Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters

Country/Region as subject
Affiliation country
Publication year range
1.
Small ; : e2404822, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39096107

ABSTRACT

Selective photocatalytic CO2 reduction to high-value hydrocarbons using graphitic carbon nitride (g-C3N4) polymer holds great practical significance. Herein, the cyano-functionalized g-C3N4 (CN-g-C3N4) with a high local electron density site is successfully constructed for selective CO2 photoreduction to CH4 and C2H4. Wherein the potent electron-withdrawing cyano group induces a giant internal electric field in CN-g-C3N4, significantly boosting the directional migration of photogenerated electrons and concentrating them nearby. Thereby, a high local electron density site around its cyano group is created. Moreover, this structure can also effectively promote the adsorption and activation of CO2 while firmly anchoring *CO intermediates, facilitating their subsequent hydrogenation and coupling reactions. Consequently, using H2O as a reducing agent, CN-g-C3N4 achieves efficient and selective photocatalytic CO2 reduction to CH4 and C2H4 activity, with maximum rates of 6.64 and 1.35 µmol g-1 h-1, respectively, 69.3 and 53.8 times higher than bulk g-C3N4 and g-C3N4 nanosheets. In short, this work illustrates the importance of constructing a reduction site with high local electron density for efficient and selective CO2 photoreduction to hydrocarbons.

2.
Small ; 20(32): e2400344, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38497503

ABSTRACT

Organic supramolecular photocatalysts have garnered widespread attention due to their adjustable structure and exceptional photocatalytic activity. Herein, a novel bis-dicarboxyphenyl-substituent naphthalenediimide self-assembly supramolecular photocatalyst (SA-NDI-BCOOH) with efficient dual-functional photocatalytic performance is successfully constructed. The large molecular dipole moment and short-range ordered stacking structure of SA-NDI-BCOOH synergistically create a giant internal electric field (IEF), resulting in a remarkable 6.7-fold increase in its charge separation efficiency. Additionally, the tetracarboxylic structure of SA-NDI-BCOOH greatly enhances its hydrophilicity. Thus, SA-NDI-BCOOH demonstrates efficient dual-functional activity for photocatalytic hydrogen and oxygen evolution, with rates of 372.8 and 3.8 µmol h-1, respectively. Meanwhile, a notable apparent quantum efficiency of 10.86% at 400 nm for hydrogen evolution is achieved, prominently surpassing many reported supramolecular photocatalysts. More importantly, with the help of dual co-catalysts, it exhibits photocatalytic overall water splitting activity with H2 and O2 evolution rates of 3.2 and 1.6 µmol h-1. Briefly, this work sheds light on enhancing the IEF by controlling the molecular polarity and stacking structure to dramatically improve the photocatalytic performance of supramolecular materials.

3.
Int Ophthalmol ; 44(1): 70, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38349418

ABSTRACT

PURPOSE: This study aimed to investigate the incidence of meibomian gland dysfunction (MGD) in postmenopausal women with primary acquired nasolacrimal duct obstruction (PANDO) and enables ophthalmologists to pay attention to ocular surface damage before surgery. METHODS: 165 postmenopausal women with PANDO and 115 postmenopausal women with a normal lacrimal drainage system were enrolled in this prospective study. Based on the results of lacrimal duct irrigation and age, the participants were further subdivided. The incidence of different severities of MGD in different groups was calculated and analyzed by the chi-squared test. RESULTS: The incidence of MGD in the PANDO group was 81.21%, and in the control group, it was 46.96%, which was significantly higher in the presence of PANDO (p < 0.001). The incidence of severe MGD in the complete and incomplete PANDO groups was higher than that in the control group (all p < 0.05), and no significant differences were observed between the complete and incomplete PANDO groups. The incidence of moderate MGD was significantly higher in the complete PANDO group than in the control group (p < 0.001). When age was considered an independent variable, the results revealed a significant value for patients aged < 70 years (p < 0.001). CONCLUSIONS: Our study revealed a prodominantly high incidence of MGD in postmenopausal women with PANDO, especially in a complete PANDO or aged < 70 years. Ophthalmologists need to pay close attention to MGD in postmenopausal women with PANDO.


