Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 506
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nature ; 607(7920): 708-713, 2022 07.
Article in English | MEDLINE | ID: mdl-35896645

ABSTRACT

Most engineering materials are based on multiphase microstructures produced either through the control of phase equilibria or by the fabrication of different materials as in thin-film processing. In both processes, the microstructure relaxes towards equilibrium by mismatch dislocations (or geometric misfit dislocations) across the heterophase interfaces1-5. Despite their ubiquitous presence, directly probing the dynamic action of mismatch dislocations has been unachievable owing to their buried nature. Here, using the interfacial transformation of copper oxide to copper as an example, we demonstrate the role of mismatch dislocations in modulating oxide-to-metal interfacial transformations in an intermittent manner, by which the lateral flow of interfacial ledges is pinned at the core of mismatch dislocations until the dislocation climbs to the new oxide/metal interface location. Together with atomistic calculations, we identify that the pinning effect is associated with the non-local transport of metal atoms to fill vacancies at the dislocation core. These results provide mechanistic insight into solid-solid interfacial transformations and have substantial implications for utilizing structural defects at buried interfaces to modulate mass transport and transformation kinetics.

2.
Proc Natl Acad Sci U S A ; 119(14): e2117899119, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35344429

ABSTRACT

SignificanceDynamically understanding the microscopic processes governing ordering transformations has rarely been attained. The situation becomes even more challenging for nanoscale alloys, where the significantly increased surface-area-to-volume ratio not only opens up a variety of additional freedoms to initiate an ordering transformation but also allows for kinetic interplay between the surface and bulk due to their close proximity. We provide direct evidence of the microscopic processes controlling the ordering transformation through the surface-bulk interplay in Pt-Fe nanoalloys and new features rendered by variations in alloy composition and chemical stimuli. These results provide a mechanistic detail of ordering transformation phenomena which are widely relevant to nanoalloys as chemical ordering occurs in most multicomponent materials under suitable environmental bias.

3.
Nano Lett ; 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38620050

ABSTRACT

Understanding the structure-performance relationships of a frustrated Lewis pair (FLP) at the atomic level is key to yielding high efficiency in activating chemically "inert" molecules into value-added products. A sound strategy was developed herein through incorporating oxygen defects into a Zr-based metal-organic layer (Zr-MOL-D) and employing Lewis basic proximal surface hydroxyls for the in situ formation of solid heterogeneous FLP (Zr4-δ-VO-Zr-OH). Zr-MOL-D exhibits a superior CO2 to CO conversion rate of 49.4 µmol g-1 h-1 in water vapor without any sacrificing agent or photosensitizer, which is about 12 times higher than that of pure MOL (Zr-MOL-P), with extreme stability even after being placed for half a year. Theoretical and experimental results reveal that the introduction of FLP converts the process of the crucial intermediate COOH* from an endothermic reaction to an exothermic spontaneous reaction. This work is expected to provide new prospects for developing efficient MOL-based photocatalysts in FLP chemistry through a sound defect-engineering strategy.

4.
J Am Chem Soc ; 146(12): 8598-8606, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38465613

ABSTRACT

This study outlines the preparation and characterization of a unique superlattice composed of indium oxide (In2O3) vertex-truncated nano-octahedra, along with an exploration of its response to high-pressure conditions. Transmission electron microscopy and scanning transmission electron microscopy were employed to determine the average circumradius (15.2 nm) of these vertex-truncated building blocks and their planar superstructure. The resilience and response of the superlattice to pressure variations, peaking at 18.01 GPa, were examined using synchrotron-based wide-angle X-ray scattering (WAXS) and small-angle X-ray scattering (SAXS) techniques. The WAXS data revealed no phase transitions, reinforcing the stability of the 2D superlattice composed of random layers in alignment with a p31m planar symmetry as discerned by SAXS. Notably, the SAXS data also unveiled a pressure-induced, irreversible translation of octahedra and ligand interaction occurring within the random layer. Through our examination of these pressure-sensitive behaviors, we identified a distinctive translation model inherent to octahedra and observed modulation of the superlattice cell parameter induced by pressure. This research signifies a noteworthy advancement in deciphering the intricate behaviors of 2D superlattices under a high pressure.

