated ripening was also validated by the ectopic overexpression in tomatoes. Conversely, MaBEL1-silencing aggravated the chilling injury and ripening disorder and repressed fruit softening and ripening by inhibiting ethylene production and starch and cell wall degradation. MaABI5-like and MaEBF1, the two positive regulators of the fruit softening process, interacted with MaBEL1 to enhance the promoter activity of the starch and cell wall degradation-related genes. Moreover, the F-box protein MaEBF1 does not modulate the degradation of MaBEL1, which regulates the transcription of MaABI5-like protein. Overall, we report a novel MaBEL1-MaEBF1-MaABI5-like complex system that mediates the fruit softening and ripening disorder in "Fenjiao" bananas caused by cold stress.


Subject(s)
Musa , Musa/genetics , Musa/metabolism , Fruit/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Ethylenes/metabolism , Starch/metabolism , Cell Wall/metabolism , Gene Expression Regulation, Plant/genetics
18.
Immunology ; 167(2): 221-232, 2022 10.
Article in English | MEDLINE | ID: mdl-35751471

ABSTRACT

Neutralizing antibody is an important indicator of vaccine efficacy, of which IgG is the main component. IgG can be divided into four subclasses. Up to now, studies analysing the humoral response to SARS-CoV-2 vaccination have mostly focused on measuring total IgG, and the contribution of specific IgG subclasses remains elusive. The aim of this study is to investigate the kinetics of neutralizing antibodies and IgG subclasses, and to explore their relationships in people vaccinated with inactivated COVID-19 vaccine. We conducted a prospective cohort study in 174 healthy adults aged 18-59 years old who were administrated 2 doses of CoronaVac 14 days apart and a booster dose 1 year after the primary immunization, and followed up for 15 months. Blood samples were collected at various time points after primary and booster immunization. We used live SARS-CoV-2 virus neutralizing assay to determine neutralizing ability against the wild-type strain and 4 variants (Beta, Gamma, Delta and Omicron) and ELISA to quantify SARS-CoV-2 RBD-specific IgG subclasses. The results showed that the 2-dose primary immunization only achieved low neutralizing ability, while a booster shot can significantly enhance neutralizing ability against the wild-type strain, Beta, Gamma, Delta and Omicron variants. IgG1 and IgG3 were the most abundant serum antibodies, and IgG2 and IgG4 were hardly detected at any time. The ratio of IgG1/IgG3 was positively associated with the neutralization ability. The underlying mechanism requires further exploration.


Subject(s)
COVID-19 , Viral Vaccines , Adolescent , Adult , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunoglobulin G , Kinetics , Middle Aged , Prospective Studies , SARS-CoV-2 , Vaccines, Inactivated , Young Adult
19.
Small ; 18(50): e2205158, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36310150

ABSTRACT

Although lithium-sulfur batteries (LSBs) promise high theoretical energy density and potential cost effectiveness, their applications are severely impeded by the shuttling and sluggish redox kinetics of lithium polysulfides (LiPSs). In this context, a Co9 S8 @MoS2 heterostructure is sophisticatedly designed as an efficient catalytic host to boost the sulfur reduction reaction/evolution reaction (SRR/SER) kinetics and suppresses the LiPSs shuttling in LSBs. The results indicate that the electronic structure is manipulated in the Co9 S8 @MoS2 heterostructure, where the built-in electric fields (BIEFs) within the heterointerfaces enable the sufficient adsorption sites to accelerate the ionic diffusion/charge transfer kinetics for LiPSs redox, thus enhancing the sulfur conversion. By tuning the electronic structure, the metal d-band of Co9 S8 @MoS2 heterostructure plays an important role in adsorbing and catalyzing the conversion of LiPSs, thus promoting the reaction kinetics of the corresponding LSBs. This work unlocks the potential of heterostructures as promising catalysts to the design of high-energy and stabilized LSBs.

20.
BMC Infect Dis ; 22(1): 22, 2022 Jan 04.
Article in English | MEDLINE | ID: mdl-34983383

ABSTRACT

BACKGROUND: The incidence of hepatitis A virus (HAV) infection is low in Beijing, China, but the risk of outbreaks still exists. It is difficult to identify possible sources of infection among sporadic cases based on a routine surveillance system. Therefore, a more effective surveillance system needs to be established. METHODS: The epidemiological data of hepatitis A were obtained from a routine surveillance system. Patients with HAV confirmed at the local hospitals were asked to complete a questionnaire that included additional case information and possible sources of infection. Serum and fecal specimens were also collected for testing HAV RNA by polymerase chain reaction. In addition, the 321-nucleotide segment of the VP1/2A junction region was sequenced to determine the HAV genotype. RESULTS: In 2019, 110 HAV cases were reported in Beijing, with an incidence rate of 0.51/100,000. 61(55.5%) of these patients were male. The greatest proportion of these patients were aged from 30 to 60 years. The rate was lower in suburban and rural areas compared to urban areas. Contaminated food consumption, particularly seafood consumption, was the primary potential source of infection. Among the 16 specimens of confirmed HAV cases that could be sequenced, 93.8% were HAV IA, and 6.3% were HAV IB. In addition, the samples collected from all HAV sequences in this investigation showed 89.4-100% nucleotide homology. Two groups (each with three sporadic cases) showed 100% nucleotide homology. The three sporadic cases in one group had the same possible source of infection: contaminated salad with raw vegetables and seafood. In the other group, the three sporadic cases did not have an epidemiological connection. CONCLUSIONS: In a low HAV prevalent area, such as in Beijing, incorporating molecular epidemiology into the routine surveillance system could help inform possible clusters of outbreaks and provide support for earlier control of HAV transmission. Nevertheless, increased sampling from detected cases and improved specimen quality are needed to implement such a system.


Subject(s)
Hepatitis A virus , Hepatitis A , Beijing/epidemiology , Genotype , Hepatitis A/epidemiology , Hepatitis A virus/genetics , Humans , Male , Molecular Epidemiology , Phylogeny , RNA, Viral/genetics
SELECTION OF CITATIONS
SEARCH DETAIL