Subject(s)
Lacrimal Duct Obstruction , Meibomian Gland Dysfunction , Nasolacrimal Duct , Humans , Female , Incidence , Lacrimal Duct Obstruction/diagnosis , Lacrimal Duct Obstruction/epidemiology , Postmenopause , Prospective Studies , Eyelids
4.
Angew Chem Int Ed Engl ; 63(19): e202319027, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38488819

ABSTRACT

Heterocycle-linked phthalocyanine-based COFs with close-packed π-π conjugated structures are a kind of material with intrinsic electrical conductivity, and they are considered to be candidates for photoelectrical devices. Previous studies have revealed their applications for energy storage, gas sensors, and field-effect transistors. However, their potential application in photodetector is still not fully studied. The main difficulty is preparing high-quality films. In our study, we found that our newly designed benzimidazole-linked Cu (II)-phthalocyanine-based COFs (BICuPc-COFs) film can hardly formed with a regular aerobic oxidation method. Therefore, we developed a transfer dehydrogenation method with N-benzylideneaniline (BA) as a mild reagent. With this in hand, we successfully prepared a family of high crystalline BICuPc-COFs powders and films. Furthermore, both of these new BICuPc-COFs films showed high electrical conductivity (0.022-0.218 S/m), higher than most of the reported COFs materials. Due to the broad absorption and high conductivity of BICuPc-COFs, synaptic devices with small source-drain voltage (VDS=1 V) were fabricated with response light from visible to near-infrared. Based on these findings, we expect this study will provide a new perspective for the application of conducting heterocycle-linked COFs in synaptic devices.

5.
Biochem Biophys Res Commun ; 656: 86-96, 2023 05 14.
Article in English | MEDLINE | ID: mdl-36958259

ABSTRACT

The abnormal immune response mediated by malignant melanoma is related to PD1. Paeonol has pharmacological antitumor activity. Previous studies have indicated that paeonol induces tumor cell apoptosis, but its underlying mechanism in tumor immunity remains unknown. In this study, malignant melanoma was established in normal and thymectomized mice to determine the important role of the thymus in the antitumor effects of paeonol. Paeonol-treated thymocytes were cocultured with melanoma cell spheres to further evaluate the regulatory role of thymocytes in tumor immune dysfunction. Studies have shown that PD1 may be targeted by miR-139-5p. Our results revealed that tumor-induced thymic atrophy was significantly accompanied by high PD1 expression and low miR-139-5p expression. Interestingly, paeonol significantly reversed thymic atrophy and largely protected thymocytes against low PD1 expression and high miR-139-5p expression. Dual-luciferase assays indicated that miR-139-5p interacted with the 3' untranslated region (3'-UTR) of PD1. These results showed that paeonol alleviates PD1-mediated antitumor immunity by reducing miR-139-5p expression and demonstrated a novel mechanism for melanoma immunotherapy.


Subject(s)
Melanoma , MicroRNAs , Animals , Mice , Up-Regulation , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Line, Tumor , Melanoma/drug therapy , Melanoma/genetics , Melanoma/pathology , Apoptosis , Cell Proliferation , Gene Expression Regulation, Neoplastic , Melanoma, Cutaneous Malignant
6.
Angew Chem Int Ed Engl ; 62(11): e202217897, 2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36639933

ABSTRACT

High-efficiency photocatalysts based on metal-organic frameworks (MOFs) are often limited by poor charge separation and slow charge-transfer kinetics. Herein, a novel MOF photocatalyst is successfully constructed by encapsulating C60 into a nano-sized zirconium-based MOF, NU-901. By virtue of host-guest interactions and uneven charge distribution, a substantial electrostatic potential difference is set-up in C60 @NU-901. The direct consequence is a robust built-in electric field, which tends to be 10.7 times higher in C60 @NU-901 than that found in NU-901. In the catalyst, photogenerated charge carriers are efficiently separated and transported to the surface. For example, photocatalytic hydrogen evolution reaches 22.3 mmol g-1 h-1 for C60 @NU-901, which is among the highest values for MOFs. Our concept of enhancing charge separation by harnessing host-guest interactions constitutes a promising strategy to design photocatalysts for efficient solar-to-chemical energy conversion.