5.
J Am Chem Soc ; 146(5): 3010-3022, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38278519

ABSTRACT

The development of Pt-based catalysts for use in fuel cells that meet performance targets of high activity, maximized stability, and low cost remains a huge challenge. Herein, we report a nitrogen (N)-doped high-entropy alloy (HEA) electrocatalyst that consists of a Pt-rich shell and a N-doped PtCoFeNiCu core on a carbon support (denoted as N-Pt/HEA/C). The N-Pt/HEA/C catalyst showed a high mass activity of 1.34 A mgPt-1 at 0.9 V for the oxygen reduction reaction (ORR) in rotating disk electrode (RDE) testing, which substantially outperformed commercial Pt/C and most of the other binary/ternary Pt-based catalysts. The N-Pt/HEA/C catalyst also demonstrated excellent stability in both RDE and membrane electrode assembly (MEA) testing. Using operando X-ray absorption spectroscopy (XAS) measurements and theoretical calculations, we revealed that the enhanced ORR activity of N-Pt/HEA/C originated from the optimized adsorption energy of intermediates, resulting in the tailored electronic structure formed upon N-doping. Furthermore, we showed that the multiple metal-nitrogen bonds formed synergistically improved the corrosion resistance of the 3d transition metals and enhanced the ORR durability.

6.
Small ; : e2311268, 2024 Feb 11.
Article in English | MEDLINE | ID: mdl-38342592

ABSTRACT

The development of economical and efficient oxygen reduction reaction (ORR) catalysts is crucial to accelerate the widespread application rhythm of aqueous rechargeable zinc-air batteries (ZABs). Here, a strategy is reported that the modification of the binding energy for reaction intermediates by the axial N-group converts the inactive spinel MgAl2 O4 into the active motif of MgAl2 O4 -N. It is found that the introduction of N species can effectively optimize the electronic configuration of MgAl2 O4 , thereby significantly reducing the adsorption strength of *OH and boosting the reaction process. This main-group MgAl2 O4 -N catalyst exhibits a high ORR activity in a broad pH range from acidic and alkaline environments. The aqueous ZABs assembled with MgAl2 O4 -N shows a peak power density of 158.5 mW cm-2 , the long-term cyclability over 2000 h and the high stability in the temperature range from -10 to 50 °C, outperforming the commercial Pt/C in terms of activity and stability. This work not only serves as a significant candidate for the robust ORR electrocatalysts of aqueous ZABs, but also paves a new route for the effective reutilization of waste Mg alloys.

7.
Crit Rev Immunol ; 43(4): 1-10, 2023.
Article in English | MEDLINE | ID: mdl-37830189

ABSTRACT

This study aimed to investigate the potential targets and molecular mechanism of sinomenine in treating allergic rhinitis (AR) using network pharmacology and molecular docking. Relevant targets of sinomenine and AR were obtained from public databases, and differentially expressed genes (DEGs) for AR were identified in the Gene Expression Omnibus database. Using VennDiagram, we identified 22 potential targets of sinomenine against AR by crossing disease targets, drug targets, and DEGs. Functional analysis revealed that sinomenine may act via its anti-inflammatory and immunosuppressive effects, and its action pathways may include the MAPK, HIF-1, and JAK-STAT pathways. Furthermore, hub targets were identified using EPC, MCC, and MNC algorithms, and six hub targets (STAT3, EGFR, NFKB1, HIF1A, PTGS2, and JAK1) were selected by integrating the top 10 hub genes and 22 potential targets. Molecular docking analysis indicated that STAT3, EGFR, PTGS2, and JAK1 may be key targets of sinomenine against AR. Overall, our results suggest that sinomenine has potential therapeutic effects against AR, and its mechanism of action may involve the regulation of key targets and pathways related to inflammation and immunity.