7.
Small ; 18(51): e2204924, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36336642

ABSTRACT

Water oxidation is one of the most challenging steps in CO2 photoreduction, but its influence on CO2 photoreduction is still poorly understood. Herein, the concept of accelerating the water oxidation kinetics to promote the CO2 photoreduction is realized by incorporating supramolecular porphyrin nanosheets (NS) into the C3 N4 catalyst. As a prototype, porphyrin-C3 N4 based van der Waals heterojunctions with efficient charge separation are elaborately designed, in which the porphyrin and C3 N4 NS serve as the water oxidation booster and CO2 reduction center, respectively. Theoretical calculations and relevant experiments demonstrate that the added porphyrin NS reverses the rate-limiting step in the water oxidation while reducing its energy barrier, thus resulting in faster reaction kinetics. Therefore, the optimal sample shows excellent performance in visible-light-driven CO2 reduction with a maximum CO evolution rate of 16.8 µmol g-1 h-1 , which is 6.8 times that of the C3 N4 NS and reaches the current state of the art for C3 N4 -based materials in CO2 photoreduction. Overall, this work throws light that accelerating water oxidation kinetics can effectively improve the CO2 photoreduction efficiency.

8.
J Cell Mol Med ; 25(6): 2885-2899, 2021 03.
Article in English | MEDLINE | ID: mdl-33534963

ABSTRACT

Inflammation is a biological process that exists in a large number of diseases. If the magnitude or duration of inflammation becomes uncontrolled, inflammation may cause pathological damage to the host. HMGB1 and NF-κB have been shown to play pivotal roles in inflammation-related diseases. New drugs aimed at inhibiting HMGB1 expression have become a key research focus. In the present study, we showed that paeonol (Pae), the main active component of Paeonia suffruticosa, decreases the expression of inflammatory cytokines and inhibits the translocation of HMGB1 induced by lipopolysaccharide (LPS). By constructing HMGB1-overexpressing (HMGB1+ ) and HMGB1-mutant (HMGB1m ) RAW264.7 cells, we found that the nuclear HMGB1 could induce an LPS-tolerant state in RAW264.7 cells and that paeonol had no influence on the expression of inflammatory cytokines in HMGB1m RAW264.7 cells. In addition, the anti-inflammatory property of paeonol was lost in HMGB1 conditional knockout mice, indicating that HMGB1 is a target of paeonol and a mediator through which paeonol exerts its anti-inflammatory function. Additionally, we also found that HMGB1 and P50 competitively bound with P65, thus inactivating the NF-κB pathway. Our research confirmed the anti-inflammation property of paeonol and suggests that inhibiting the translocation of HMGB1 could be a new strategy for treating inflammation.


Subject(s)
Acetophenones/pharmacology , Active Transport, Cell Nucleus/drug effects , Anti-Inflammatory Agents/pharmacology , HMGB1 Protein/metabolism , Acetophenones/chemistry , Animals , Anti-Inflammatory Agents/chemistry , Cell Nucleus/metabolism , Disease Models, Animal , Gene Expression Profiling , HMGB1 Protein/chemistry , HMGB1 Protein/genetics , Inflammation/drug therapy , Inflammation/etiology , Inflammation/metabolism , Inflammation/pathology , Male , Mice , Mice, Knockout , Models, Molecular , NF-kappa B/metabolism , Protein Transport , RAW 264.7 Cells , Signal Transduction/drug effects , Structure-Activity Relationship
9.
J Cardiovasc Pharmacol ; 77(3): 334-342, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33278191

ABSTRACT

ABSTRACT: Cyanotic congenital heart disease (CCHD) is the main cause of death in infants worldwide. Long noncoding RNAs (lncRNAs) have been pointed to exert crucial roles in development of CHD. The current research is designed to illuminate the impact and potential mechanism of lncRNA SNHG14 in CCHD in vitro. The embryonic rat ventricular myocardial cells (H9c2 cells) were exposed to hypoxia to establish the model of CCHD in vitro. Quantitative real-time polymerase chain reaction was conducted to examine relative expressions of SNHG14, miR-25-3p, and KLF4. Cell viability was determined by the MTT assay. Lactate dehydrogenase (LDH) was measured by an LDH assay kit. Apoptosis-related proteins (Bax and Bcl-2) and KLF4 were detected by Western Blot. The targets of SNHG14 and miR-25-3p were verified by the dual-luciferase reporter assay. SNHG14 and KLF4 were upregulated, whereas miR-25-3p was downregulated in hypoxia-induced H9c2 cells and cardiac tissues of patients with CCHD compared with their controls. Knockdown of SNHG14 or overexpression of miR-25-3p facilitated cell viability, while depressing cell apoptosis and release of LDH in hypoxia-induced H9c2 cells. MiR-25-3p was a target of SNHG14 and inversely modulated by SNHG14. MiR-25-3p could directly target KLF4 and negatively regulate expression of KLF4. Repression of miR-25-3p or overexpression of KLF4 reversed the suppression impacts of sh-SNHG14 on cell apoptosis and release of LDH as well as the promotion impact of sh-SNHG14 on cell viability in hypoxia-induced H9c2 cells. Sh-SNHG14 protected H9c2 cells against hypoxia-induced injury by modulating miR-25-3p/KLF4 axis in vitro.


Subject(s)
Apoptosis , Cyanosis/prevention & control , Heart Defects, Congenital/complications , Kruppel-Like Factor 4/metabolism , MicroRNAs/metabolism , Myocytes, Cardiac/metabolism , RNA, Long Noncoding/metabolism , Animals , Cell Hypoxia , Cell Line , Cyanosis/etiology , Cyanosis/metabolism , Cyanosis/pathology , Female , Gene Expression Regulation , Heart Defects, Congenital/metabolism , Heart Defects, Congenital/pathology , Humans , Infant , Kruppel-Like Factor 4/genetics , Male , MicroRNAs/genetics , Myocytes, Cardiac/pathology , RNA, Long Noncoding/genetics , Rats , Signal Transduction
10.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 38(5): 488-491, 2021 May 10.
Article in Zh | MEDLINE | ID: mdl-33974263

ABSTRACT

OBJECTIVE: To explore the correlation between DSG2, TTN and GATA4 genes and Brugada syndrome in Henan Province of China. METHODS: From February 2017 to February 2019, 100 patients with Brugada syndrome and 100 healthy individuals were selected as the study and the control groups, respectively. Electrocardiogram and echocardiography were carried out, and peripheral blood samples was collected. Coding regions of DSG2, TTN and GATA4 genes were amplified by PCR and sequenced. The results were compared with standard sequences from GenBank. RESULTS: Electrocardiogram showed that all patients from the study group had ventricular arrhythmia, 87 cases (87%) presented ventricular tachycardia (VT), 84 cases (84%) presented T wave inversion, and 51 cases (51%) presented Epsilon wave. Echocardiography showed that the right ventricle in the study group was enlarged with the inner diameter of the right ventricle being (40.0±13.3) mm, and the right ventricle showed various degree of abnormal systolic function. The enlargement of right atrium accounted for 64%, and the involvement of the left ventricle accounted for 27%. The right ventricular diameter and left ventricular diastolic diameter of the study group were significantly greater than those of the control group (P< 0.05). DNA sequencing showed that 60 patients carried DSG2 gene variants, among which 18 had missense variant of exon 8. Fifty patients carried TTN gene variants, including 8 in the A-band domain and 3 in the I-band domain. Twenty patients carried 3 variants of the GATA4 gene. CONCLUSION: Variants of the DSG2, TTN and GATA4 genes in Henan region are correlated with the onset of Brugada syndrome.