Subject(s)
Network Pharmacology , Rhinitis, Allergic , Humans , Molecular Docking Simulation , Cyclooxygenase 2/genetics , Rhinitis, Allergic/drug therapy , ErbB Receptors
8.
Med Sci Monit ; 30: e942773, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38689479

ABSTRACT

BACKGROUND While many studies have been conducted on sugammadex sodium and neostigmine in patients undergoing general anesthesia, few have explored their effects in patients with interstitial lung diseases (ILDs). MATERIAL AND METHODS Sixty-three patients who underwent transbronchial cryobiopsy under general anesthesia were enrolled in a prospective randomized study. The patients were randomly divided into 2 groups: neostigmine combined with atropine group (group C, n=32) and sugammadex group (group S, n=31). Induction and maintenance of anesthesia were the same in both groups. Patients received rocuronium during anesthesia. At the end of the procedure, when the T2 of the train-of-four stimulation technique (TOF) monitoring appeared, neostigmine 0.04 mg/kg combined with atropine 0.02 mg/kg was injected intravenously in group C, and sodium sugammadex 2 mg/kg was injected intravenously in group S. Time from administration of muscle relaxant antagonist to recovery of TOF ratio (TOFr) to 0.9 and extubation time were recorded. The residual rate of neuromuscular blockade at 1, 3, 5, 7, and 10 min after extubation was calculated. RESULTS Compared to group C, group S had a significantly shorter recovery time of TOFr to 0.9 (4.0[2.0] min vs 14.0[11.0] min, P<0.001) and extubation time (4.0[3.0] min vs 11.0[7.0] min, P<0.001). The residual rate of neuromuscular blockade was remarkably lower in group S than in group C at 3, 5, and 7 min after extubation (3.2% vs 31%, 0% vs 25%, 0% vs 6%, P<0.05). CONCLUSIONS Sugammadex is more effective than neostigmine in reversing the muscle-relaxant effect of rocuronium bromide in patients with ILDs.


Subject(s)
Lung Diseases, Interstitial , Neostigmine , Neuromuscular Blockade , Sugammadex , Adult , Aged , Female , Humans , Male , Middle Aged , Anesthesia Recovery Period , Biopsy/methods , Bronchoscopy/methods , Lung Diseases, Interstitial/drug therapy , Neostigmine/therapeutic use , Neuromuscular Blockade/methods , Postoperative Period , Prospective Studies , Rocuronium , Sugammadex/therapeutic use
9.
Respiration ; 103(3): 111-123, 2024.
Article in English | MEDLINE | ID: mdl-38342097

ABSTRACT

INTRODUCTION: Benign airway stenosis (BAS) is a severe pathologic condition. Complex stenosis has a high recurrence rate and requires repeated bronchoscopic interventions for achieving optimal control, leading to recurrent BAS (RBAS) due to intraluminal granulation. METHODS: This study explored the potential of autologous regenerative factor (ARF) for treating RBAS using a post-intubation tracheal stenosis canine model. Bronchoscopic follow-ups were conducted, and RNA-seq analysis of airway tissue was performed. A clinical study was also initiated involving 17 patients with recurrent airway stenosis. RESULTS: In the animal model, ARF demonstrated significant effectiveness in preventing further collapse of the injured airway, maintaining airway patency and promoting tissue regeneration. RNA-seq results showed differential gene expression, signifying alterations in cellular components and signaling pathways. The clinical study found that ARF treatment was well-tolerated by patients with no severe adverse events requiring hospitalization. ARF treatment yielded a high response rate, especially for post-intubation tracheal stenosis and idiopathic tracheal stenosis patients. CONCLUSION: The study concludes that ARF presents a promising, effective, and less-invasive method for treating RBAS. ARF has shown potential in prolonging the intermittent period and reducing treatment failure in patients with recurrent tracheal stenosis by facilitating tracheal mucosal wound repair and ameliorating tracheal fibrosis. This novel approach could significantly impact future clinical applications.


Subject(s)
Tracheal Stenosis , Humans , Animals , Dogs , Tracheal Stenosis/etiology , Tracheal Stenosis/surgery , Constriction, Pathologic , Pilot Projects , Trachea/pathology , Wound Healing/physiology , Retrospective Studies
10.
Am J Respir Crit Care Med ; 207(2): 160-172, 2023 01 15.
Article in English | MEDLINE | ID: mdl-35984444

ABSTRACT

Rationale: Sustained activation of lung fibroblasts and the resulting oversynthesis of the extracellular matrix are detrimental events for patients with interstitial lung diseases (ILDs). Lung biopsy is a primary evaluation technique for the fibrotic status of ILDs, and is also a major risk factor for triggering acute deterioration. Fibroblast activation protein (FAP) is a long-known surface biomarker of activated fibroblasts, but its expression pattern and diagnostic implications in ILDs are poorly defined. Objectives: The present study aims to comprehensively investigate whether the expression intensity of FAP could be used as a potential readout to estimate or measure the amounts of activated fibroblasts in ILD lungs quantitatively. Methods: FAP expression in human primary lung fibroblasts as well as in clinical lung specimens was first tested using multiple experimental methods, including real-time quantitative PCR (qPCR), Western blot, immunofluorescence staining, deep learning measurement of whole slide immunohistochemistry, as well as single-cell sequencing. In addition, FAP-targeted positron emission tomography/computed tomography imaging PET/CT was applied to various types of patients with ILD, and the correlation between the uptake of FAP tracer and pulmonary function parameters was analyzed. Measurements and Main Results: Here, it was revealed, for the first time, FAP expression was upregulated significantly in the early phase of lung fibroblast activation event in response to a low dose of profibrotic cytokine. Single-cell sequencing data further indicate that nearly all FAP-positive cells in ILD lungs were collagen-producing fibroblasts. Immunohistochemical analysis validated that FAP expression level was closely correlated with the abundance of fibroblastic foci on human lung biopsy sections from patients with ILDs. We found that the total standard uptake value (SUV) of FAP inhibitor (FAPI) PET (SUVtotal) was significantly related to lung function decline in patients with ILD. Conclusions: Our results strongly support that in vitro and in vivo detection of FAP can assess the profibrotic activity of ILDs, which may aid in early diagnosis and the selection of an appropriate therapeutic window.


Subject(s)
Lung Diseases, Interstitial , Positron Emission Tomography Computed Tomography , Humans , Lung Diseases, Interstitial/pathology , Lung/pathology , Fibrosis , Fibroblasts/metabolism
11.
Ecotoxicol Environ Saf ; 273: 116163, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38442473

ABSTRACT

BACKGROUNDS: Short-term exposure to air pollutants increases the risk of migraine, but the long-term impacts of exposure to multiple pollutants on migraine have not been established. The aim of this large prospective cohort study was to explore these links. METHODS: A total of 458,664 participants who were free of migraine at baseline from the UK Biobank were studied. Cox proportional hazards models were used to estimate the risk of new-onset migraine from combined long-term exposure to four pollutants, quantified as an air pollution score using principal component analysis. RESULTS: During a median (IQR) follow-up of 12.5 (11.8, 13.2) years, a total of 5417 new-onset migraine cases were documented. Long-term exposure to multiple air pollutants was associated with an increased risk of new-onset migraine, as indicated by an increased in the SDs of PM2.5 (hazard ratio (HR): 1.04, 95% CI: 1.01-1.06, P = 0.009), PM10 (HR: 1.07, 95% CI: 1.04-1.10, P < 0.001), NO2 (HR: 1.10, 95% CI: 1.07-1.13, P < 0.001) and NOx (HR: 1.04, 95% CI: 1.01-1.07, P = 0.005) in the main model. The air pollution score showed a doseresponse association with an increased risk of new-onset migraine. Similarly, compared with those of the lowest tertile, the HRs (95% CI) of new-onset migraine were 1.11 (95% CI: 1.04-1.19, P = 0.002) and 1.17 (95% CI: 1.09-1.26, P < 0.001) in tertiles 2 and 3, respectively, according to the main model (P trend < 0.001). CONCLUSION: Long-term individual and joint exposure to multiple air pollutants is associated with an increased risk of new-onset migraine.


Subject(s)
Air Pollutants , Air Pollution , Humans , Air Pollutants/analysis , Particulate Matter/toxicity , Prospective Studies , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Air Pollution/adverse effects , Nitrogen Dioxide
12.
J Obstet Gynaecol Res ; 50(3): 381-388, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38164826