Subject(s)
Arrhythmogenic Right Ventricular Dysplasia , Brugada Syndrome , Brugada Syndrome/genetics , China , Connectin , Desmoglein 2/genetics , GATA4 Transcription Factor , Humans , Pedigree , Sequence Analysis, DNA
11.
J Cell Physiol ; 234(7): 11722-11733, 2019 07.
Article in English | MEDLINE | ID: mdl-30536946

ABSTRACT

Cardiac rupture and ventricular remodeling are recognized as the severe complications and major risk factors of acute myocardial infarction (AMI). This study aims to evaluate the regulatory roles of interleukin-1 receptor-associated kinase 3 (IRAK3) and nuclear factor-κB (NF-κB) signaling pathway in cardiac rupture and ventricular remodeling. Microarray analysis was performed to screen AMI-related differentially expressed genes and IRAK3 was identified. The models of AMI were established in male C57BL/6 mice to investigate the functional role of IRAK3. Afterwards, lentivirus recombinant plasmid si-IRAK3 was constructed for IRAK3 silencing. Next, cardiac function parameters were measured in response to IRAK3 silencing. The regulatory effects that IRAK3 had on myocardial infarct size and the content of myocardial interstitial collagen were analyzed. The regulation of IRAK3 silencing on the NF-κB signaling pathway was further assayed. The obtained results indicated that highly expressed IRAK3 and activated NF-κB signaling pathway were observed in myocardial tissues of mouse models of AMI, accompanied by increased expression of matrix metalloproteinase (MMP)-2/9 and tissue inhibitor of metalloproteinase 2 (TIMP-2). Notably, IRAK3 gene silencing inhibited the activation of NF-κB signaling pathway. Furthermore, IRAK3 gene silencing led to the decreased thickness of infarct area and collagen content of myocardial interstitium, alleviated diastolic, and systolic dysfunctions, as well as, facilitated cardiac functions in mice with AMI, corresponding to decreased expression of MMP-2/9 expression and increased expression of TIMP-2. Taken together, silencing of IRAK3 inactivates the NF-κB signaling pathway, and thereby impeding the cardiac rupture and ventricular remodeling, which eventually prevents AMI progression.


Subject(s)
Gene Silencing , Heart Rupture/prevention & control , Heart Rupture/physiopathology , Interleukin-1 Receptor-Associated Kinases/genetics , Myocardial Infarction/physiopathology , NF-kappa B/metabolism , Signal Transduction , Ventricular Remodeling , Animals , Collagen/metabolism , Disease Models, Animal , Gene Expression Regulation , Heart Rupture/genetics , Male , Mice, Inbred C57BL , Myocardial Infarction/complications , Myocardial Infarction/genetics , Myocardial Infarction/metabolism , Myocardium/metabolism , Myocardium/pathology , Ventricular Remodeling/genetics
12.
J Cell Biochem ; 120(9): 14636-14644, 2019 09.
Article in English | MEDLINE | ID: mdl-31090947

ABSTRACT

Previous studies have shown that phosphatase and tensin homolog (PTEN) are key regulators of the development of many malignant tumors and other diseases. However, its regulatory effect on coronary heart disease (CHD) has rarely been reported. Therefore, the regulatory effect of PTEN on the survival and cell death of vascular smooth muscle cells (VSMCs) in CHD mice was elucidated in this study. It was found that the protein and messenger RNA expressions of PTEN in VSMCs of 10 CHD mice were lower than those of normal mice. Then PTEN was overexpressed in VSMCs. It was suggested that the upregulation of PTEN was not conducive to the proliferation and survival of VSMCs in the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and colony formation assay. The flow cytometry (Annexin V-Fluorescein isothiocyanate (FITC)/propidium iodide) and the terminal deoxynucleotidyl transferase dUTP nick end labeling assay were used to detect the apoptotic rate of overexpressing PTEN cells. Some data showed that the expression of PTEN could lead to increased apoptotic rate. It was shown that antiapoptotic Bcl-2 levels were decreased, but cleaved caspase-3 and proapoptotic Bax levels were promoted by SIRT6 overexpression in Western blot analysis. Moreover, PI3K/Akt expression and phosphorylation were significantly decreased in cells expressing PTEN. Recovery of PI3K expression inhibited the suppressive influence of PTEN on VSMC survival, as evidenced by the activated PI3K/Akt pathway, increased cell proliferative rate, reduced the apoptotic level, and reversed expression patterns of Bcl-2 and Bax. Therefore, the findings in this study provide a new idea on the occurrence and development mechanism of CHD and may promote the discovery of innovative therapies.