ABSTRACT

OBJECTIVE: The aim of this study was to investigate the effects of exercise combined with cognitive behavioral therapy (CBT) on anxiety and quality of life in pregnant women. METHODS: This study adopted a prospective randomized controlled trial design, and divided 60 pregnant women in the first and second trimesters into two groups. The control group received routine prenatal education, and the experimental group added moderate exercise and CBT on the basis of routine prenatal education. All participants completed the Hamilton Anxiety Rating Scale (HARS) and World Health Organization Quality of Life-BREF (WHOQOL-BREF) at the start of the study (baseline) and at 6 weeks after the intervention. RESULTS: Baseline data, scores on HARS, and scores on WHOQOL-BREF were found to be consistent among the two groups of patients prior to the intervention (all P > 0.05). Following the intervention, the implementation of exercise combined with CBT resulted in significant improvements in anxiety levels within the experimental group, particularly with respect to aspects such as anxious mood, tension, insomnia, cognitive function, cardiovascular symptoms, and gastrointestinal symptoms (all P < 0.05). Similarly, the combination of exercise and CBT led to significant enhancement in the quality of life in the experimental group, particularly in areas such as physical health, psychological health, and environmental factors (all P < 0.05). Nevertheless, no significant disparities were observed between the two groups in terms of fears, depressive mood, muscular and sensory somatic symptoms, respiratory symptoms, genitourinary symptoms, autonomic symptoms, behavior during the interview, and social relationships (all P > 0.05). CONCLUSION: Exercise combined with CBT can effectively reduce the anxiety of pregnant women and improve their quality of life, which has important clinical significance for improving the mental health and quality of life of pregnant women in the first and second trimesters.


Subject(s)
Cognitive Behavioral Therapy , Quality of Life , Pregnancy , Humans , Female , Prospective Studies , Anxiety/therapy , Anxiety Disorders
13.
Article in English | MEDLINE | ID: mdl-38690940

ABSTRACT

PURPOSE: The femoral trochlea axial orientation has been shown to be a better predictor of patellar dislocation than the femoral anteversion angle. However, no study has investigated the importance of the femoral trochlea axial orientation in the surgical treatment of patellar dislocation. It is aimed to explore the pathological threshold of the femoral trochlea axial orientation and its guiding implications for surgical interventions in the study. METHODS: Sixty-four patients with patellar dislocation and 64 controls were included for measurement of the femoral trochlea axial orientation. The ability to predict the patellar dislocation and the pathologic threshold of the femoral trochlea axial orientation were evaluated using the receiver operating characteristic curve. One hundred patients with medial patellofemoral ligament reconstruction and 25 patients with derotational distal femur osteotomy were divided into two groups based on the femoral trochlea axial orientation cut-off value and their postoperative knee functions, and patellar tilt angles were compared. RESULTS: There were significant differences in the femoral trochlea axial orientation (60.8 ± 7.9 vs. 67.8 ± 4.6, p < 0.05) between patients with patellar dislocation and the normal population. The sensitivity and specificity of the femoral trochlea axial orientation were 0.641 and 0.813, respectively, at the femoral trochlea axial orientation smaller than 63.8°. Amongst patients having had isolated medial patellofemoral ligament reconstruction with decreased femoral trochlea axial orientation, knee function was poorer after surgery. The prognosis of patients with the femoral trochlea axial orientation correction in derotational distal femur osteotomy was better than that for patients without correction. CONCLUSIONS: The femoral trochlea axial orientation had good predictive efficiency for patellar dislocation. Isolated medial patellofemoral ligament reconstruction is not sufficiently effective for patients with patellar dislocation and decreased femoral trochlea axial orientation. Patients with a decreased femoral trochlea axial orientation can have better surgical outcomes after correction by derotational distal femur osteotomy. LEVEL OF EVIDENCE: Level III.

14.
Sensors (Basel) ; 24(8)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38676176

ABSTRACT

In the field of robotic automation, achieving high position accuracy in robotic vision systems (RVSs) is a pivotal challenge that directly impacts the efficiency and effectiveness of industrial applications. This study introduces a comprehensive modeling approach that integrates kinematic and joint compliance factors to significantly enhance the position accuracy of a system. In the first place, we develop a unified kinematic model that effectively reduces the complexity and error accumulation associated with the calibration of robotic systems. At the heart of our approach is the formulation of a joint compliance model that meticulously accounts for the intricacies of the joint connector, the external load, and the self-weight of robotic links. By employing a novel 3D rotary laser sensor for precise error measurement and model calibration, our method offers a streamlined and efficient solution for the accurate integration of vision systems into robotic operations. The efficacy of our proposed models is validated through experiments conducted on a FANUC LR Mate 200iD robot, showcasing notable improvements in the position accuracy of robotic vision system. Our findings contribute a framework for the calibration and error compensation of RVS, holding significant potential for advancements in automated tasks requiring high precision.

15.
Nano Lett ; 23(8): 3476-3483, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37040582

ABSTRACT

This study demonstrates an atomic composition manipulation on Pt-Ni nano-octahedra to enhance their electrocatalytic performance. By selectively extracting Ni atoms from the {111} facets of the Pt-Ni nano-octahedra using gaseous carbon monoxide at an elevated temperature, a Pt-rich shell is formed, resulting in an ∼2 atomic layer Pt-skin. The surface-engineered octahedral nanocatalyst exhibits a significant enhancement in both mass activity (∼1.8-fold) and specific activity (∼2.2-fold) toward the oxygen reduction reaction compared with its unmodified counterpart. After 20,000 potential cycles of durability tests, the surface-etched Pt-Ni nano-octahedral sample shows a mass activity of 1.50 A/mgPt, exceeding the initial mass activity of the unetched counterpart (1.40 A/mgPt) and outperforming the benchmark Pt/C (0.18 A/mgPt) by a factor of 8. DFT calculations predict this improvement with the Pt surface layers and support these experimental observations. This surface-engineering protocol provides a promising strategy for developing novel electrocatalysts with improved catalytic features.

16.
Molecules ; 29(8)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38675633

ABSTRACT

Surface charges of catalysts have important influences on the thermodynamics and kinetics of electrochemical reactions. Herein, we develop a modified version of the grand-canonical potential kinetics (GCP-K) method based on density functional theory (DFT) calculations to explore the effect of surface charges on reaction thermodynamics and kinetics. Using the hydrogen evolution reaction (HER) on the Pt(111) surface as an example, we show how to track the change of surface charge in a reaction and how to analyze its influence on the kinetics. Grand-canonical calculations demonstrate that the optimum hydrogen adsorption energy on Pt under the standard hydrogen electrode condition (SHE) is around -0.2 eV, rather than 0 eV established under the canonical ensemble, due to the high density of surface negative charges. By separating the surface charges that can freely exchange with the external electron reservoir, we obtain a Tafel barrier that is in good agreement with the experimental result. During the Tafel reaction, the net electron inflow into the catalyst leads to a stabilization of canonical energy and a destabilization of the charge-dependent grand-canonical component. This study provides a practical method for obtaining accurate grand-canonical reaction energetics and analyzing the surface charge induced changes.

17.
Angew Chem Int Ed Engl ; : e202410734, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958047

ABSTRACT

Since the discovery in 2000, conversion-type materials have emerged as a promising negative-electrode candidate for next-generation batteries with high capacity and tunable voltage, limited by low reversibility and severe voltage hysteresis. Heterogeneous construction stands out as a cost-effective and efficient approach to reducing reaction barriers and enhancing energy density. However, the second term introduced by conventional heterostructure inevitably complicates the electrochemical analysis and poses great challenges to harvesting systematic insights and theoretical guidance. A model cell is designed and established herein for the conversion reactions between Na and TMSA-SnO2, where TMSA-SnO2 represents single atom modification of eight different 3d transition elements (V, Cr, Mn, Fe, Co, Ni, Cu or Zn). Such a model unit fundamentally eliminates the interference from the second phase and thus enables independent exploration of activation manifestations of the heterogeneous architecture. For the first time, a thermodynamically dependent catalytic effect is proposed and verified through statistical data analysis. The mechanism behind the unveiled catalytic effect is further elucidated by which the active d orbitals of transition metals weaken the surface covalent bonds and lower the reaction barriers. This research provides both theoretical insights and practical demonstrations of the advanced heterogeneous electrodes.