Subject(s)
Coronary Disease/metabolism , Muscle, Smooth, Vascular/cytology , Myocytes, Smooth Muscle/cytology , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , Animals , Apoptosis , Cell Proliferation , Cell Survival , Coronary Disease/etiology , Coronary Disease/genetics , Disease Models, Animal , Gene Expression Regulation, Neoplastic , Mice , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction
13.
J Cell Biochem ; 120(6): 10421-10433, 2019 06.
Article in English | MEDLINE | ID: mdl-30644128

ABSTRACT

microRNAs are an emerging class of molecules that regulate pathogenesis of cardiovascular diseases. Here we aim to elucidate the effects and mechanism of miR-135a, a previously reported regulator of ischemia-reperfusion (I/R) injury, in myocardial I/R injury. Quantitative real-time polymerase chain reaction analysis revealed that the expression level of miR-135a was significantly decreased both in the rat I/R group and H9c2 cells subjected to hypoxia/reoxygenation. Overexpression of miR-135a in vivo markedly decreased the infarct size and inhibited the I/R-induced cardiomyocyte apoptosis. Overexpression of miR-135a in H9c2 also exerted antiapoptosis effects. Furthermore, bioinformatics analysis, luciferase activity, and the Western blot assay indicated that protein tyrosine phosphatase 1B (PTP1B) is a direct target of miR-135a. In addition, the expression of proapoptotic-related genes, such as p53, Bax, and cleaved caspase3, were decreased in association with the downregulation of PTP1B. In summary, this study demonstrates that miR-135a exerts protective effects against myocardial I/R injury by targeting PTP1B.


Subject(s)
Gene Expression Regulation , MicroRNAs/genetics , Myocardial Reperfusion Injury/prevention & control , Protective Agents , Protein Tyrosine Phosphatase, Non-Receptor Type 1/antagonists & inhibitors , Animals , Apoptosis , Male , Myocardial Reperfusion Injury/etiology , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Rats , Rats, Sprague-Dawley
14.
Chemistry ; 21(51): 18711-6, 2015 Dec 14.
Article in English | MEDLINE | ID: mdl-26767332

ABSTRACT

Ag2Mo3O10 nanorods decorated with Ag2 S nanoparticles have been synthesized by an anion-exchange route. With thiourea as the sulfur source, sulfur ions replace [Mo3O10](2-) units of active sites on the surface of Ag2Mo3O10 nanorods, forming Ag2Mo3O10 nanorods decorated with Ag2S nanoparticles. This induces enhanced absorption in the visible-light region. Ag2 S nanoparticles decorate the surface of Ag2Mo3O10 nanorods uniformly with a suitable amount of thiourea. The Ag2S/Ag2Mo3O10 nanoheterostructure enhances the photocatalytic activity on the degradations of Rhodamine B and glyphosate under visible light. This enhancement is attributed to the improved absorption of visible light and effective separation of charge carriers in the nanoheterostructure. Meanwhile, the Ag2S/Ag2Mo3O10 nanoheterostructure displays good photocatalytic stability based on cyclic photocatalytic experiments.

15.
Acta Pharmacol Sin ; 36(10): 1266-76, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26027659

ABSTRACT

AIM: To investigate the molecular targets of DCLAK11, a novel compound discovered from a series of substituted pyridin-3-amine derivatives, and to characterize its anti-tumor properties in vitro. METHODS: Kinase inhibition was measured by an ELISA assay. Cell viability was assessed with an SRB or a CCK8 assay. The alterations induced by kinase signaling proteins in cancer cells were detected by Western blot. Apoptosis was determined by an Annexin V-PI assay. The following assays were used to evaluate the impact on angiogenesis: wound-healing, Transwell, tube formation and microvessel outgrowth from rat aortic rings. RESULTS: DCLAK11 was a multi-targeted kinase inhibitor that primarily inhibited the EGFR, HER2, and VEGFR2 tyrosine kinases with IC50 value of 6.5, 18, and 31 nmol/L, respectively. DCLAK11 potently inhibited the proliferation of EGFR- and HER2-driven cancer cells: its IC50 value was 12 and 22 nmol/L, respectively, in HCC827 and HCC4006 cells with EGFR exon deletions, and 19 and 81 nmol/L, respectively, in NCI-N87 and BT474 cells with HER2 amplification. Consistently, DCLAK11 blocked the EGFR and HER2 signaling in cancer cells with either an EGFR or a HER2 aberration. Furthermore, DCLAK11 effectively induced EGFR/HER2-driven cell apoptosis. Moreover, DCLAK11 exhibited anti-angiogenic activity, as shown by its inhibitory effect on the proliferation, migration and tube formation of human umbilical vascular endothelial cells and the microvessel outgrowth of rat aortic rings. CONCLUSIONS: DCLAK11 is a multi-targeted kinase inhibitor with remarkable potency against tyrosine kinases EGFR, HER2 and VEGFR2, which confirms its potent anti-cancer activity in EGFR- and HER2-addicted cancers and its anti-angiogenic activity.