18.
J Am Chem Soc ; 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36763977

ABSTRACT

Noncatalytic gas-solid reactions are a large group of heterogeneous reactions that are usually assumed to occur irreversibly because of the strong driving force to favor the forward direction toward the product formation. Using the example of Ni oxidation into NiO with CO2, herein, we demonstrate the existence of the reverse element that results in the NiO reduction from the countering effect of the gaseous product of CO. Using in situ electron microscopy observations and atomistic modeling, we show that the oxidation process occurs via preferential CO2 adsorption along step edges that results in step-flow growth of NiO layers, and the presence of Ni atoms on the flat NiO surface promotes the nucleation of NiO layers. Simultaneously, the NiO reduction happens via preferential step-edge adsorption of CO that leads to the receding motion of atomic steps, and the presence of Ni vacancies in the NiO surface facilitates the CO-adsorption-induced surface pitting. Temperature and CO2 pressure effect maps are constructed to illustrate the spatiotemporal dynamics of the competing NiO redox reactions. These results demonstrate the rich gas-solid surface reaction dynamics induced by the coexisting forward and reverse reaction elements and have practical applicability in manipulating gas-solid reactions via controlling the gas environment or atomic structure of the solid surface to steer the reaction toward the desired direction.

19.
J Am Chem Soc ; 145(31): 17309-17320, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37525440

ABSTRACT

Organic materials are promising for cation storage in calcium ion batteries (CIBs). However, the high solubility of organic materials in an electrolyte and low electronic conductivity remain the key challenges for high-performance CIBs. Herein, a nitrogen-rich covalent organic framework with multiple carbonyls (TB-COF) is designed as an aqueous anode to address those obstacles. TB-COF demonstrates a high reversible capacity of 253 mAh g-1 at 1.0 A g-1 and long cycle life (0.01% capacity decay per cycle at 5 A g-1 after 3000 cycles). The redox mechanism of Ca2+/H+ co-intercalated in COF and chelating with C═O and C═N active sites is validated. In addition, a novel C═C active site was identified for Ca2+ ion storage. Both computational and empirical results reveal that per TB-COF repetitive unit, up to nine Ca2+ ions are stored after three staggered intercalation steps, involving three distinct Ca2+ ion storage sites. Finally, the evolution process of radical intermediates further elucidates the C═C reaction mechanism.

20.
Radiology ; 308(1): e222830, 2023 07.
Article in English | MEDLINE | ID: mdl-37432083

ABSTRACT

Background Breast cancer is highly heterogeneous, resulting in different treatment responses to neoadjuvant chemotherapy (NAC) among patients. A noninvasive quantitative measure of intratumoral heterogeneity (ITH) may be valuable for predicting treatment response. Purpose To develop a quantitative measure of ITH on pretreatment MRI scans and test its performance for predicting pathologic complete response (pCR) after NAC in patients with breast cancer. Materials and Methods Pretreatment MRI scans were retrospectively acquired in patients with breast cancer who received NAC followed by surgery at multiple centers from January 2000 to September 2020. Conventional radiomics (hereafter, C-radiomics) and intratumoral ecological diversity features were extracted from the MRI scans, and output probabilities of imaging-based decision tree models were used to generate a C-radiomics score and ITH index. Multivariable logistic regression analysis was used to identify variables associated with pCR, and significant variables, including clinicopathologic variables, C-radiomics score, and ITH index, were combined into a predictive model for which performance was assessed using the area under the receiver operating characteristic curve (AUC). Results The training data set was comprised of 335 patients (median age, 48 years [IQR, 42-54 years]) from centers A and B, and 590, 280, and 384 patients (median age, 48 years [IQR, 41-55 years]) were included in the three external test data sets. Molecular subtype (odds ratio [OR] range, 4.76-8.39 [95% CI: 1.79, 24.21]; all P < .01), ITH index (OR, 30.05 [95% CI: 8.43, 122.64]; P < .001), and C-radiomics score (OR, 29.90 [95% CI: 12.04, 81.70]; P < .001) were independently associated with the odds of achieving pCR. The combined model showed good performance for predicting pCR to NAC in the training data set (AUC, 0.90) and external test data sets (AUC range, 0.83-0.87). Conclusion A model that combined an index created from pretreatment MRI-based imaging features quantitating ITH, C-radiomics score, and clinicopathologic variables showed good performance for predicting pCR to NAC in patients with breast cancer. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Rauch in this issue.


Subject(s)
Breast Neoplasms , Neoadjuvant Therapy , Humans , Middle Aged , Female , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/drug therapy , Retrospective Studies , Magnetic Resonance Imaging , Odds Ratio
SELECTION OF CITATIONS
SEARCH DETAIL