Subject(s)
Angiogenesis Inhibitors/pharmacology , ErbB Receptors/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Pyridines/pharmacology , Receptor, ErbB-2/antagonists & inhibitors , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Angiogenesis Inhibitors/chemistry , Animals , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , ErbB Receptors/metabolism , Human Umbilical Vein Endothelial Cells , Humans , Male , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , Protein Kinase Inhibitors/chemistry , Pyridines/chemistry , Rats, Sprague-Dawley , Receptor, ErbB-2/metabolism , Signal Transduction/drug effects , Vascular Endothelial Growth Factor Receptor-2/metabolism
16.
Bioorg Med Chem Lett ; 23(8): 2306-12, 2013 Apr 15.
Article in English | MEDLINE | ID: mdl-23489628

ABSTRACT

The V600E BRAF kinase mutation, which activates the downstream MAPK signaling pathway, commonly occurs in about 8% of all human malignancies and about 50% of all melanomas. In this study, we employed virtual screening and chemical synthesis to identify a series of N-(thiophen-2-yl) benzamide derivatives as potent BRAF(V600E) inhibitors. Structure-activity relationship studies of these derivatives revealed that compounds b40 and b47 are the two most potent BRAF(V600E) inhibitors in this series.


Subject(s)
Benzamides/chemistry , Benzamides/pharmacology , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Benzamides/chemical synthesis , Cell Proliferation/drug effects , Humans , MAP Kinase Signaling System/drug effects , Models, Molecular , Proto-Oncogene Proteins B-raf/chemistry , Structure-Activity Relationship
17.
Bioorg Med Chem Lett ; 23(8): 2408-13, 2013 Apr 15.
Article in English | MEDLINE | ID: mdl-23474386

ABSTRACT

A series of novel 5-(benzyloxy)pyridin-2(1H)-ones were designed, synthesized and biologically evaluated for c-Met inhibition. Various amides and benzoimidazoles at C-3 position were investigated. A potent compound 12b with a c-Met IC50 of 12nM was identified. This compound exhibited potent inhibition of EBC-1 cell associated with c-Met constitutive activation and showed high selectivity for c-Met than other tested 11 kinases. The binding model 12b with c-Met was disclosed by docking analysis.


Subject(s)
Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Pyridones/chemistry , Pyridones/pharmacology , Cell Line, Tumor , Drug Design , Humans , Protein Kinase Inhibitors/chemical synthesis , Proto-Oncogene Proteins c-met/chemistry , Pyridones/chemical synthesis , Structure-Activity Relationship
18.
Front Cardiovasc Med ; 10: 1195582, 2023.
Article in English | MEDLINE | ID: mdl-37492162

ABSTRACT

Invasive cardiac lipoma is a rare type of primary cardiac tumor that is composed of adipose tissue but infiltrating the adjacent structures. It is a benign tumor that can cause significant morbidity and mortality due to its size and location within the heart. We describe a giant invasive intracardiac lipoma across atrial wall extending to the ascending aorta and the superior vena cava. This review will provide an overview of invasive cardiac lipoma, including its clinical presentation, diagnosis, and management.

19.
Front Cardiovasc Med ; 9: 925571, 2022.
Article in English | MEDLINE | ID: mdl-36158842

ABSTRACT

Background: The objective of this study was to evaluate the quality of anticoagulation by the time in therapeutic range (TTR) for patients with 12-week INR follow-up interval. Materials and methods: From January 2018 to December 2020, a selective group of patients who underwent mechanical valve replacement and followed up at our anticoagulation clinic for adjustment of warfarin dose were enrolled. The incidences of complications of anticoagulation therapy were reported by linearized rates. TTR was calculated by the Rosendaal linear interpolation method. Results: Two hundred and seventy-four patients were eligible for this study. The mean age of these patients was 52.8 ± 12.7 years, and 65.7% (180 cases) of them were females. The mean duration of warfarin therapy was 16.7 ± 28.1 months. A total of 1309 INR values were collected, representing 66789 patient days. In this study, the mean TTR was 63.7% ± 18.6%, weekly doses of warfarin were 20.6 ± 6.0 mg/weekly, and the mean monitoring interval for the patient was 53.6 ± 27.1 days. There were 153 cases in good TTR group (TTR ≥ 60%) and 121 cases in poor TTR group (TTR < 60%). The calculated mean TTR in both groups was 42.6% ± 22.1% and 74.8% ± 10.4%, respectively. Compared with the TTR ≥ 60% group, the TTR < 60% group exhibited a more prevalence of female gender (p = 0.001), atrial fibrillation (p < 0.001), NYHA ≥ III (p < 0.001), and lower preoperative left ventricular ejection fraction (LVEF, p = 0.032). In multivariate analysis, female gender (p = 0.023) and atrial fibrillation (p = 0.011) were associated with TTR < 60%. The incidence of major bleeding and thromboembolic events was 2.7% and 1.1% patient-years, respectively. There was one death which resulted from cerebral hemorrhage. The incidence of death was 0.5% patient-years. The difference in anticoagulation-related complications between the TTR < 60% group and the TTR ≥ 60% group was not statistically significant. Conclusion: For patients with stable international normalized ratio monitoring results who are follow-up at anticoagulation clinics, a 12-week monitoring interval has an acceptable quality of anticoagulation. The female gender and atrial fibrillation were associated with TTR < 60%.

20.
Cardiovasc Ther ; 2022: 1652315, 2022.
Article in English | MEDLINE | ID: mdl-36545243

ABSTRACT

Objective: Long noncoding RNAs (lncRNAs), including some members of small nucleolar RNA host gene (SNHG), are important regulators in myocardial injury, while the role of SNHG4 in myocardial infarction (MI) is rarely known. This study is aimed at exploring the regulatory role and mechanisms of SNHG4 on MI. Methods: Cellular and rat models of MI were established. The expression of relating genes was measured by qRT-PCR and/or western blot. In vitro, cell viability was detected by MTT assay, and cell apoptosis was assessed by caspase-3 level, Bax/Bcl-2 expression, and/or flow cytometry. The inflammation was evaluated by TNF-α, IL-1ß, and IL-6 levels. The myocardial injury in MI rats was evaluated by echocardiography, TTC/HE/MASSON/TUNEL staining, and immunohistochemistry (Ki67). DLR assay was performed to confirm the target relationships. Results: SNHG4 was downregulated in hypoxia-induced H9c2 cells and MI rats, and its overexpression enhanced cell viability and inhibited cell apoptosis and inflammation both in vitro and in vivo. SNHG4 overexpression also decreased infarct and fibrosis areas, relieved pathological changes, and improved heart function in MI rats. In addition, miR-148b-3p was an action target of SNHG4, and its silencing exhibited consistent results with SNHG4 overexpression in vitro. DUSP1 was a target of miR-148b-3p, which inhibited the apoptosis of hypoxia-induced H9c2 cells. Both miR-148b-3p overexpression and DUSP1 silencing weakened the effects of SNHG4 overexpression on protecting H9c2 cells against hypoxia. Conclusions: Overexpression of SNHG4 relieved MI through regulating miR-148b-3p/DUSP1, providing potential therapeutic targets.


Subject(s)
MicroRNAs , Myocardial Infarction , RNA, Long Noncoding , Rats , Animals , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Myocytes, Cardiac/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Myocardial Infarction/pathology , Apoptosis , Hypoxia/metabolism , Dual Specificity Phosphatase 1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL